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Combining WV-2 images and tree
physiological factors to detect damage
stages of Populus gansuensis by Asian
longhorned beetle (Anoplophora
glabripennis) at the tree level
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Abstract

Background: Anoplophora glabripennis (Motschulsky), commonly known as Asian longhorned beetle (ALB), is a
wood-boring insect that can cause lethal infestation to multiple borer leaf trees. In Gansu Province, northwest
China, ALB has caused a large number of deaths of a local tree species Populus gansuensis. The damaged area
belongs to Gobi desert where every single tree is artificially planted and is extremely difficult to cultivate. Therefore,
the monitoring of the ALB infestation at the individual tree level in the landscape is necessary. Moreover, the
determination of an abnormal phenotype that can be obtained directly from remote-sensing images to predict the
damage degree can greatly reduce the cost of field investigation and management.

Methods: Multispectral WorldView-2 (WV-2) images and 5 tree physiological factors were collected as experimental
materials. One-way ANOVA of the tree’s physiological factors helped in determining the phenotype to predict
damage degrees. The original bands of WV-2 and derived vegetation indices were used as reference data to
construct the dataset of a prediction model. Variance inflation factor and stepwise regression analyses were used to
eliminate collinearity and redundancy. Finally, three machine learning algorithms, i.e., Random Forest (RF), Support
Vector Machine (SVM), Classification And Regression Tree (CART), were applied and compared to find the best
classifier for predicting the damage stage of individual P. gansuensis.

Results: The confusion matrix of RF achieved the highest overall classification accuracy (86.2%) and the highest
Kappa index value (0.804), indicating the potential of using WV-2 imaging to accurately detect damage stages of
individual trees. In addition, the canopy color was found to be positively correlated with P. gansuensis’ damage
stages.
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Conclusions: A novel method was developed by combining WV-2 and tree physiological index for semi-automatic
classification of three damage stages of P. gansuensis infested with ALB. The canopy color was determined as an
abnormal phenotype that could be directly assessed using remote-sensing images at the tree level to predict the
damage degree. These tools are highly applicable for driving quick and effective measures to reduce damage to
pure poplar forests in Gansu Province, China.

Keywords: Worldview-2, Anoplophora glabripennis, Populus gansuensis, Infestation, Degree of damage, Canopy color,
Classification

Background
Anoplophora glabripennis (ALB; Motschulsky; Coleop-
tera: Cerambycidae: Lamiinae), which is native to Asia
regions, is the most dangerous invasive pest of forests
and has demonstrated an accelerating growth trend in
recent years. It has also become an extremely invasive
and destructive pest in Europe and North America
(Favaro et al. 2015). Host plants of ALB are distributed
among at least 15 species, mainly including poplar, wil-
low, elm, macro, and birch (Haack et al. 2010; Sjöman
et al. 2014). The Three-North Shelter Forest Program in
Northwest China aiming to improve forest productivity,
enhance soil fertility, and achieve better ecological bene-
fits in arid and semi-arid areas was initiated decades ago
(Gao and Huang 2020). Poplar and willow are the pri-
mary tree species established through this program.
Northwest China has a temperate continental climate
with water shortage, and only single tree species such as
Astragalus glabra is planted most often in the region
that is extremely vulnerable to diseases and pests. Inva-
sive pests, including ALB, have nearly destroyed the first
phase of the Three-North Shelterbelt reforestation,
resulting in serious consequences to the local ecology.
ALB has caused great damage to the local poplar spe-

cies Populus gansuensis of Jiuquan city, Gansu Province,
China, since 2004. The city is located in the Gobi desert,
and each tree in the area has an important ecological
and economic value. P. gansuensis, as a primary shelter
forest tree species in the Hexi Corridor of China, pos-
sesses advantages of high afforestation survival rate, fast
growth, and drought and cold tolerance (Qiu and Liu
1985). The existing monitoring method is that forestry
experts walk into the forest to observe with naked eyes,
but because of the tree height, large area and long dis-
tance, the monitoring work is difficult with low accuracy
and efficiency. Therefore, considering that the damaged
area is vast and sparsely populated, it is necessary to use
remote sensing technology to monitor individual trees
from landscape.
Early detection of infestation by the wood-boring ALB

