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Introduction of Dalbergia odorifera ")
enhances nitrogen absorption on
Eucalyptus through stimulating microbially
mediated soil nitrogen-cycling

Xianyu Yao'** Qianchun Zhang? Haiju Zhou?, Zhi Nong*, Shaoming Ye® and Qi Deng'*"

Abstract

Background: There is substantial evidence that Eucalyptus for nitrogen (N) absorption and increasing the growth
benefit from the introduction of N-fixing species, but the underlying mechanisms for microbially mediated soil N
cycling remains unclear.

Methods: We investigated the changes of soil pH, soil water content (SWC), soil organic carbon (SOC), total N (TN),
inorganic N (NH,*-N and NOs~-N), microbial biomass and three N-degrading enzyme activities as well as the
biomass and N productivity of Fucalyptus between a pure Eucalyptus urophylla x grandis plantation (PP) and a
mixed Dalbergia odorifera and Eucalyptus plantation (MP) in Guangxi Zhuang Autonomous Region, China.

Results: Compared with the PP site, soil pH, SWC, SOC and TN in both seasons were significantly higher at the MP
site, which in turn enhanced microbial biomass and the activities of soil N-degrading enzymes. The stimulated
microbial activity at the MP site likely accelerate soil N mineralization, providing more available N (NH,*-N in both
seasons and NOs -N in the wet-hot season) for Fucalyptus absorption. Overall, the N productivity of Eucalyptus at
the MP site was increased by 19.7% and 21.9%, promoting the biomass increases of 15.1% and 19.2% in the dry-
cold season and wet-hot season, respectively.

Conclusion: Our results reveal the importance of microbially mediated soil N cycling in the N absorption on
Eucalyptus. Introduction of D. odorifera enhances Eucalyptus biomass and N productivity, improve soil N availability
and increased soil C and N concentration, which hence can be considered to be an effective sustainable
management option of Eucalyptus plantations.
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Background

Eucalyptus is one of the most extensively planted com-
mercial plantation timber genera in the world (Lino
et al. 2016), and it has been introduced and cultivated in
China since the 1970s. The area of Eucalyptus planta-
tions in China has reached 4.6 million ha by 2014, of
which almost half in Guangxi Zhuang Autonomous Re-
gion, China (Zhao et al. 2018). Currently, most Eucalyp-
tus plantations are grown as monocultures and have
been intensively managed in short-rotation with con-
tinuous cropping (Huang et al. 2017). However, due to
high nitrogen (N) consumption with successive rota-
tions, the monoculture plantations of Eucalyptus have
rapidly depleted soil nutrients (especially N) and water
(Liu et al. 1998; Sicardi et al. 2004). The massive applica-
tion of N fertilizer is common to ensure high and sus-
tainable stand production (Laclau et al. 2005), but this
not only increases economic costs but also leads to soil
acidification and contamination of groundwater, and
other negative impacts on the environment (Goncalves
et al. 1997). Consequently, seeking an optimal silvicul-
tural practice to achieve N sustainable management of
Eucalyptus plantations is in urgent need.

The N-fixing trees have been widely considered as be-
ing important in balancing N losses due to timber har-
vesting and in reducing the demand for fertilizer
application in Eucalyptus plantations (May and Attiwill
2003). The growth of N-fixing plants relies largely on
the fixed atmospheric-N that accounts for 10%-90% of
the N used by the N-fixing species (Nygren and Leblanc
2015). Therefore, introduction of N-fixing species into
Eucalyptus plantations would decrease the N uptake of
trees from soil, in turn increasing soil N retention
(Bouillet et al. 2008; Koutika et al. 2019). In addition, the
N transfer probably can also occur via mycorrhizal asso-
ciations from acacia to eucalypt (Paula et al. 2015; Oli-
veira et al. 2021), which allows Eucalyptus to benefit
directly from symbiotic N fixation (Paula et al. 2015; Yao
et al. 2019, 2021). In recent years, introducing N-fixing
species to improve N absorption and biomass productiv-
ity on Eucalyptus has been a popular focus of research,
but the experimental results remain contradictory de-
pending on the selected N-fixing species and stand con-
ditions (Forrester et al. 2006; Firn et al. 2007; Bouillet
et al. 2013). Moreover, because of lack of understanding
the underlying mechanisms of soil N cycling, it is still
hard to predict how combinations of the N-fixing spe-
cies and specific sites can lead to the best benefits, mak-
ing the extension of this silvicultural practice remains
difficult around the world (Forrester et al. 2006).

