Aguirre et al. Forest Ecosystems (2021) 8:29
https://doi.org/10.1186/5s40663-021-00308-w FO reSt E COSySte ms

RESEARCH Open Access

Check for
updates

Stand-level biomass models for predicting
C stock for the main Spanish pine species

Ana Aguirre"?'®, Miren del Rio*?, Ricardo Ruiz-Peinado* and Sonia Condés'

Abstract

Background: National and international institutions periodically demand information on forest indicators that are
used for global reporting. Among other aspects, the carbon accumulated in the biomass of forest species must be
reported. For this purpose, one of the main sources of data is the National Forest Inventory (NFI), which together
with statistical empirical approaches and updating procedures can even allow annual estimates of the requested
indicators.

Methods: Stand level biomass models, relating the dry weight of the biomass with the stand volume were
developed for the five main pine species in the Iberian Peninsula (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus
nigra and Pinus pinaster). The dependence of the model on aridity and/or mean tree size was explored, as well as
the importance of including the stand form factor to correct model bias. Furthermore, the capability of the models
to estimate forest carbon stocks, updated for a given year, was also analysed.

Results: The strong relationship between stand dry weight biomass and stand volume was modulated by the
mean tree size, although the effect varied among the five pine species. Site humidity, measured using the
Martonne aridity index, increased the biomass for a given volume in the cases of Pinus sylvestris, Pinus halepensis
and Pinus nigra. Models that consider both mean tree size and stand form factor were more accurate and less
biased than those that do not. The models developed allow carbon stocks in the main Iberian Peninsula pine
forests to be estimated at stand level with biases of less than 0.2 Mg-ha™".

Conclusions: The results of this study reveal the importance of considering variables related with environmental
conditions and stand structure when developing stand dry weight biomass models. The described methodology
together with the models developed provide a precise tool that can be used for quantifying biomass and carbon
stored in the Spanish pine forests in specific years when no field data are available.

Keywords: Martonne aridity index, Dry weight biomass, Carbon stock, National Forest Inventory, Peninsular pine
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Background

Forests are fundamental in the global carbon cycle,
which plays a key role in the global greenhouse gas bal-
ance (Alberdi 2015), and therefore in climate change. As
part of the strategy to mitigate climate change, forest
carbon sinks were included in the Kyoto Protocol in
1998 (Breidenich et al. 1998) and subsequent resolutions
as the Paris Agreements in 2015. In accordance, coun-
tries are requested to estimate forest CO, emissions and
removals as one of the mechanisms for mitigating cli-
mate change. Based on the international demands, some
international institutions request periodic reports on for-
est indicators which are used in global reports. For ex-
ample, the State of Europe’s Forest 2015 (SoEF 2015) or
Global Forest Resources Assessment 2020 (FRA 2020)
request five-yearly information on accumulated carbon
in the biomass of woody species or the accumulated car-
bon in other sources or sinks. Since the development of
these international agreements, numerous countries
have made efforts to achieve the main objective of miti-
gating climatic change. In Spain, for example, the Span-
ish Ministry for Ecological Transition and Demographic
Challenge is developing a data base of the national con-
tribution to the European Monitoring and Evaluation
Program (EMEP) emission inventory, which includes
Land Use, Land-Use Change and Forestry (LULUCE)
sector, with the aim of estimating carbon emissions and
removals in each land-use category. Furthermore, annu-
ally updated greenhouse gas emission data must be pro-
vided for the UNFCCC (United Nations Framework
Convention on Climate Change) Greenhouse Gas Inven-
tory Data.

Soil and biomass are the most important forest carbon
sinks. The carbon present in soils is physically and
chemically protected (Davidson and Janssens 2006), al-
though it is more or less stable depending on the type of
disturbances suffered and the environmental conditions
(Ruiz-Peinado et al. 2013; Achat et al. 2015; Bravo-
Oviedo et al. 2015; James and Harrison 2016). There-
fore, the carbon that could be returned to the atmos-
phere from the ecosystem after a disturbance is
mainly contained in the aboveground biomass, which
accounts for 70%—-90% of total forest biomass (Cairns
et al. 1997). Carbon stocks and carbon sequestration
in tree vegetation are usually estimated thorough bio-
mass evaluation as the amount of carbon in woody
species is about 50% of their dry weight biomass
(Kollmann 1959; Houghton et al. 1996). Although
species-specific values can be found in the literature,
this percentage is recommended by the Intergovern-
mental Panel on Climate Change (IPCC) if no specific
data is available (Eggleston et al. 2006).

There are two main approaches to estimating forest
carbon: i) using biogeochemical-mechanisms and ii) the
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statistical empirical approach (Neumann et al. 2016).
The second method is more common in forestry since it
uses inventory data such as that provided by NFI's
(Tomppo et al. 2010) and the data required does not
need to be as specific as for the biogeochemical-
mechanism approach. Through this approach, biomass
and carbon estimates can be obtained using allometric
biomass functions and/or biomass expansion factors
(BEFs). Biomass functions require variables for individ-
ual trees and/or stand variables (Dahlhausen et al. 2017),
while BEFs convert stand volume estimates to stand dry
weight biomass (Castedo-Dorado et al. 2012). The BEF
method is widely used when little data is available, this
being one of the methods recommended in the IPCC
guidelines (Penman et al. 2003).

BEFs, including their generalization of stand biomass
functions depending on stand volume, can be affected by
environmental conditions and stand characteristics, such
as the species composition (Lehtonen et al. 2004; Soares
and Tomé 2004; Lehtonen et al. 2007; Petersson et al.
2012; Jagodzinski et al. 2017). Some authors have also
pointed to the dependence of the stand biomass-volume
relationship on age or stand development stage (Jalkanen
et al. 2005; Peichl and Arain 2007; Tobin and Nieuwen-
huis 2007; Teobaldelli et al. 2009; Jagodzinski et al.
2017). When age data are not available, as is the case in
several NFIs, other variables expressing the development
stage can be used as a surrogate of age, such as tree size
(Soares and Tomé 2004; Kassa et al. 2017; Jagodzinski
et al. 2020). In addition, site conditions can influence the
relationship between stand biomass and stand volume
(Soares and Tomé 2004). These conditions can be
assessed by means of indicators such as site index or
dominant height (Houghton et al. 2009; Schepaschenko
et al. 2018) or directly through certain environmental
variables (Briggs and Knapp 1995; Stegen et al. 2011).