is highly difficult (Thompson et al. 2018). The infested
trees gradually demonstrate symptoms of damage from
top to bottom. Leaves on the twigs become sparse and
eventually wither in the initial stage of infection,

followed by the appearance of exit holes and death of
the branches due to serious damage. Canopy color is an
important indicator of a tree’s health and is commonly
used to detect single-tree diseases of conifers (Wulder
et al. 2006). Damage monitoring of broad-leaved trees
often involves assessing the amount of foliage loss (Pon-
tius et al. 2008), however it has a weak correlation with
the physiological characteristics of trees or cannot be
assessed directly from remote-sensing images. In this
study, we used a damage monitoring factor having a
strong correlation with tree vigor that can be assessed
directly from remote-sensing images.
Traditional manual surveys to monitor large areas of a

forest are highly time consuming, expensive, labor-
intensive, and even impossible. Therefore, the develop-
ment of a cost-effective, efficient, and rapid warning sys-
tem is urgently needed to respond to pests and diseases
affecting trees in a forest area in a timely manner. The
application of large-scale remote-sensing methods to ob-
tain relevant images is essential. Use of remote-sensing
technology is recommended to monitor and assess forest
health. Previous studies have reported that changes in
spectral responses can reflect foliage reduction or green-
ing (Ismail et al. 2008). Vegetation condition can be
assessed using both broad and narrow vegetation indices
(Franklin et al. 2007).
Compared with traditional satellite imaging, the high

8-band 0.5-m resolution of WorldView-2 (WV-2) im-
aging can greatly improve the geometric and spectral ac-
curacy of the analysis. For example, the recent spectral
bands of coastal blue, yellow, RedEdge, and NIR2 of
WV-2 allow for bridging the gaps to detect various vege-
tation types such as tree species or tree mortality
(Marchisio et al. 2010; Gwata 2012). For the extraction
of tree crown, compared with traditional satellite like
sentinel-2, the resolution of 0.5 m for WV-2 is better
than that of more than 1m. At the same time, literature
on the damage of single wood has reported promising
results with the use of WV-2 data (Waser et al. 2014).
However, none of the studies have used WV-2 data to
predict the degree of damage to borer leaf trees in for-
ests under specific conditions in Northwest China.
Recent studies on using of satellite remote-sensing im-

aging to assess damage to single trees have mainly
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focused on coniferous trees, with only limited research
on broad-leaved trees. The use of remote-sensing im-
aging to monitor ALB-induced damage to single trees in
a large area has not been studied. In this research, we
aimed to combine WV-2 images and tree physiological
factors to detect the stages of damage to P. gansuensis
infested by ALB at the single-tree level and to semi-
automatically classify the degree of damage to poplars in
the Gansu research area. In our study, we determined a
phenotype that can be directly assessed from remote-
sensing images for damage judgment of P. gansuensis;
evaluated the feasibility of using the original WV-2
image band and the derived vegetation index to detect
different stages of damage to P. gansuensis; explored
whether explanatory predictors contribute the most to
the classification accuracy of tree damage period; and
developed a detailed high-resolution map of the stages
of damage to trees, which provides an important support
for the remote sensing monitoring method of Anoplo-
phora glabripennis.

Materials and methods
Study area
Sanhe National Forest Farm (Fig. 1), with a total area of
247.6 ha, located in Qingshui town of Jiuquan City,
Gansu Province, China, was selected as the experimental
plot. The region was the first to be invaded by ALB in
Jiuquan City and, therefore, it contains abundant sam-
ples demonstrating different damage stages. Because it is
an intensively managed forest farm, the tree species is
relatively single, which is conducive to our research. The
local altitude is 1480m, with the following geographical
coordinates: east longitude of 98°20′–99°18′ and north
latitude of 39°10′–39°59′. The annual average precipita-
tion is 80 mm, but the annual average evaporation

reaches 2000 mm. The annual average temperature is 4–
6 °C. The lowest monthly average temperature is − 15 °C.