The advantages of Eucalyptus mixed with N,-fixing
tree species are usually attributed to the increase in soil
organic N source (Paula et al. 2015; Yao et al. 2019).
However, it is important to note that most of these
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increased organic N sources due to the introduction of
N-fixing species becoming available to Eucalyptus have
to be transformed to inorganic N by the microbial de-
composition of the plant tissues and soil organic matter
(Versini et al. 2016). Shift of microbial activity under the
mixed plantation of Eucalyptus and N-fixing species
would alter soil N cycling and availability, which ultim-
ately improve the N absorption and growth on Eucalyp-
tus (Huang et al. 2014). Microorganisms involve soil
biogeochemical cycling mainly through producing spe-
cific extracellular enzymes, which has been confirmed by
extensive researches (Huang et al. 2017). Soil N-
degrading enzymes including leucine aminopeptidase
(LAP), B-1,4-N-acetylglucosaminidase (NAG) and urease
can serve as indicators of energy N demand (Schimel
et al. 2017), which catalyze terminal reactions to
depolymerize organic N (Sinsabaugh et al. 2008). There-
fore, detecting the change of microbial biomass and soil
N-degrading enzyme activities will help us to better
understand the underlying mechanisms for microbially
mediated soil N cycling under the mixed plantations of
Eucalyptus and N-fixing species.

In recent years, a variety of N-fixing species such as
Acacia mangium and D. odorifera were introduced to
improve N absorption and productivity on Eucalyptus
planations in Guangxi (Yao et al. 2019). Previous work
in pot experiment has observed a percentage of 6.6%—
13.6% N transfer from D. odorifera to Eucalyptus and an
increase of 20.4%-33.2% in the dry matter yields of Eu-
calyptus compared to the monoculture plantation (Yao
et al. 2019). The aim of this study is to better understand
the underlying mechanisms for microbially mediated soil
N cycling when introducing D. odorifera into the Euca-
lyptus plantations. Specifically, we hypothesized that the
introduction of D. odorifera would increase soil organic
matter (SOC and TN) and improve soil pH and SWC,
which in turn stimulated microbial activities (biomass
and N-degrading enzyme activities) and increased N
availability NH,*-N and NO3;™-N), ultimately enhancing
Eucalyptus N absorption and productivity. We also ex-
pected that the role and the driving factors of micro-
bially mediated soil N cycling when introducing D.
odorifera into the Eucalyptus plantations differ between
in the dry-cold and wet-hot seasons.

Materials and methods

Experimental design

The study site was located at the Experimental Center of
Tropical Forestry, Chinese Academy of Forestry (22°07°
N, 106°93" E), Pingxiang City, Guangxi Zhuang Autono-
mous Region, China. The mean annual precipitation is
around 1400 mm, falling mainly from April through Sep-
tember (Wang et al. 2010) and mean annual temperature
is 21 °C. The soils were formed from granite, classified
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as red soil in Chinese soil classification, equivalent to
oxisol in USDA Soil Taxonomy (Huang et al. 2014,
2017). Prior to the current study, this area was covered
by a planted Acacia mangium plantations, which was
established in 2001 on a historically deforested hill and
clear harvested in 2014-.