Most of the information on forests at national level
currently comes from the National Forest Inventories
(NFIs). Consequently, many countries have adapted their
NFIs to fulfil international requirements (Tomppo et al.
2010; Alberdi et al. 2017). As regards carbon stock, NFIs
are widely recognized as being appropriate sources of
data for estimating these stocks (Brown 2002; Goodale
et al. 2002; Mikipad et al. 2008), especially at large scales
(Fang et al. 1998; Guo et al. 2010). Although most NFIs
are carried out periodically, the frequency does not coin-
cide with the international requirements for data on ac-
cumulated carbon and biomass stocks (which may be
annual). In the case of the Spanish National Forest In-
ventory (SNFI), the time between two consecutive sur-
veys is longer than that stated in the international
requirements for forest statistics reporting. Hence, the
forest indicators from SNFI data should be updated an-
nually in order to fulfill the international requirements.
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Moreover, the time between two consecutive SNFI is ap-
proximately 10 years, although it is carried out a prov-
ince at a time, so not all the Spanish forest area is
measured in the same year. Whereas other countries
measure a percentage of their NFI plots each year, dis-
tributed systematically throughout the country (allowing
annual national estimates to be made, albeit with greater
uncertainly), the approach used in Spain is to measure
all the plots within a given province, which does not
allow for annual data (or indicators) to be extrapolated
at national level. As a consequence, indicators must be
updated in the same year for all provinces in order to es-
timate carbon at national level in a given year. A pos-
sible approach to updating carbon stocks indicators
from SNFI data would be to estimate the stand biomass
through tree allometric biomass functions (Neumann
et al. 2016), although this method would require com-
plex individual tree models to update stand information
at tree level (tree growth, tree mortality and ingrowth).
Given the strong relationship between stand volume and
biomass (Fang et al. 1998; Lehtonen et al. 2004), estima-
tions of biomass could be also made by updating volume
stocks from the SNFI and using BEFs. This option has
the advantage that stand volume can often be easily up-
dated through growth models (Shortt and Burkhart
1996) or even by remote sensing (McRoberts and
Tomppo 2007).

According to Montero and Serrada (2013), the main
pine species (Pinus sylvestris L., Pinus pinea L., Pinus
halepensis Mill., Pinus nigra Arn. and Pinus pinaster
Ait.) occupy around of 30% of the Spanish forest area as
dominant species, which is more than 5 million ha,
along with almost half a million ha of pine-pine mix-
tures. Their distribution across the Iberian Peninsula
covers a wide range of climatic conditions (Alia et al.
2009), with arid conditions being particularly prominent.
Thus, aridity was found to influence the maximum stand
density and productivity of these pinewoods (Aguirre
et al. 2018, 2019). Furthermore, pine species were those
most used in reforestation programs, so these species
play a fundamental role in carbon sequestration. Ac-
cording to the Second and Third National Forest In-
ventories, the five abovementioned species alone
account for a carbon stock of around 250 x 10° Mg C
(del Rio et al. 2017), of which more than half corre-
sponds to two of these forest species (P. sylvestris and
P. pinaster).

The main objective of this study was to develop dry
weight biomass models for pine forests (monospecific
and mixed stands) according to stand volume, exploring
whether basic BEFs can be improved by including site
conditions and stand development stage. We hypothe-
sized that for a given stand volume the stand dry weight
biomass increases as site aridity decreases and that it

Page 3 of 16

decreases with the stand development stage. Therefore,
the specific objectives were to study the dependence of
the models on these factors and to assess the biomass
expansion factors when varying these variables for the
main pine species studied. The biomass models devel-
oped will allow carbon estimates to be updated for a
given year when no field data from SNFI surveys are
available.

Methods

Data

The data used were from two consecutive completed
surveys of the SNFI in the Iberian Peninsula, the Second
and Third SNFI (SNFI-2 and SNFI-3), which were car-
ried out from 1986 to 1996, and from 1997 to 2007 re-
spectively, except for the provinces of Navarra, Asturias
and Cantabria, where the SNFI-2 surveys were carried
out using a different methodology. Data from the SNFI-
3 and SNFI-4 were used for these provinces, covering
the periods from 1998 to 2000 and from 2008 to 2010,
respectively. The initial and final surveys are referred to
regardless of the provinces considered. The time elapsed
between surveys ranges from 7 to 13 years depending on
the province. Data from the final SNFI surveys were
used to develop dry weight biomass estimates, while data
from the initial surveys, together with volume growth
models by Aguirre et al. (2019), were used to evaluate
model assessment capability.

The SNFI consists of permanent plots located system-
atically at the intersections of a 1-km squared grid in
forest areas. The plots are composed of four concentric
circular subplots, in which all trees with breast-height
diameter of at least 7.5, 12.5, 22.5 and 42.5 cm are mea-
sured in the subplots with radii of 5, 10, 15 and 25 m, re-
spectively. Using the appropriate expansion factor for
each subplot, stand variables were calculated per species
and for the total plot. For further details of the SNFI, see
Alberdi et al. (2010).