Ground truth data collection
Ground truth data were collected in September 2020.
The hazardous area of ALB infestation was determined
through extensive inspection. After selecting the most
suitable area for the study, 229 sample trees with similar
breast diameters and different damage degrees were ran-
domly selected. Dead trees were not considered for the
following reasons: (1) Dead trees do not contain ALBs
and identifying them for a study on infection prevention
is meaningless; (2) The canopy of a dead tree is small
and typically short, which presents challenges in distin-
guish them using WV-2 images or dead trees are com-
pletely hidden by taller trees, hindering visualization
from a higher point. Forest pest management often re-
quires damage quantification. To determine the damage
stages of P. gansuensis, we clicked photos in four direc-
tions and measured the diameter at breast height (DBH),
global positioning system (GPS) location, exit hole level,
dead twig level, damaged ratio, and leaf area index (LAI)
of each inspected tree to determine the damage stages at
the individual level. We also obtained orthographic im-
ages of each inspected P. gansuensis by using unmanned
aerial vehicles (UAVs). Figure 2 presents examples of
different ALB-induced damage stages of P. gansuensis.

Leaf area index
LAI characterizes the leaf density and canopy structure
to reflect the ability of photosynthesis, respiration, tran-
spiration, and other biophysical processes of the vegeta-
tion (Liu et al. 2013). We selected poplars with similar
stand structure as sample trees for collection to
minimize the effect of surrounding trees. The average
LAI value is the mean of individual tree measurements

Fig. 1 (a) Gansu Province in China; (b) study area in Jiuquan City; (c) Sanhe National Forest Farm in Qingshui town
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from four directions by using LAISmart (Orlando et al.
2015).

Exit hole level
Exit hole is an important symptom of ALB infestation.
Exit holes from larvae are the most obvious and direct
evidence of ALB infestation (Fragnière et al. 2018). We
examined the main holes of each tree, and telescopically
counted the number of exit holes as an estimate of ALB
activity. Exit holes are divided into level 1–5 from less to
more according to quantity.

Dead twig level
Dead twig level is based on the visual assessment of
the overall condition of individual trees. Level values
range from 1 to 5. The level of dead branches refers
to the ratio of dry branches to the total number of
branches, with 1 indicating a healthy branch (no

major twig mortality), 2 indicating a slight decline in
the tree’s health (1%–30% crown damage), 3 indicat-
ing a moderate decline in the tree’s health (30%–60%
crown damage), 4 indicating severe decline in the
tree’s health (> 60% crown damage), and 5 indicating
a dead twig.

Damage shoot ratio
Shoot damage index is a widely used and an important
indicator of the extent of injury to a tree (Lin et al.
2019). It refers to the ratio of large shoots with symp-
toms of damage to the total number of large shoots.
Shoot damage data are also obtained through visual as-
sessment by forestry experts according to the technical
scheme of Chinese forest pest survey. The index value
ranges from 0% (indicating a completely healthy tree) to
100% (indicating a dead tree).

Fig. 2 Examples of different damage degrees of Populus gansuensis caused by ALB. (a) green-stage; (b) yellow-stage; (c) grey-stage; (d) dead tree
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Image acquisition using UAV
Images were acquired using Yu Mavic2 professional
(DJI, China). The orthographic images of single
inspected trees were clicked from a height of 50–100 m.
The 50-m-high orthographic images were printed to
map the inspected individual tree for determining the
exact location of each inspected tree. UAV images were
acquired to determine the canopy color of individual
trees and to serve as a supplement sub-meter GPS infor-
mation for analyzing the accurate position of the
inspected tree in the forest.