In March 2015, a complete randomized block design
with three replicates was established to compare a pure
E. urophylla x grandis plantation (PP) and a mixed spe-
cies plantation of D. odorifera and E. urophylla x grandis
(MP) in a field experiment. The two species were
planted alternately at 2-m spacing in the row, with 2.5 m
between rows, giving a total stocking density of 2000
treesha™ . These densities reflect the current densities
in commercial plantations in South China. Each plot
consisted in 15m x 15m and a 200-m buffer separates
the PP and MP plantations, and were either pure plots
of E. urophylla x grandis (100E) or mixed plots in a pro-
portion of 1:1 of both species (50D:50E, the two species
being alternately planted in the row, and between adja-
cent rows). The fertilizers applied on planting were 140
gN'plant’1 (urea: CO (MNH,),, buried at 20 cm from
the each plant), as well as 18 g-plant™! K (KCl), 56 g
P-plant™ ! (CaH,PO,) in both PP and MP plantations.

Sample of plants collected and N analysis

Five plants in each plot were harvested on March 20 and
August 25, 2019, which including below-ground (ie.,
roots) and above-ground. The trees of above-ground
were separated into components: leaves, branches (living
branches and dead branches), stem wood and stem bark.
The stem of each tree was sawn into 2-m sections ac-
cording to Monsic’s stratified clip method (You et al
2018). However, much of the root growth was shallow
and lateral, it was difficult to distinguish the fine roots of
one tree from those of another. To address this problem,
a large soil pit of 1.5-m diameter and 1.0-m depth was
excavated around each target tree. All the materials were
collected and weighed up fresh weight immediately, and
then 500 g of every composition sample was taken in
laboratory.

The harvested material was dried at 65°C until con-
stant dry weight period for the biomass analyses. The
dried plant material was ground in a ball mill (< 0.1 mm)
for the N concentration analyses with a continuous-flow
chemical analyzer (AA3) after the degradation using 10
mL H5SO,. The biomass and N accumulation of E. uro-
phylla x grandis in the pot was the sum of leaves, stem,
branches, bark and roots.

Sample of soils collected and analysis

On March 19 and August 24, representing the dry-cool
season and the wet-hot seasons of the year 2019, re-
spectively, five soil samples were randomly collected
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from each plot at 0-20 cm depth to investigated the
changes of soil pH, soil water content (SWC), soil
organic carbon (SOC), total N (TN), inorganic N
(ammonium nitrogen: NH,"-N and nitrate nitrogen:
NO3™-N), microbial biomass and three N-degrading
enzyme activities. During sampling within a plot, the
corer was wiped clean of obvious soil particles with
paper towel. All samples were stored at —20°C and
sieved <2mm to remove visible stones, soil animals,
roots and plant materials prior to analysis pH, ammo-
nium (NH,"-N) and nitrate nitrogen (NO3 -N). Some
of the air dried and ball milled sample (sieved <0.2
mm) were used for the concentration of total nitro-
gen TN, soil microbial biomass carbon (MBC) and
nitrogen (MBN) and (SOC analyses.

The pH of the soil samples was measured in a 1:2.5
soil/water suspension. SOC was determined by dichro-
mate oxidation and titration with ferrous ammonium
sulfate, the TN concentration was determined by a con-
tinuous flow chemical analyzer (AA3) and followed by
detection of NH,*-N and NO;™-N. Data was also col-
lected on C/N ratio of soil (C/Nsoil).

MBC and MBN were measured by fumigation-
extraction, using 0.5 M K,SO, as the extraction agent
(Vance et al. 1987), with a total organic carbon analyzer
(1020A; O], College Station, TX, USA), and were calcu-
lated by Vance et al. (1987).

In addition, soil microbial function was expressed by
the soil extracellular enzyme activities, involved NAG,
LAP and Urease, respectively. We determined the soil
enzyme activities using the conventional p-nitrophenol
(pNP) assays (Baldrian 2009). The enzyme activities were
measured by 3 replicates for each soil sample and
expressed as pmol per gram dry soil and incubation
time.

Statistical analyses

Statistical analyses were performed using SPSS software
(SPSS Inc., Chicago, IL, USA). Analysis of Variance
(ANOVA) was used to determine the statistical signifi-
cance (a=0.05) of stand type, season and their inter-
active effect on N accumulation and biomass of
Eucalyptus as well as soil physico-chemical properties
and microbial activity. Tukey’s multiple comparison test
(HSD) was conducted if significant effects of stand type
or season was found. Pairwise relationships between
plant N accumulation, soil physico-chemical properties
and microbial activities were tested using Pearson cor-
relation coefficients.