The target species were five native pine species in the
Spanish Iberian Peninsula: Pinus sylvestris (Ps), Pinus
pinea (Pp), Pinus halepensis (Ph), Pinus nigra (Pn) and
Pinus pinaster (Pt). Plots located in the peninsular pine
forests were used; the criterion for selection being that
the density of non-target species should not exceed 5%
of the maximum capacity (Aguirre et al. 2018). The plots
used for each species were those in which the proportion
of the species by area was greater than 0.1. Additionally,
to allow the application of the results to stands where
the volume was updated through growth models, only
those plots in which silvicultural fellings affected less
than 5% of the total basal area were considered, as this
was the criterion used for developing the existing vol-
ume growth models (Aguirre et al. 2019).
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Stem volume was calculated for every tree in the plot
according to SNFI volume equations developed for each
province, species and stem form (Villanueva 2005). The
Martin (1982) criteria were used to obtain volume
growth. Dry weight biomass for different tree components
was calculated at tree level using equations taken from
Ruiz-Peinado et al. (2011), who developed biomass models
for all the studied species, using diameter at breast height
and total tree height as independent variables. Total tree
aboveground dry weight biomass was calculated by adding
the weight of stem (stem fraction), thick branches (diam-
eter larger than 7 cm), medium branches (diameter be-
tween 2 and 7cm) and thin branches with needles
(diameter smaller than 2 cm). Based on tree data and
using the appropriate expansion factors for each SNFI
subplot, the stand level volume and dry weight biomass
were obtained per species and total plot.

To estimate the aridity conditions for each plot used, the
annual precipitation (P, in mm) and the mean annual
temperature (7w, in °C) were obtained from raster maps
with a one-kilometer resolution developed by Gonzalo Jimé-
nez (2010). These variables were used to obtain the
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Martonne aridity index (De Martonne 1926), M, calculated
as M = P/(Tm + 10), in mm~C~~. M was chosen as an aridity
indicator because of its simplicity and recognized influence
on volume growth (Vicente-Serrano et al. 2006; Fiihrer et al.
2011; Aguirre et al. 2019) and maximum stand density
(Aguirre et al. 2018). Hence, M was expected to have a posi-
tive influence on dry weight biomass.

Due to the lack of age information for SNFI plots, the
development stage had to be estimated through specific
indicators. Tree-size related variables are commonly
used as surrogates for stand development stage, one
such variable being the mean tree volume (vm), which
could be used to correct the lack of age information.
The vm was calculated as in Eq. 1, where V is the vol-
ume of the stand in m*ha™! and N is the number of the
trees per hectare, both referred to the target species (sp).

Vi
N,

(1)

vy, =

A summary of the data used to develop the models is
shown in Table 1 (note that when a target species was

Table 1 Summary of data used to develop dry weight biomass models. Note that plots where a target species, sp, is studied, other

pine species could be present

sp Initial SNFI survey Final SNFI survey
Nsp N, Vep i 4 Wsp fop. 1 Nsp r Ne Vep r Ve Wsp ¢ fop F M
Ps Mean 753 846 109.7 1219 109.7 0.51 794 909 159.2 1783 147.3 0.50 51
(# 1854) sd 544 560 91.6 90.8 69.1 0.07 570 588 108.5 104.1 80.6 0.06 14
Min 14 46 30 17.1 5.1 035 14 56 538 263 80 037 23
Max 3692 4106 7474 7474 5203 1.11 4297 4311 826.8 843.2 5745 0.93 118
Pp Mean 337 386 515 594 66.8 051 348 405 76.1 883 92.7 048 24
# 537) sd 357 376 386 39.1 402 0.14 369 387 49.8 50.1 506 0.1 5
Min 5 20 1.7 11.8 36 0.18 5 31 20 17.1 3.8 0.23 12
Max 3102 3197 3504 3504 3354 1.65 3233 3233 406.0 406.0 3923 124 45
Ph Mean 491 516 373 395 374 0.52 546 579 56.9 60.3 576 048 21
(# 2039) sd 348 352 24.5 253 23.0 0.14 377 381 355 36.8 335 0.09 6
Min 5 25 28 48 26 029 5 25 33 75 32 0.21 7
Max 2465 3006 2382 2414 194.6 1.84 2451 2798 283.0 2876 2429 1.18 52
Pn Mean 703 837 758 90.6 83.8 0.54 749 909 111 1335 1172 0.53 38
(#1414) sd 586 604 618 62.5 59.6 0.09 615 629 789 77.2 741 0.07 10
Min 10 41 14 17.8 2.7 035 10 41 2.3 225 4.0 0.29 20
Max 4994 4994 522.8 5228 451.7 122 4623 4623 5774 5774 5524 1.65 105
Pt Mean 532 604 94.8 103.5 713 0.51 550 640 149.5 163.1 108.6 049 33
(# 1358) sd 443 466 64.8 66.5 44.1 0.07 443 472 8838 87.8 57.7 0.06 12
Min 10 51 14 193 1.2 033 10 40 6.2 30.8 55 0.35 17
Max 3310 3310 5156 562.5 3328 0.89 2886 2886 6524 6524 4753 091 87

N, is the total number of trees per hectare while N, represents the number of trees of the main species; V, is the total volume and V,, main species volume, both
in m*ha~"; W, is the main species dry weight of biomass in Mg-ha™ ' fspr is the species stand form factor, calculated as in Eq. 5; and M is the Martonne aridity
index in mm-°C™". The subscript “/" refers to initial survey and “F” to final survey. Ps Pinus sylvestris, Pp P. pinea, Ph P. halepensis, Pn P. nigra, and Pt P. pinaster. The
number of plots used to develop models is shown under the name of the target species (#)
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studied, other pine species could be included within
stands). Figure 1 summarizes the methodology that is
described in the following sections.

Biomass estimation models by species

Basic biomass models were developed for each species
from SNFI; data in accordance with the structure used
by Lehtonen et al. (2004) (Eq. 2) to estimate dry weight
biomass (W) from stand volume (V) for the target spe-
cies. The Basic Model was modified by including the ef-
fect of aridity, thus, the Martonne aridity index (M) was
added to the Basic Model to obtain the so-called Basic
M Model (Eq. 3). As regards the model structure, fol-
lowing a preliminary study (not shown) it was decided
to include the logarithm of this variable to adapt the
Basic Model (Eq. 2), modifying the ‘a’ coefficient accord-
ing to Eq. 3.