Decline rating summary
To determine the damage stages of P. gansuensis and
the reference basis for remote-sensing images, we stan-
dardized and integrated the canopy color and aforemen-
tioned individual physiological indices according to the
experience of practical investigation and previous re-
search on coniferous trees and explored their relevance.
Instead of using a numerical value to indicate the dam-
age stage of a broad-leaved tree according to previous
studies, we used canopy color, which has a strong correl-
ation with a tree’s health and can be assessed directly
from remote-sensing data, as a criterion.
The following verification was performed to determine

the canopy color: first, the corresponding canopy color
of inspected trees was determined from the UAV image,
followed by comparison of the average and standard de-
viation of the tree’s physiological factors corresponding
to tree canopy colors; second, the canopy color was used
as a dependent variable to perform a one-way ANOVA
(González-Rodríguez et al. 2012) involving the tree’s
physiological factors. A p-value of < 0.05 was considered
statistically significant. Statistical analyses were per-
formed using R (R Development Core Team 2018).

Satellite image acquisition
Considering the accuracy requirements for distinguish-
ing single trees and actually available satellite data
sources, we obtained the corrected WV-2 commercial 8-
band very high resolution (VHR) satellite images on
September 27, 2020. The WV-2 images of the study area
were ordered as multispectral and panchromatic, which
contains 0% cloud cover and spatial resolutions of 2 m
(multispectral) and 0.5 m (panchromatic). Main sensor
specifications are described in Table 1.
The satellite scene was coded in units of numbers

(DN). Calibration and atmospheric correction models
(FLAASH in ENVI 5.3) were applied to the multispectral
image to convert the digital (DN) value to the sensor ra-
diation and reflectance values. We used the Gram-
Schmidt Pan-sharpening technology to pan-sharpen
multispectral images through the full color band. Finally,

a 5-m digital terrain model was used to orthorectify the
0.5-m fully sharpened multispectral image.

Tree crown segmentation
Methodology schema with all steps applied in classifica-
tion of P. gansuensis damage stages is showed in Fig. 3.
We used pan-sharpened WV-2 images and compared
their accuracy to detect damaged branches of the af-
fected trees at different levels according to the object-
based method. We used eCognition Developer 9.0
(Trimble Geospatial, USA) to subdivide the pan-
sharpened WV-2 images into image objects through
multiresolution segmentation. To keep the canopy con-
sistent with the line segment polygons, we iteratively
used multiple subdivision levels of detail to adapt to the
shape and tightness parameters. The multiresolution
classification method was used to categorize the images.
The segmentation steps were as follows: initial segmen-
tation of a single tree: scale parameter, 1; shape, 0.7;
compactness, 0.9; de-shading, 5.6e–34 < intensity < 7.6e–
34; forest area classification: NDVI > 0.26; single tree
segmentation: scale parameter, 4; shape, 0.6; compact-
ness, 0.6.

Reference data modeling and predicting
In order to ensure that the sample size of different de-
grees of damage is roughly the same, except for the sam-
ple trees in the field survey, we also visually inspected
the canopy color according to the UAV image. We
manually extracted data on tree crowns to construct a
spectral diagnostic model, followed by applying the
model to the entire satellite image to distinguish the
damage stages of individual trees. A total of 139, 139,
and 121 trees were in the green stage, yellow stage, and
gray stage, respectively. Further, the reflectance of each
canopy of the eight bands was extracted to calculate
various vegetation indices (VIs). Finally, the reflectance
of 8 bands and 17 types of VIs were extracted to con-
struct the database, as well as the training and validation

Table 1 Technical specifications of the WV-2 imagery

Senor characteristic

Spatial Resolution 0.5 m PAN and 2m MS

Spectral Resolution (nm) Coastal: 400–450

Blue: 450–510

Green: 510–580

Yellow: 585–625

Red: 630–690

Red Edge: 705–745

NIR1: 770–895

NIR2: 860–1040

Data acquisition Jiuquan City, 27 Sep 2020
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sets at a 7:3 ratio. The extracted VIs are presented in
Table 2. On the basis of WV-2 data, the classification
model demonstrated the highest classification accuracy,
and the Kappa index was adopted to generate a predic-
tion map at the individual tree level.