Structural equation modeling (SEM) is an advanced
multivariate statistical technique that allows for hypoth-
eses testing of complex path-relation networks (Grace
et al. 2007). A structural equation modelling (SEM) ap-
proach was also used to test a conceptual model for
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microbially mediated soil N cycling in the dry-cold and
the wet-hot seasons. The SEM analysis was performed
with the IBM SPSS Amos 20.0 using the maximum like-
lihood estimation method. Several tests were used to as-
sess model fit: the Chi-square (x°)-test, comparative fit
index (CFI) and root square mean error of approxima-
tion (RMSEM) (Arbuckle 2006).

Results

The biomass and N productivity of E. urophylla x grandis
The total biomass of Eucalyptus was significantly af-
fected by stand type (Table S1), with greater at the MP
than the PP sites in both seasons (Fig. la and b; p<
0.05). For the different organs of Eucalyptus, the biomass
in branch and stem were significantly greater at the MP
than PP sites in the wet-hot season, while in the dry-
cold season only the leaf biomass were significantly
greater at the MP than PP sites. At both PP and MP
sites, the biomass of Eucalyptus in stems was greatest,
and then followed by root, branch, bark and leaf in both
seasons (Fig. 1a and b). The N productivity of the whole
plant was significantly affected by season, stand type and
their interaction (Table S1). Similar to biomass, the total
N productivity of Eucalyptus was also significantly

Page 4 of 12

greater at the MP than the PP sites in the both seasons
(Fig. 1c and d). For the different organs of Eucalyptus,
the N productivity in leaf, branch and root were signifi-
cantly greater at the MP than PP sites in the wet-hot
season, while in the dry-cold season only the leaf N
productivity were significantly greater at the MP than PP
sites. More importantly, the increased N productivity of
Eucalyptus with the introduction of D. odorifera was
relatively greater in leaf than in the other organs (Fig. 1c
and d). The distribution of N productivity in different
organs from high to low were stem, root, ranch, bark
and leaf in the dry-cold season and were stem, branch,
leaf, root and bark in the wet-hot season, respectively
(Fig. 1c and d).

Soil physico-chemical properties

Soil pH had no significant difference between the dry-
cold and wet-hot season, but was significantly higher at
the MP site than at the PP site (Table 1). The concentra-
tions of SOC, TN, NO3; -N and NH,"-N as well as the
ratio of SOC to TN (C/N) and SWC were significantly
affected by stand type and season. SOC, TN, NH,"-N
and SWC were significantly higher at the MP than the
PP sites and in the wet-hot season than dry-cold season
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Fig. 1 The biomass and the N accumulation of E. urophylla x grandis on pure Eucalyptus and mixed with N,-fixing species and Eucalyptus,
respectively. a, b represent the biomass of E. urophylla x grandis and ¢, d represent the N content of E. urophylla x grandis in dry-cold season and
wet-hot season, respectively. PP = pure Eucalyptus plantations; MP = mixed with N,-fixing species Eucalyptus plantations. Different lowercase letters
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Table 1 Soil Physical chemical properties as affected by introduction N,-fixing trees and seasons in Fucalyptus plantations. PP = pure
Eucalyptus plantation; MP = mixed with N,-fixing species and Eucalyptus plantation

Source of variation  pH SWC (%) SOC (gkg™") TN (g'kg™") NO;™-N (mg-kg™') NH,*-N (mgkg™') C/N

Dry-cold MP 483+012a 1863+143b 2149+325b 134+013b 422+046b 16994317 b 16094203 b
PP 456+027b 1683+086c 18964281 c 104+015¢c 409+036b 13554201 ¢ 1878+3.14 a