Basic Model : W = (a + ax) x V]l-’k + & (2)
Basic M Model : Wy = (a + ax) x Vi

x (1+m x log(My))

+ &k (3)

where, for plot j in province k, W is the dry weight
biomass of the target species in Mg-ha ', V is the vol-
ume of the target species in m>ha™!, M is the Martonne
aridity index, in mm-°C™'; and £ is the model error. The
coefficient a is the fixed effect, while a; is the province
random effect to avoid possible correlation between
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plots belonging to the same province, as the measure-
ments in the different provinces were carried out in dif-
ferent years and by different teams. b and m are other
coefficients to be estimated: if coefficient m was not sig-
nificant for a given species or its inclusion did not im-
prove the Basic Model, M was no longer included in the
species model.

To determine how the stand development stage influ-
ences the relationships between volume and dry weight
biomass for each species, the mean tree volume (vm) was
included in the models. This variable also multiplies the
coefficient ‘ (a + a;) * (Eq. 4), so that if it was not signifi-
cant, the final model will be equivalent to the basic one.

vm Model : Wy = (a + a;) X Vf’k
x (1+m x log(M))
x <1+C1 xvmf,j) + i (4)
where, a, a;, b, ¢1, p1 and m were the coefficients to be
estimated and vm is the mean tree volume, all variables
referring to the target species.

When fitting the biomass models some bias linked to
the stem form was detected. Hence, the next step was to
test whether it was possible to correct the model bias by
adding the shape of the trees by means of the stand form
factor (f) (Eq. 5). This variable was also added to multi-
ply the coefficient * (a + ay) ’, thus obtaining the Total
Model (Eq. 6).

Volume growth models

Zgﬁ (Aguirre et al. 2019) N g )

RDgp,. [Lvo, =rtda,, Ho, R0, m, orgin R0, ) | Iy s . Dy welght Ibafiez etc::\ (2001)

Pepy VGEW:_(lVSI,ZpSI, ‘,/fp'T = Wsp + Vo, biomass models R R
I Heot ot

Ngp,: 1{T\nSp_T =Vsp.r/Nsp.1 o~ WV U f

fsor fsp_T = fspp

VMspy.

fsor

Fig. 1 Schematic explanation about how to apply the developed model for future projections. SNFI is the last Spanish National Forest Inventory
available, AT is the time elapsed between SNFIe and the projection time T, M is the Martonne aridity index, Origin is the naturalness of the stand
(plantation or natural stand), dg is the quadratic mean diameter (cm), Ho is the dominant height (m), RD is the relative stand density, p is the
proportion of basal area of the species in the stand, VGE is the volume growth efficiency, IV is the volume increment (m*ha™"year "), N is the
number of trees per hectare, V is the volume of the stand (m>ha™"), vm is the mean tree volume, f is the stand form factor, W is the dry weight
biomass, and C is the weight of carbon. The subscript “F" refers to the final SNFI, the last available, while “T" refers at projection time T. The
variables with the subscript “sp” refer to the target species, variables without the subscript refer to the stand
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_ |4
T GxH

f (5)

where f'is the stand form factor; V is the stand volume
(m*ha™'); G is the basal area (m*ha™'); and H is the
mean height of the plot (m), all variables referring to the
target species.

Total Model : Wi = (a + ax) x ijk
X (1+m x log(M))
X (1 +c X mekl)
X (1+Cz Xff,f)—f—s,»k, (6)

where a, ay, b, ¢, ¢o, p1, p2 and m were the coefficients
to be estimated, f'is the form factor of the stand and v
is the mean tree volume, all variables referring to the
target species.

The model structure was analysed in a preliminary
study where each coefficient in the allometric basic
model was parametrized in function of M, vm and f
considering linear and non-linear expansions. The final
model structure (Eq. 6) was selected because its better
goodness of fit in terms of AIC, showing also the lowest
residuals.

All models (Egs. 2 to 4 and Eq. 6) were fitted using
non-linear models with the nlme package (Pinheiro et al.
2017) from the R software (Team RC 2014). The coeffi-
cients were only included if they were statistically signifi-
cant (p-value <0.05) and their inclusion improved the
model in terms of Akaike Information Criterion (AIC)
(Akaike 1974). Furthermore, conditional and marginal
R* (Cox and Snell 1989; Magee 1990; Nagelkerke 1991)
were calculated as a goodness-of-fit statistic using
MuMIn library (Barton 2020). Once selected the model
with the lowest AIC, and highest marginal and condi-
tional R%, and to check that the improvement achieved is
significant, anova tests were made.

Evaluation of biomass estimation models

In order to evaluate the goodness of fit, an analysis of
the four developed models (Egs. 2 to 4 and Eq. 6) was
performed. The mean errors (Egs. 7 to 9), estimated in
Mgha !, as well as mean percentage errors (Egs. 10 to
12) in % were calculated for each model of each species.

Mean error : ME = Z ej/n (7)

Mean absolute error : MAE = Z|e,|/n (8)

Root mean square error RMSE = \/Z ej’/n (9)
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Mean percentage error : MPE

=100 x Y ep;/n (10)
Mean absolute percentage error : MAPE
= 100 x Z‘epj'/n (11)
Root mean square percentage error : RMSPE
=100 x (/Y ep?/n (12)

where ¢; = W;—V/V\,- and ep; = (W,'—V/V\j)/Wj; \77\,' is
the estimated values of dry weight biomass for each plot
j» W; the corresponding observed values for each plot j,
both referring to the target species; and # is the number
of plots where the species was present.

Carbon predictions at national level

The models developed (Egs. 4 to 6 and Eq. 8) provide
estimates of dry weight biomass per species, both in
monospecific and mixed stands, which could be trans-
formed to carbon stock, considering the specific data of
carbon content in wood given by Ibafez et al. (2002) for
the five studied pine species (Table 2).