Variable selection and data modeling
In total, data of 399 modeling sample trees at three dam-
age stages were used to construct a classification model
among WV-2 images. First, to select the best explana-
tory variable among the 8 original bands and 18 VIs, a
variance inflation factor (VIF) analysis to check for mul-
ticollinearity was performed. A VIF value of ≥10 indi-
cated the need to eliminate serious collinearity. Second,
a stepwise regression analysis was performed. The ana-
lysis was based on the Akaike information criterion
(AIC) information statistics as the criterion by selecting
the smallest AIC information statistics to achieve a pur-
pose of deleting or adding variables. Lastly, we applied
three machine learning algorithms to classify P.

gansuensis into three damage stages: Random Forest
(RF), Support Vector Machine (SVM) and Classification
and Regression Tree (CART). RF and SVM have been
widely used in single wood damage classification and
have shown good performance, whereas CART can be
easily implemented and explained by certain rules (Jing
et al. 2015; Kaszta et al. 2016).
RF is an improved algorithm compared to traditional

decision trees that generates numerous decision trees.
Among the classification results of all the constructed
decision trees, new data are classified based on the ma-
jority of votes (Breiman 2001). The SVM algorithm helps
find the best hyperplane as the decision function in the
high-dimensional space and classify the input vector into
different classes (Cortes and Vapnik 1995). CART is a
binary recursive partitioning algorithm based on tree
nodes generated by training data. Finally, the overall ac-
curacy (OA), producer’s accuracy, user’s accuracy (UA),
and the Kappa coefficient generated by the confusion
matrix were used to evaluate the accuracy of

Fig. 3 Methodology schema with all steps applied in classification of Populus gansuensis damage stages using the WorldView-2 and UAV image
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identification of the damaged stage of a single tree.
Kappa values of < 0.4, 0.4–0.8, and > 0.80 indicate poor
agreement, moderate agreement, and strong agreement,
respectively (Meddens et al. 2011).

Results
Damage stage determination
Figure 4 shows three different canopy colors of P. gan-
suensis damaged by ALB (green, yellow and grey). Fig-
ure 5 shows difference of four physiological factors on
three canopy colors under the 95% confidence interval.
Clear thresholds about tree physiological factors between
different canopy colors can be observed. Table 3 shows

physiological factors values corresponding to different
canopy colors.
The LAI decreased with changes in the canopy color

from green to yellow to gray, whereas the number of exit
holes, damaged branches, and dead branches increased
with changes in the canopy color. The four tree physio-
logical factors corresponding to different canopy colors
demonstrated a considerably significant difference. The
gradual damage progression of single P. gansuensis trees
was reflected by a change in the canopy color from
green to yellow to gray. As such, the color change in the
remote-sensing images is an important indicator for the
assessment of the degree of damage to individual trees.
The canopy color is an excellent parameter to judge the

Table 2 Remote sensing vegetation indices tested in this study and adapted to the WV-2

Abbreviation Name Formula ref

NDVI Normalized Difference
Vegetation Index

(NIR1 − R)/(NIR1 + R) Zhang et al. 2006

NDVI3,5 Green–red ratio (G − R)/(G + R) Gitelson et al. 1996

NDVI8,4 NIR-yellow ratio (NIR2 − Y)/(NIR2 + Y) Gwata 2012

NIRRY NIR-Red-yellow ratio (NIR1)/(R + Y) Gwata 2012

DD Difference Vegetation Index (2 × NIR1 − R) − (G − B) Le Maire et al. 2004

NORM NIR Normalized NIR NIR1/(NIR1 + R + G) ENVI 2013

PSRI Plant Senescence Reflectance
Index

(R − B)/RE Sims and Gamon 2002

RVI Ratio vegetation index NIR/RED Hildebrandt 1996

GR Green–red ratio G/R Waser et al. 2014

BR Blue ratio (R/B) × (G/B) × (RE/B) × (NIR/B) Waser et al. 2014

RR Red ratio (NIR1/R) × (G/R) × (NIR1/RE) Waser et al. 2014

REY RedEdge yellow ratio (RE − Y)/(RE + Y) Gwata 2012

VIRE Vegetation Index based on
RedEdge

NIR1/RE Chávez Oyanadel
and Clevers 2012

RGI Red–green index RED/GREEN Miura et al. 2008

EVI1 Enhanced Vegetation Index 1 2.4 × (NIR1 − RED)/(NIR1 + RED + 1) Bezerra et al. 2020