Wet-hot MP 491+016a 2148+163a 2470+362a 156+015a 594+088a 1746+ 148 a 16294369 b
PP 460+014b 1999+111b 2085+257b 112+010c 425+027b 1359+ 156 ¢ 18154094 a

Season (S) ns 64832 2548 100852 87659 144709 ns

Stand type (T) 7.844" 19332 186317 9330" 48121 24905 7.844"

SxT ns ns ns 8522" 50.178™" 13667 ns

ns, ¥, ** and *** = F-value not significant, significant at p > 0.05 and p < 0.05, p<0.01 and p < 0.001, respectively

(p <0.05 for all, Table 1). The soil NO3 -N concentra-
tion at the MP site was higher than that at the PP site in
the wet-hot season only (Table 1). Compared with the
PP site, soil C/N ratio was significantly decreased at the
MP site in both seasons (Table 1).

Microbial biomass and enzymes activities

Two-way ANOVAs showed that MBC and MBN were
significantly affected by stand type and season (p < 0.05,
Fig. 2), but no significant interactive effect was found
(p>0.05, Fig. 2). The MBC and MBN were significantly
higher at the MP than the PP sites and in the wet-hot
season than dry-cold season (Fig. 2a and b). However,
the ratio of MBC/MBN did not significantly differ be-
tween the PP and MP sites in the both seasons (Fig. 2c).
All of the soil N-degrading enzyme activities were also
significantly affected by stand type and season (p < 0.05,
Fig. 3). Specifically, only the activities of NAG and Urea
in the wet-hot season were significantly higher (p < 0.05)
at the MP than the PP sites (Fig. 3).

Relationships of soil microbial biomass and enzymes
activities with soil and plant N pools

Soil pH did not correlated with any other properties in
the dry-cold season, while in the wet-hot season it was
positively correlated with SWC, SOC, TN, NAG activity
and NO3™-N (Table 2). SWC was positively correlated
with MBC, the activities of NAG and Urea, and the N
accumulation of Eucalyptus in the dry-cold season, and
with SOC, TN, NAG activity, NH,*-N, NO3 " -N and the
N accumulation of Eucalyptus in the wet-hot season, re-
spectively (Table 2). SOC also did not correlated with
any other properties in the dry-cold season, but in the
wet-hot season it was positively correlated with TN,
MBC, all of N-degrading enzyme activities, NH,"-N,
NO3z;™-N and the N accumulation of Eucalyptus in the
wet-hot season. Soil TN content was positively corre-
lated with MBN and the N accumulation of Eucalyptus
in the dry-cool season, and with MBC, the activities of
NAG and Urea, NO3; -N and the N accumulation of Eu-
calyptus in the wet-hot season, respectively (Table 2).

MBC and MBN were positively correlated with all of the
N-degrading enzyme activities in the wet-hot season ex-
pect for the relationship between MBN and LAP activity
(Table 2). MBC was also positively correlated with
NH,"-N, NO;™-N and the N accumulation of Eucalyptus
in the wet-hot season (Table 2). NAG activity was posi-
tively correlated with NH,"-N, NO;™-N and the N accu-
mulation of Eucalyptus in both seasons (Table 2). LAP
activity was positively correlated with NH,"-N and the
N accumulation of Eucalyptus in the wet-hot season but
not in the dry-cold season, while Urea activity was posi-
tively correlated with NH,*-N and the N accumulation
of Eucalyptus in the dry-cold season but not in the wet-
hot season (Table 2). Both NH,"*-N and NO; -N were
positively correlated with the N accumulation of Euca-
lyptus in the wet-hot season, while in the dry-cold sea-
son only the NH,"-N was positively correlated with the
N accumulation of Eucalyptus (Table 2).