To evaluate the prediction capacity of the fitted
models at time 7 when no field data is available, a simu-
lation from the initial SNFI survey (SNFI;) was per-
formed at a national scale, assuming that this was the
last available survey.

The first step was to obtain the predicted biomass at
time T, where all variables are supposed to be unknown
for each species, from the four biomass models devel-
oped (Egs. 2 to 4 and Eq. 6). To apply these models, it
was necessary to obtain the values of all independent
variables, updated to year T. This procedure was done as
follow:

— Using the annual growth volume models by Aguirre
et al. (2019), the volume V7 was estimated from the
SNFI; volume. These authors developed a volume
growth efficiency (VGE) model for the five pine
species considered in this study. Volume growth
efficiency is a measure of stand volume growth
taking into account the species proportions by area

Table 2 Carbon content of wood for the studied species
(Ibdfez et al. 2002)

Species Carbon content (%)
Pinus sylvestris 509
Pinus pinea 508
Pinus halepensis 499
Pinus nigra 50.9
Pinus pinaster 51.1
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(p), which is necessary when studying mixed stands
(Condés et al. 2013), as VGE = IV/p. In monospecific
stands VGE = IV. So, with these estimations (/V) and
the number of years elapsed since initial SNFI (A7),
the volume at time T was estimated as VT =V
+1V x AT.

— The mean tree volume v was estimated assuming
that there are no extractions or high mortality in
plots during AT, that is, assuming the number of
trees per hectare remains constant (N T = Njy), so
that, 17}’7’1T = VT/NT.

— Furthermore, it was assumed that the stand form
factor does not vary significantly in the time elapsed
between inventories, so this variable was estimated

as jT:fI'

As the predictions were made for the same plots used to
develop the growth models by Aguirre et al. (2019), bio-
mass models can be applied directly, without the need to
perform calibrations, since the fixed and random effects
are known. Hence, by applying the different models (Egs.
2 to 4 and Eq. 6) and using the independent variables de-
scribed ( V7, vy and f 7 ), we obtain the biomass esti-
mated at time 7' (W 1), which is assumed to be unknown.

Secondly, using the carbon percentages contained in
the biomass weight shown in Table 2, the carbon weight
estimated for each species was obtained at time T (C T sp

). Considering all species present in each plot, the total

carbon weight was estimated at time T (Cr = > C T_sp)-

Finally, in order to evaluate the predictions, time T
was set to be the same as the final SNFI (SNFIg), there-
fore the observed values were already known and could
be compared with the predictions obtained. Thus, the
predicted carbon (Cr) was compared with the observed
carbon weight for the final SNFI (Cy), obtained by multi-
plying the observed dry weight biomass (as explained in
the data section) and the carbon content (Table 2) in the
final survey (SNFIg). The mean errors were then calcu-
lated from Egs. 9 to 14.

How to estimate carbon stocks at national level when no
data is available
In this section, it is explained how to apply the devel-
oped models for predicting the carbon stock at time T
required, when no data is available. For this, it is neces-
sary to use some variables of the last Spanish National
Forest Inventory available (SNFIg), AT years before T.
The first step is to estimate the volume growth effi-
ciency of the target species (VGE,,), which can be esti-
mated using Aguirre et al. (2019) models. These models
estimate VGE as function on:
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— Origin, makes reference to the naturalness of the
stand. It was a dummy variable, with value 1 when
the stand was a plantation and 0 when the stand
comes from natural regeneration.

— dg,, is the quadratic mean diameter of the target
species.

— Ho, is the dominant height of the stand.

— RD, is the relative stand density (Aguirre et al. 2018,
Eq. S1), and RDq, is only considering the target
species.

— Py is the proportion of the species.

— M, is the Martonne aridity index.

With these variables it is possible to estimate VGE,,
for each pine species considered, and using its propor-
tion, also volume growth of each species (/V,) can be
estimated. Note that in monospecific stands IV, is equal
to IV total.

Having the IV, the time elapsed since T and SNFIg
and the volume of the target species at SNFI; (V,r) the
volume at 7T time is estimated (VSP_T).

Obtained VSP_T, the biomass models can be applied by
using some assumptions:

— The number of trees per hectare remains constant
at equal to the observed in SNFIg (Nsp_T = Ngpr).

— So, the mean tree volume at time T can be
estimated as: vinig, 1 = \A/spj/]{[ sp_T-

— The stand form factor also is considered constant at

~

equal to the observed in SNFIg (f, 7 = f,r)-

Using these estimated variables, biomass models can
be used to obtain the estimation of dry weight biomass
of the target species at time T' (Wspj). The appropriate
percentage of the carbon content per species (Ibdfez
et al. 2002) allows to transform that value in the esti-

mated carbon of the target species at time T (Cs,_r). For
mixed stands, the estimated carbon of the stand (C) is
the sum of the different C’sp_T.

Results

Biomass estimation models for each species

Table 3 shows the coefficient estimates together with
the standard errors and goodness of fit for the four
models developed for dry weight biomass of the five spe-
cies studied (Egs. 2 to 4 and Eq. 6). When the Basic
Model (Eq.2) was compared with the Basic M Model
(Eq. 3) it was observed that aridity (M) was significant in
three of the five species and in all three cases it resulted
in an improvement in the Basic Model, both in terms of
AIC and marginal and conditional R*. The species for
which M was not significant in the models were Pt and
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Pp. Among the species for which M was significant, Ps
and Ph showed the greatest increase in conditional and
marginal R?, while a slightly negative effect was only de-
tected in the case of Pn (Table 3).

The estimates obtained for the coefficients ¢; and p;
in the models that include vm indicate the high import-
ance of this variable for estimating biomass weight.
Nevertheless, its influence was less in the case of Pt, as
reflected by its low p; value (Fig. 2¢, Table 3). The coef-
ficients can be significant either as exponents or by
multiplying the variables, or in both ways.