EVI2 Enhanced Vegetation Index 2 2.4 × (NIR2 − RED)/(NIR2 + RED + 1) Jiang et al. 2008

GI2 Greenness Index 2 (B × (−0.2848) + G × (− 0.2434) + R × (− 0.5436) + NIR1 × 0.7243 +
NIR2 × 0.0840) × 5

Gwata 2012

Fig. 4 Three canopy colors of P. gansuensis damaged by ALB
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degree of damage to individual poplars with advantages
of a strong correlation with tree physiology and acquisi-
tion from remote-sensing images.

Classification results
For 399 segmented trees, there were 25 explanatory pre-
dictors, which were further categorized into 14 predictors
based on VIF and stepwise regression analyses (Fig. 6).

The user’s accuracies (UA), overall accuracies (OA) and
Kappa (K) statistics of each classifier are presented in
Table 4. The RF analysis of explanatory variables helped
in obtaining the optimum OA and Kappa values. The
mean decrease in the RF accuracy (Fig. 6) revealed that
blue ratio (BR), plant senescence reflectance index (PSRI),
NIR-red-yellow ratio (NIRRY), and NIR2 greatly affect the
classification precision. The NIR2 bands were unique to
eight-band satellite imaging, indicating the importance of

Fig. 5 Under the 95% confidence interval (a) the average value of LAI corresponding to different damaged stages; (b) the average wormhole
grade corresponding to different damaged stages; (c) the average dead branch rate corresponding to different damaged stages; (d) the average
corresponding to different damaged stages Percentage of injured branches

Table 3 Physiological factors values corresponding to different canopy colors

Canopy color Measured variation DBH (cm) LAI Exit hole level Dead twig level Damaged shoot ratio (%)

Green Avg 30.207 2.407 1.849 1.644 31.301

stdev 6.341 0.328 0.328 1.059 20.582

range 23 1.575 3.000 2.000 60.000

Yellow Avg 26.982 2.290 2.167 2.181 42.778

stdev 6.616 0.258 0.435 1.012 19.661

range 22 1.475 2.000 3.000 40.000

Grey Avg 27.174 2.122 3.464 3.565 70.942

stdev 6.813 0.435 0.258 1.036 25.786

range 18 2.225 3.000 3.000 60.000
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using WV-2. The OA rate was > 80%, which can meet the
requirements of actual production. Regarding the classifi-
cation results of the three stages of green, yellow, and gray,
the separation accuracy of yellow and green stages was
higher. Considering RF as an example, the classification
accuracy values of green and yellow stages reached 0.897
and 0.911, respectively, whereas that of the gray stage was
only 0.750 (Table 5).

Predictive mapping
A predictive map of the damage stages based on the RF
classification model was generated, and the highest OA
area was selected as a display (Fig. 7). The RF classifier
using all spectral variables was used to generate a pre-
dictive map. In this study, we selected a moderately
infested forest for RF mapping. Figure 7a represents 0.5-
m WV-2 pan-sharpened true color images. The results
of mapping of different damage periods obtained using
the RF classifier are presented in Fig. 7b.