Pathway analysis for Eucalyptus to enhance N uptake

The structural equation model on the regulatory path-
way of soil N dynamics well passed all the statistical tests
on adequacy of microbial biomass and enzyme activities
(Fig. 4a and b). Overall, soil pH, SWC, SOC and TN in
both seasons were significantly higher at the MP than
PP sites (Table 1), which together stimulated microbial
biomass and most of soil N-related enzyme activities al-
though the control mechanisms are different between
seasons (Fig. 4a and b). The enhanced microbial activity
likely accelerated soil N mineralization, providing more
available N (NH,"-N and NO3-N) for Eucalyptus ab-
sorption. Path analysis pointed to direct and positive
controls of soil N availability (NH,"-N and NO3™-N) by
the activity of soil N-related enzymes in both seasons,
but the significant control by microbial biomass on the
soil N availability was observed in the wet-hot season
only. Soil pH and SWC positively correlated with micro-
bial biomass in the dry-cold season only. SOC and TN
positively corrected with both microbial biomass and en-
zyme activity in the dry-cold season and there was also a
positive relationship between microbial biomass and
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enzyme activity in both seasons. SOC and TN did not
directly affect soil enzyme activity, but have an indirect
effect via influencing microbial biomass.

Discussion

Mixed plantations of Eucalyptus and N-fixing species
have been recognized as one of effective silvicultural
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Table 2 The collection among the soil physical-chemical properties, soil enzymes, soil microbial biomass and N content in the

plants
Source of pH SWC SOC TN MBC MBN LAP NAG Urease NH,-N NO; -N PN
variation
pH ns ns ns ns ns ns ns ns ns ns ns
SWC 0.976" ns ns 0.813" ns ns 0.895" 0.899" ns ns 0.946™"
sSoC 0.824" 0.857" ns ns ns ns ns ns ns ns ns
TN 0.836 0.87" 0.835" ns 0.864 ns ns ns ns ns 0.818"
MBC ns ns 0.888" 0.968™ ns ns ns ns ns ns ns
MBN ns ns ns ns ns ns ns ns ns ns ns
LAP ns ns 0.866" ns 0.812" ns ns ns ns ns ns
NAG 0.889" 0.947"" 0.9317 0.908" 0.978"" 0.825 0.908"" 0.994"" 0.96" 0.858" 0.962""
Urease ns ns 0.850 0.855" 0.866 0.859" ns 0.8617 0.9357" ns 0.967""
NH,'-N ns 0.859" 0.883" ns 0.894" ns 0.94™ 0.946™ ns 0.897" 0.877
NO; -N 0.902" 0.910 0.947" 0.9517 0.952" ns ns 0.928" ns 0.831° ns
PN ns 0.883" 0.873" 0.909" 0.976" ns 0.894 0.984"" ns 0.960"" 0.893"

SOC Soil organic carbon, TN Soil total nitrogen, NH,*-N Ammonium nitrogen, NO; N Nitrate nitrogen, PN Plant nitrogen content, MBC Microbial biomass carbon,
MBN Microbial biomass nitrogen, LAP Leucine aminopeptidase, NAG -1,4-N-acetylglucosaminidase. The values in the yellow area are in the wet-hot season and in
the blue areas are in the dry-cool season. ns, " and ™ = F-value not significant, significant at p > 0.05 and p < 0.05 and p < 0.01, respectively

practices to increase Eucalyptus productivity while main-
taining soil fertility, compared to Eucalyptus monocul-
tures (Epron et al. 2013; Tchichelle et al. 2017). For
example, introducing Acacia mangium into E. grandis
plantations provides better conditions for restoring the
soil fertility and soil biodiversity, hence providing better
sustainability of the cropping systems than pure E.
grandis plantations (Garay et al. 2004). However, the re-
sults reported previously remain contradictory depend-
ing on the selected N-fixing species and stand
conditions (Forrester et al. 2006; Firn et al. 2007; Bouillet
et al. 2013). In this study, we discovered that the bio-
mass and N productivity of Eucalyptus as well as soil
TN and N availability were significantly enhanced by
introducing D. odorifera into the Eucalyptus plantations.
More importantly, the increased N accumulation of Eu-
calyptus with the introduction of D. odorifera was rela-
tively greater in leaf than in the other organs (Fig. 1lc
and d). This may suggest that introduction of D. odori-
fera enhanced N uptake of Eucalyptus, and the N was
primarily distributed to leaves so that better stimulate
leaf photosynthesis and Eucalyptus growth.