The bias observed when fitting the models was cor-
rected by including the stand form factor f. When the
Total Model and vim Model were compared, the bias
correction was more clearly observed in the Ph model,
while for Ps and Pt the inclusion of fonly had a slight ef-
fect (Table 3).

When the estimation errors were analyzed using the
different models (Table 4) it was observed that the bias
was always less than 0.2 Mg-ha™ ', which in relative terms
is equivalent to less than 3%. In general, the models

Page 9 of 16

although for Ph and Pp all the fitted models overesti-
mated the biomass, except the Total Model for Pp. In
addition, Pn and Pp were the species for which the
greatest reduction in RMSE was observed, comparing
the Total Model and Basic Model (greater than 4.5%),
while this reduction was the lowest for Pt (around
0.06%).

Having selected the Total Model as the best model to
estimate the dry weight biomass for all species, the influ-
ence of each independent variable was analyzed. In Fig. 2,
the variation of dry weight biomass with each variable was
presented, assuming the rest of the variables not repre-
sented on the axis remain constant. Figure 2a shows a
clear positive relationship between dry weight biomass
and stand volume, with Pp being the species producing
the highest stand biomass for a given volume, although it
was very similar to Ph and Pn. If stand volume (V) is con-
sidered constant, it is possible to analyze the variation in
W with aridity (Fig. 2b), observing that for all species
where M was included in the model (Ps, Ph and Pn) the
relationship was positive, that is, the higher the M value

overestimated the biomass weight (negative ME), (less aridity), the higher the W value for a given V.
a b
400 180+
160-
*.(C\7 300 o e
B 5 1407 -
= =5 ’
< 2004 2 120+
100-|
100+ © Ps © Ps
— Pp i — Pp
— Ph 80 — Ph
- Pn -~ Pn
0 Pt 60 T M
T T T T T T T T T T T T T T
0 100 200 300 400 500 600 0 20 40 60 80 100 120
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¢ d
250 250
& 2001 & 200-
g g
2 =
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Fig. 2 The selected model (Total Model), showing the dry weight biomass estimations for the target species (W, in Mg-ha™ ') according to: a
volume of the stand for the target species (V, in m>ha”"); b Martonne aridity index (M, in mm-°C~ "); € mean tree volume (vm, in m* per tree);
and d stand form factor (f). The variable represented in each figure on the x axis, ranges from 1% to 99% of its distribution in the data used,
while the rest of the variables remain constant and equal to: V=150 m>ha~"; M=30mm-<°C"'; f=0.5; and vm = 0.5 m> per tree. Species as in
Table 3
J




Aguirre et al. Forest Ecosystems (2021) 8:29

Table 4 Model errors calculated through Egs. 7 to 12

sp  Model ME MAE RMSE  MPE MAPE RMSPE
Ps  Basic -0.026 11280 14592 -2903 10641 15843
Basic M -0010 11183 14477 -2847 10583 15774
vm -0039 8711 11444  -1930 7935 11.626
Total -0.046 8679 11384 —1955 7930 11.631
Pp Basic 0.198 7950 11198 -2173 10916 15593
Basic M 0.198 7.950 11198 -2173 10916 15593
vm 0.199 7468 10794 -1894 10135 14625
Total -0013 5629 7520 -1919 7695 11.066
Ph  Basic 0.064 3.899 5922 -0640 7244 10.206
Basic M 0.077 3.845 5.836 -0.517 7.208 10.118
vm 0.095 3.609 5.082 -0383 7.182 9.865
Total 0.059 3246 4327 -0374 6456 8.388
Pn  Basic -0.166  7.564 10430 -2.108 7964 10.803
BasicM  —-0.173 7511 10364 -2.108 7.892 10.670
vm -0037 3956 5.820 -0.783 4249 6.254
Total -0.078 3.867 5615 -0.949 4224 6.110
Pt  Basic -0.018 4993 7.240 -1.002 5244 7.278
BasicM  -0018 4.993 7.240 -1.002 5244 7.278
vm -0.018 4.993 7.240 -1.002 5244 7.278
Total -0.012 4988 7.210 -0.965 5224 7.219

sp, species as in Table 3. Model, names of models, Basic, Basic M, vm and Total
correspond to Egs. 4, 5, 6 and 8 respectively. ME mean error (Mg-ha™ "), MAE
mean absolute error (Mg-ha™ '), RMSE Root mean square error (Mg-ha™ '), MPE
mean percentage error (%), MAPE mean absolute percentage error (%), RMSE
Root mean square percentage error (%)

Furthermore, the effect of aridity on this biomass-volume
relationship varied according to the species, with Ps being
the species for which this influence was the greatest (Fig.
2b, Table 3). Analyzing the dry weight biomass variation
according to vm (Fig. 2c), it was observed that the ten-
dency of the relationship between W and v was similar
for Pp, Pn and Ps, that is, the higher the mean tree vol-
ume, the lower the W estimated for a given V. An increase
in vm, for a constant V, indicates that the stand is com-
posed of a smaller number of larger trees whereas a de-
crease in vm indicates that the same stand volume
comprising a greater number of smaller trees. Figure 2c
shows that the vm effect is more evident when trees are
smaller, while the relationship tends to be more constant
as the size of trees increases. Note that for Pt and Ph, the
vm effect was opposite to that for the other studied spe-
cies, that is, positive. Figure 2c shows this effect clearly for
Ph, despite being the species with the lowest range of vin
variation, while for Pt, the influence of vi was only slight,
despite being one of the species with the highest range of
variation of this variable. As regards the stand form factor
(f), in general, W decreased as f approached the unit value
(Fig. 2d), although in the case of Pt there is a very slight
positive effect of f The influence of f on W was not
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decisive for Ps and Pn, while it was especially important
for Pp and Ph.