Discussion
Canopy color and damage periods of individual trees
The damage periods of conifer trees are recognized by
changes in the canopy color from green to yellow to red
(Zhan et al. 2020); however, there is no clear indicator
for the damage period of broad-leaved trees. Previous
studies on the damage level of broad-leaved trees at the
single wood scale were mostly based on a specific index,
such as leaf loss rate, emergence hole number, or dead
branch rate (Waser et al. 2014). Some studies have nor-
malized all of these factors into a single damage index to
indicate the damage level on a single wood scale. The
normalized index was then used to perform modeling
and inversion (Pontius et al. 2008; Pontius et al. 2017),
as these factors cannot be directly assessed from
remote-sensing images. Therefore, we aimed to use
high-resolution UAV images to assess an abnormal
phenotype at the tree level (e.g., canopy color) for dir-
ectly determining the degree of damage to a single tree.
We did not choose to use one single factors to repre-

sent the damage level of individual tree because there
are possibly subjective, ocular measurements through

Fig. 6 Graphs of variable importance in the model for damage stages of Populus gansuensis caused by ALB. (a) Mean decrease in the accuracy of
the model if that variable were to be removed; (b) mean decrease in the Gini coefficient. Variables that result in nodes with higher purity have a
higher decrease in Gini coefficient

Table 4 Accuracy for different stages of damaged Populus
gansuensis. The best models are marked in bold

Classification approach Damage stage UA OA K

RF green 0.897

yellow 0.911 0.862 0.804

grey 0.750

SVM green 0.837

yellow 0.846 0.824 0.756

grey 0.784

CART green 0.818

yellow 0.75 0.775 0.692

grey 0.774

Table 5 Confusion matrix for the classification of damaged
Populus gansuensis

Reference data Classified as

damage stages green yellow grey User’s Accuracy

green 35 1 3 0.897

yellow 1 41 3 0.911

grey 4 4 24 0.750

Prod’s accuracy 0.875 0.891 0.8

OA 0.862

K 0.804

Zhou et al. Forest Ecosystems            (2021) 8:35 Page 9 of 12



field assessments. We collected them all to minimize
subjective, ocular measurements where possible. At the
same time, in the process of investigation, we found that
canopy color is a good indicator, which well represents
these indicators and is suitable for remote sensing moni-
toring. Canopy color has not been used to determine the
damage level in studies on disease monitoring of broad-
leaved trees. In our study, we obtained relevant data of
229 damaged P. gansuensis trees and determined tree
physiological factors, including LAI, damaged shoot ra-
tio, and exit holes. The analysis results of these factors
were highly significant, suggesting that these parameters
can strongly indicate the damage stages of individual
trees. If the degree of damage can be predicted by an ab-
normal growth phenotype, infestations can be managed
based on remote-sensing images in the growth cycle of
the year. This approach greatly reduces time and ex-
penses related to growth management and field investi-
gation. Thus, our results indicate the importance of
determining the canopy color to judge the extent of
damage from infestation. Finally, the time interval be-
tween ground data collection and satellite image collec-
tion must be minimal for achieving consistent and
accurate results. In our study, the ground truth data col-
lection and WV-2 imaging were performed in Septem-
ber, 2020, for ensuring data consistency. Therefore, our
results accurately reflected the relationship between can-
opy color and damage degrees.

WV-2 data and single wood segmentation
In this study, the applicability of WV-2 data was thor-
oughly tested, through which a high OA was achieved.
WV-2 is suitable for classifying different damage stages
of trees, and it was found to have high accuracy and
Kappa value in our research.
Masking of the shadowed tree elements to minimize

the high in-class variance of tree crowns has been

recommended by many researchers (Pu and Landry
2012). Thus, focusing mainly on sunlit tree crowns in
the present study greatly improved the accuracy of dam-
age levels and tree species identification. In addition, be-
cause the performance of object-based classification
largely depends on the quality of image segments, seg-
mentation was optimized iteratively by approximating
them to the shape of the tree crown based on assessors’
experience.
The dense canopy of P. gansuensis poses a challenge