The enhanced N productivity on Eucalyptus with
introduction of D. odorifera should be attributed to the
improved soil N availability, as N productivity of Euca-
lyptus was directly correlated with both soil NH,"-N
and NO;3; -N concentrations (Table 2). In agreement
with our hypothesis, using structural equation model, we
found that the higher soil organic matter (SOC and TN)
and improved soil pH and SWC at the MP sites could
indirectly enhance soil N availability via stimulating mi-
crobial activity (microbial biomass and enzyme activity).
Increased soil TN under the mixed plantation of Euca-
lyptus and N,-fixing species is common, as the growth
of N-fixing plants relies largely on the fixed
atmospheric-N (Paula et al. 2018). Therefore, introduc-
tion of N-fixing species into Eucalyptus plantations

would decrease the N uptake of trees from soil, in turn
increasing soil N retention (Bouillet et al. 2008). Faster
growth of N-fixing tree species and Eucalyptus due to
higher N availability at the MP sites could also increase
the input of plant residuals and hence enhance SOC and
TN. Similar results were also found in other studies with
a mixed plantation such as E. globulus and A. mearnsii
in Australia (Forrester et al. 2005), Eucalyptus grandis
and Acacia mangium in Brazil (Bini et al. 2013a, 2013b)
and in Congo (Koutika et al. 2019, 2020), or Eucalyptus
regnans and Acacia dealbata in southeastern Australia
(Pfautsch et al. 2009). Soil organic matter has a huge
specific surface area (mainly by humic substances) and a
large number of negative charges (Gruba and Mulder
2015). Thus, increased SOC and TN at the MP sites may
have a greater capacity in adsorbing cations, resulting in
higher soil pH (Jiang et al. 2018). The increased SWC at
the MP sites may be attributed to higher understory
coverage of D. odorifera and the decreased water uptake
by Eucalyptus. These findings suggest that the presence
of leguminous trees in the system could improve stand
conditions such as provide advantageous soil pH and
SWC and more substrate availability (higher SOC and
TN as well as decreased soil C:N) for microbial prolifer-
ation and the production of specific extracellular en-
zymes (Bowles et al. 2014). Therefore, soil microbial
biomass and the activities of N-degrading enzymes in
this study were generally higher at the MP than PP sites
(Fig. 2). It is well known that increased microbial N-
degrading enzyme activities reflect a higher rate of N
mineralization and a higher level of N availability (Taba-
tabai et al. 2010). Although we have not determined the
N mineral processes in this study, previous studies have
frequently found that introducing N-fixing trees into Eu-
calyptus plantations can stimulate microbial activity
(Pereira et al. 2018, 2019) to increase the rate of N
mineralization (Voigtlaender et al. 2012, 2019).



Yao et al. Forest Ecosystems (2021) 8:59

Page 9 of 12

(a) Dry-cold season
L 0.58 .
pesstners pHand SWC (¢ » SoilCandN [ :
5 0.15 : §
% 0.39 !
0.43 i :
. R2=069 042 | re_0ga |
—0.09 Microbial biomass Soil enzymes activity 5_0'12
: 0.47* :
b M NH-NandNOg-N  [e---oroeomomommomemememeeece J
(b) Wet-hot season
0.88
T pHand SWC |« »  SsoilCandN [ ;
5 0.22 '
5 R2=0.94 :
-.02 $» Soil enzymes activity 5‘0'10
--------------------------------- R —

p <0.001, respectively

Fig. 4 Path model depicting the regulatory pathway of the controls of soil extracellular enzymes activities of soil physical-chemical properties (pH
and soil water content: SWC), total nitrogen (TN), soil organic carbon (SOC) and microbial biomass (MBC and MBN) by the structural attributes to
involve plant N absorption by plant. Where (a) represent structural equation model (SEM) in the dry-cold season for the model were x* = 7.944,
p=0.056, CMIN/df = 1.986, GFI =0.900, RMSEA = 0.050, CFI = 0.933; and (b) represent SEM in the wet-hot season for the model were X’ =4663,
p=0.324, CMIN/df = 1.166, GFl = 0.948, RMSEA = 0.026, CFI = 0.974. The black solid lines and dotted lines indicate significant positive and negative
relationships, respectively; the thickness of the arrows reflect the degree of relationships, numbers at arrows are standardized path coefficients,
and R? values indicate the variation of response variables explained by the model. ", and ™" are different significantly at p < 0.05, p < 0.01 and