Biomass expansion factors

According to the fitted models, the BEF, ie. stand bio-
mass weight/stand volume, is not constant but rather
decreases as the stand volume increases. Figure 3 repre-
sents the species BEF variation within the inter-
percentile 5%—95% range of the species stand volume in
monospecific stands for the mean and the extreme
values of each of the independent variables in the Total
Model. For all species, the estimated BEF values gener-
ally varied between 0.5 and 1.5 Mg-m™ >, and the lowest
estimations were found for Pt, for which the BEF values
were almost constant and around to 0.75Mgm > In
contrast, the species for which the highest BEF was ob-
tained was Pp, when f or vm had lower values. BEF esti-
mations for this species could reach values of more than
1.5 Mg:m™? for low stand volume.

Figure 3 shows that the BEF of Pt was always lower
than 0.9 and was not influenced by M and hardly af-
fected by v or f. The BEF values presented little vari-
ation in the M range distribution for any of the pine
species studied, despite being a statistically significant
variable. However, it can be seen in Fig. 3 that Ps was
the species most affected by aridity. In contrast, the BEF
variation for different vin values was evident (Fig. 3), be-
ing the variable that produced the most change in BEFs
for Ps and Pn, although it also affected Pp. Highly vari-
able BEFs values can be observed for Pp and Ph within
the f range distribution of the species, while for Ps and
Pt this relationship was practically insignificant. If the
different species are compared, Pn shows more constant
BEF values than the other species, regardless of stand
volume.

Carbon predictions at national level

The results confirmed that the Total Model was also
that which gave the lowest bias when carbon predictions
were update to time 7 in the pine stands across peninsu-
lar Spain (Fig. 4). This model allowed carbon estimates
with lower errors, both in absolute and relative terms,
than the rest of the models, despite all the assumptions
described, that is, constant values for both the number
of trees per hectare and stand form factor in the elapsed
interval considered.

In Fig. 4, it can be seen that all models produced over-
estimations of carbon stocks, except the Total Model,
which produced the lowest bias, although it slightly
underestimated carbon stock. Figure 4 also shows that
the inclusion of the f variable scarcely modified the er-
rors (MAE, RMSE, MAPE and RMSPE), although the
bias decreased significantly. When the Total Model was
used, the RMSE obtained when making carbon stock
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predictions for the studied pine species in the Iberian
Peninsula was less than 20%, which is slightly higher
than 9 Mg-ha ' of C. This Total Model resulted in an
important reduction in the bias, reaching around 2%.

Discussion

The use of BEFs to estimate biomass at stand level pro-
vides an interesting alternative for predicting biomass
and carbon stocks in forest systems since stand volume
(V) is the only variable required. However, the use of
traditional BEFs, mainly as constant values and generally
obtained for stands under specific conditions, can result
in biased biomass estimates if they are applied under dif-
ferent conditions (Di Cosmo et al. 2016). These biases
can have a significant impact on estimated carbon in the
tree layer when large-scale estimates are made, as is the
case of national-scale predictions (Zhou et al. 2016). In
this study, stand biomass models have been developed
that include other easily obtained variables as independ-
ent variables, in addition to the stand volume. The fitted
models allow us to update the carbon stocks in pine for-
ests across mainland Spain for the five species studied
using SNFI data. The strong relationship between stand
biomass and stand volume (Fang et al. 1998) implies that
the Basic Model can provide a good first estimate of bio-
mass. This is confirmed by the results obtained as the

Basic Model yields good fit statistics. This suggests that,
to a certain extent, the stand volume should absorb the
effects of other variables, such as the stand age or stand
density, as well as environmental conditions (Fang et al.
2001; Guo et al. 2010; Tang et al. 2016). Therefore, in the
development of the different models, the structure of the
Basic Model was maintained, expanding its coefficients so
that if the specific coefficients corresponding to the effects of
M, vm and f were not significant, the Basic Model is
returned. However, the models improved for all species with
the inclusion of the other variables (Tables 3 and 4), reflect-
ing the fact that stands with the same volume can have dif-
ferent structures leading to different biomass. This is
observed in the improvement achieved with the Total
Model, both with regard to the goodness of fit of the model
and the errors (Tables 3 and 4), indicating less biased and
more accurate estimates when the stand characteristics and
the aridity conditions (M) are included.

The positive relationship found between the aridity
index M and the dry biomass W for a given stand vol-
ume supports the findings presented by Aguirre et al.
(2019), who reported higher productions in less arid
conditions. This positive relationship between M and W
suggests greater crown development and higher crown
biomass for the same volume in less arid conditions.
However, it is important to highlight that the individual
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tree biomass equations used did not consider this type
of within-tree variation in the distribution of biomass
with site conditions (Ruiz-Peinado et al. 2011). Hence,
the observed effect of M must be associated with
changes in the stand structure. For example, the variation
in vm according to the aridity conditions, that is, the stand
V is distributed over more trees of smaller size or fewer
larger trees according to the aridity of the site, since the
proportion of crown biomass with respect to total biomass
varies with tree size (Wirth et al. 2004; Menéndez-Migué-
lez et al. 2021). This would entail an interaction between
the effect of M and the effect of v in the models, as
reflected in the case of Pn, which varies from negative in
the basic model with M to positive for the viz Model and
Total Model. However, in general, M is not the most im-
portant variable to explain the variation in W (Fig. 2b), as
can also be observed in the small BEF variation for the
studied species in relation with M (Fig. 3).