to segment single trees by using 0.5-m resolution WV-2
imaging. In this study, object-based supervised classifica-
tion methods were used to detect different damage
stages. Canopy was automatically extracted by eCogni-
tion Developer (Trimble Geospatial, USA). Considering
the error of automatic segmentation by the software, the
WV-2-sharpened multispectral canopy image automatic-
ally drawn from a 0.5-m resolution is not always consist-
ent with the actual object. We, therefore, chose to use
the eCognition’s multiresolutional segmentation method
for single wood segmentation (Yu et al. 2020). Based on
UAV images, we adjusted the parameters several times
to obtain an accurate individual tree segmentation map.
Then, we used the previously established inversion
model to obtain a prediction map of the damage level
on a single wood scale. Although WV-2 images have a
high spatial resolution, the canopy drill used to segment
the object will inevitably be combined with other pixels,
including bare soil, fallen leaves, and other tree canopies.
This will affect the classification accuracy of the trees
based on different damage levels. Future research must
use more advanced techniques to extract data of tree
crowns to improve the classification accuracy. The ef-
fectiveness of the object-based classification depends on
the segmentation quality. The automatic canopy demar-
cation that has been successfully applied in many studies
should also be further studied. To distinguish different

Fig. 7 Detailed example of the RF mapping of Populus gansuensis forest. (a) 0.5-m WV-2 pan-sharpened true color image; (b) three damaged
stages mapping based on RF classifier
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stages of damage, other sensors, such as Lidar or hyper-
spectral data, must be tested.

Feature variables and classification accuracy
To the best of our knowledge, remote-sensing technol-
ogy has not been applied to monitor ALB-infested trees
in a large area, let alone at a single tree level. Therefore,
we expanded the scope and referred to previous studies
using satellite imaging to detect damage to broad-leaved
trees. In our study, field survey data and UAV images
were used, in addition to categorization of the damage
levels of P. gansuensis into green, yellow, and gray can-
opy stages. The results indicated the overall classification
accuracy of 82%–87%. The RF model using original
spectrum and VI was found to be the best, with an OA
of 86.2% and a Kappa coefficient value of 0.804. For RF,
the classification accuracy values of green and yellow
stages reached 0.897 and 0.911, respectively, whereas
that for the gray stage was only 0.750. This result is also
consistent with the actual situation because for the sin-
gle wood at the gray stage, the top of the canopy is gray
and the lower part of the canopy is still green or yellow,
which may have a greater impact on the classification
accuracy. This can also be seen from the UAV images,
which are consistent with the actual scenario. Several
studies have shown that VIs can better indicate tree
pressure than single-band reflectance because they com-
bine information from multiple bands (Immitzer and
Atzberger 2014). As for original bands, the red edge and
NIR band reflectivity decreased with increasing degrees
of damage, and the reflectivity difference was most obvi-
ous in the NIR band. This research confirmed that the
four most important categorical variables for the classifi-
cation of P. gansuensis by RF are BR, PSRI, NIRRY, and
NIR2. VIS can significantly improve the accuracy of
damage degree discrimination. Meanwhile, NIR2 is
unique to eight-band WV-2 satellite images, implying
the importance of using WV-2 to study degrees of tree
damage from pest infestation.

Conclusion
In summary, we developed a novel approach of combin-
ing WV-2 imaging data and tree physiological factors for
semi-automatic classification of three stages of P. gan-
suensis damage from ALB infestation. The approach was
also used to determine the canopy color, an abnormal
phenotype, which could be directly assessed on remote-
sensing images at the tree level to predict the degree of
tree damage. The OA of detecting the damage degrees
of P. gansuensis is promising. An accurate and up-to-
date information about location and health information
at a single wood scale with a high spatial resolution (0.5
m) can be provided, which is highly important for man-
aging tree damage due to ALB infestation in Jiuquan

City, Northwest China. Meanwhile, different physio-
logical factors behind the damage stages (green, yellow,
and gray) can also be understood, which can reduce the
cost of field data collection and increase the accuracy
and applicability of management measures. The gener-
ated maps represent the spatial and single tree damage
data required to implement prevention and control mea-
sures, thereby reducing the large-scale harm from ALB
in the shelter forest in Northwest China.
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