As expected, we also found that the driving factors
and the role of microbially mediated soil N cycling when
introducing D. odorifera into the Eucalyptus plantations
differed between the seasons in this study. In the dry-
cold season, soil microorganisms are usually subject to
water limitation. Thus, increased SWC under the MP
site could stimulate microbial biomass and the activity
of N-degrading enzymes. This was supported by the
positive relationship of SWC with MBC and the activ-
ities of NAG and Urease in the dry-cold season observed

in this study (Table 2). The structural equation model
pointed out that increased soil organic matter also has
positive effects on microbial biomass and the activity of
N-degrading enzymes in the dry-cold season (Fig. 4a).
However, we only found a positive relationship between
TN and MBN in the dry-cold season (Table 2), suggest-
ing that increased TN under the MP site might alleviate
microbial N limitation and enhance microbial N assimi-
lation. This in turn may explain why enhanced microbial
biomass under the MP site did not directly contribute to
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higher N availability in the dry-cold season (Fig. 4a). In
the wet-hot season, both temperature and SWC are rela-
tively higher at our study sites, thus increased SWC and
pH under the MP site did not significantly influence mi-
crobial biomass and the activity of N-degrading enzymes
(Table 2 and Fig. 4b). Alternatively, we found direct and
positive effects of SOC and TN on microbial biomass
but indirect effect on the activity of N-degrading en-
zymes (Table 2 and Fig. 4b), suggesting that microbial
biomass and the activity of N-degrading enzymes in the
wet-hot season was mainly limited by substrate availabil-
ity in this study. Introduction of D. odorifera into Euca-
lyptus plantation significantly increased MBC but not
MBN in the wet-hot season, thus having a direct and
strong contribution to soil N availability (Fig. 4b). This
was also supported by the positive relationships of MBC
with NH,"-N or NO3;™-N in the wet-hot season observed
in this study (Table 2). Overall, introduction of D. odori-
fera into Eucalyptus plantation significantly increased
soil N availability (NH,"-N and NO3™-N) with higher in
the wet-hot season than dry-cold season, despite the
plant demand for N is greater in the wet-hot season.
This suggests that the increased soil organic matter
(SOC and TN) driven microbially mediated soil N cyc-
ling may play a relative stronger role in N accumulation
and biomass productivity of Eucalyptus at the MP site.

Conclusion

Compared with the Eucalyptus monoculture, we found
that the biomass and N productivity of Eucalyptus were
significantly increased by introducing D. odorifera into
the Eucalyptus plantation. Introduction of D. odorifera
into the Eucalyptus plantation could increase soil pH,
SWC, SOC and TN, which in turn enhanced microbial
biomass and the activities of soil N-degrading enzymes
as well as soil N availability. With the structural equa-
tion models, our results reveal the importance of micro-
bially mediated soil N cycling in the biomass and N
productivity of Eucalyptus, while highlight the seasonal
difference in the driving factors. Soil microbial biomass
and the activities of soil N-degrading enzymes in the
dry-cold season were driven by increased SWC and TN,
while in the wet-hot season they were mainly driven by
increased SOC and TN. The mixed plantation also in-
creased more soil N availability in the wet-hot season
than dry-cold season. These findings can provide gov-
ernment and policy makers with useful tools to achieve
N sustainable management in Eucalyptus plantations.
However, further studies on the inclusion of litter quality
and decomposition, soil next-generation sequencing as
well as a longer time of evaluation are also essential to
better understand the microbially mediated soil N cyc-
ling under the plantations of Eucalyptus and N-fixing
species.
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