The variable vm, as surrogate of the stand develop-
ment stage, has a different influence on the models for
Ph and Pt than for the rest of the species (Fig. 2c). The
observed pattern for Ps, Pp and Pn indicates that the re-
lationship between W and V, or the BEF, decreases with
vm, ie. as the stage of stand development increases, as
has been observed previously in other studies (Lehtonen
et al. 2004; Teobaldelli et al. 2009). This behavior may
be caused by differences in the relationship between the
components of the trees. For example, Schepaschenko
et al. (2018) observed an important decreasing effect of
age on the branch and foliar biomass factors. Similarly,
Menéndez-Miguélez et al. (2021) analyzed the patterns
of crown biomass proportion with respect to total
aboveground biomass of the tree as its size develops for
the main forest tree species in Spain. These authors
found that in the cases of Ps and Pp, this pattern was de-
creasing; while for Pn and Pt it was constant (the study
did not include Ph). These within-tree biomass distribu-
tions would validate the patterns found in the Ps, Pp and Pt
models, but not the Pn model. However, Ph presents a to-
tally different BEF behavior with the variation in vm. Analyz-
ing the modular values of the different biomass fractions for
this species presented in Montero et al. (2005), it can be ob-
served that the proportion of crown biomass in this species
increases slightly with the size of the tree, which could ex-
plain the opposite pattern observed in this species. However,
this difference could also be due to the equations used to cal-
culate the biomass (Ruiz-Peinado et al. 2011), since the max-
imum normal diameter of the biomass sample used in that
study was 44 cm, whereas for the Iberian Peninsula as a
whole it was as much as 97 cm (Villanueva 2005). Sche-
paschenko et al. (2018) also reported that the number of
branches in low productive, sparse forest is greater than in
high productive, dense forests, which may be a cause for the
increasing tendency of W in Ph in relation to vm.
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The results indicate an improvement in the models
with the inclusion of the stand form factor, although the
magnitude of the effect caused by this variable, as well
as the improvement in the models, were greater for Pp
and Ph than for the rest of the species (Fig. 2d, Table 3).
To estimate the stand volume, diameter at breast height,
total height of the tree and its shape are used, according
to species and province available models (Villanueva
2005). However, to estimate stand biomass, the equa-
tions applied for the different tree components only de-
pend on the species, the diameter at breast height and
the total height of the tree, without considering the
shape of the tree (Ruiz-Peinado et al. 2011). This differ-
ence explains the advisability of considering the stand
form factor to avoid biases in the estimates, although it
also highlights the need to study the dependence of the
biomass equations on the different components of the
tree according to their shape. In turn, this shape depends
on genetic factors, environmental conditions, and stand
structure (Cameron and Watson 1999; Briichert and
Gardiner 2006; Lines et al. 2012).

The models obtained underline the importance of con-
sidering the environmental conditions and the stand
structure (size and shape of trees) when expanding the
volume of the stand to biomass. If constant BEF values
are used for all kinds of conditions, biomass may be
underestimated in younger and less productive stands,
while for more mature and/or productive stands it may
be overestimated (Fang et al. 1998; Goodale et al. 2002;
Yu et al. 2014). These authors also highlight the need to
further our understanding of the influence of these fac-
tors on the individual tree biomass equations. In this re-
gard, Forrester et al. (2017) found that the intraspecific
variation in tree biomass depends on the climatic condi-
tions and on the age and characteristics of the stand,
such as basal area or density. The components that
mostly depended on these variables were leaf and branch
biomass, which suggests that it would be advantageous
to have more precise equations for these tree compo-
nents, which would therefore modify the stand biomass
estimates. However, the inclusion of other variables in
the tree biomass models in order to improve the accur-
acy would require a large number of destructive samples
from trees under different conditions (site conditions,
stand characteristics, age...), which would be difficult to
obtain in most cases.

The suitability of SNFI data to develop models has
been questioned by several authors (Alvarez-Gonzalez
et al. 2014; McCullagh et al. 2017). One of the main dis-
advantages is the lack of control about environmental
conditions, stand age or history of the stand (Vila et al.
2013; Condés et al. 2018; Pretzsch et al. 2019). Another
shortcoming is the lack of differentiation of pine subspe-
cies in the SNFI, like the two subspecies of Pn, salzmanii
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and nigra, or those of Pt, atlantica and mesogeensis,
which could lead to confusing results such as those ob-
tained for Pt, which was the only species for which the
Basic Model improved with the inclusion of both vari-
ables together, vin and f This could suggest that the re-
lationship between volume and shape of trees differs
according to the subspecies considered.

Through the models developed (Fig. 4), it is possible
to provide more precise responses to the international
requirements in terms of biomass and carbon stocks.
Since the most recent SNFI, it has become possible to
update the information at a required time. For this pur-
pose, the least favourable situation was assumed, that is,
that the only information available was that obtained
from the most recent SNFI. However, the main limita-
tion of the models developed is that they are only valid
for a short time period, when the assumptions made can
be assumed and when both climatic conditions and
stand management do not vary (Peng 2000; Condés and
McRoberts 2017). If the elapsed time would be too long
for assuming that there is not mortality and that the
stand form factor does not vary, the basic model could
be applied. Furthermore, to achieve more precise up-
dates, natural deaths and silvicultural fellings must be
considered using scenario analysis or by estimating of
past fellings (Tomter et al. 2016). Besides, a proper valid-
ation with independent data was not possible due to lack
of such data. When the SNFI-4 is finished for all Spanish
provinces, it would be interesting to validate the models
developed.

Conclusions

The results reveal the importance of considering both,
site conditions and stand development stage when devel-
oping stand biomass models. The inclusion of site condi-
tions in the models for Ps, Ph and Pn, indicate that
aridity conditions modulate the relationship between the
dry weight biomass of a stand (W) and its volume (V),
while for Pp and Pt this relationship was not influenced.
As hypothesized, it was observed that for a lower aridity,
the biomass weight and therefore that of carbon are
higher for the same stand volume.

Besides, the results reveal the importance of consid-
ering both size and form of trees for estimating dry
weight biomass, and therefore to estimate carbon
stock. As expected, the relationship between dry
weight biomass of the stand and its volume decreases
when the stand development stage (vm) increases, ex-
cept for Ph whose behavior is the opposite, and Pt
which is hardly affected by vm. However, the inclu-
sion of this variable reduces the ME, MAE and RMSE
for all the studied species, which indicates the im-
portance of its consideration in the dry weight bio-
mass estimation.
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