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and N2O fluxes in a Moso bamboo
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Abstract

Background: It is still not clear whether the effects of N deposition on soil greenhouse gas (GHG) emissions are
influenced by plantation management schemes. A field experiment was conducted to investigate the effects of
conventional management (CM) versus intensive management (IM), in combination with simulated N deposition
levels of control (ambient N deposition), 30 kg N·ha− 1·year− 1 (N30, ambient + 30 kg N·ha− 1·year− 1), 60 kg
N·ha− 1·year− 1 (N60, ambient + 60 kg N·ha− 1·year− 1), or 90 kg N·ha− 1·year− 1 (N90, ambient + 90 kg N·ha− 1·year− 1) on
soil CO2, CH4, and N2O fluxes. For this, 24 plots were set up in a Moso bamboo (Phyllostachys edulis) plantation from
January 2013 to December 2015. Gas samples were collected monthly from January 2015 to December 2015.

Results: Compared with CM, IM significantly increased soil CO2 emissions and their temperature sensitivity
(Q10) but had no significant effects on soil CH4 uptake or N2O emissions. In the CM plots, N30 and N60
significantly increased soil CO2 emissions, while N60 and N90 significantly increased soil N2O emissions. In the
IM plots, N30 and N60 significantly increased soil CO2 and N2O emissions, while N60 and N90 significantly
decreased soil CH4 uptake. Overall, in both CM and IM plots, N30 and N60 significantly increased global
warming potentials, whereas N90 did not significantly affect global warming potential. However, N addition
significantly decreased the Q10 value of soil CO2 emissions under IM but not under CM. Soil microbial
biomass carbon was significantly and positively correlated with soil CO2 and N2O emissions but significantly
and negatively correlated with soil CH4 uptake.

Conclusion: Our results indicate that management scheme effects should be considered when assessing the
effect of atmospheric N deposition on GHG emissions in bamboo plantations.
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Introduction
Extensive research on soil greenhouse gases (GHGs) has
shown that CO2, CH4, and N2O released from soil signifi-
cantly contribute to global warming (IPCC 2013; WMO
2019). Atmospheric concentrations of CO2, CH4, and N2O
have increased considerably from 278 ppm, 722 ppb, and
270 ppb in 1750 to 408 ppm, 1869 ppb, and 331 ppb in
2018, respectively (WMO 2019). Forest ecosystems, as an
important source of atmospheric CO2 and N2O and an im-
portant sink of CH4 (Liu and Greaver 2009), play a key role
in regulating GHG fluxes under global climate change.
Recently, atmospheric N deposition has drastically in-

creased in East and South Asia and is expected to con-
tinue to increase (Galloway et al. 2008; Reay et al. 2008;
Tian et al. 2016), particularly in subtropical China (Liu
et al. 2013), where N deposition has reached 30.9 kg
N·ha− 1·year− 1 (Xie et al. 2008) and is predicted to reach
50 kg N·ha− 1·year− 1 by 2050 (Galloway et al. 2004).
Many studies have shown that N deposition can signifi-
cantly influence forest soil CO2, CH4, and N2O emis-
sions, including both promotion and inhibition effects
(Zhang et al. 2008a; Liu and Greaver 2009; Deng et al.
2020). For example, in temperate forests, the effect of N
deposition on soil CO2 emissions includes promotion
(Bowden et al. 2004; Zheng et al. 2018) and inhibition
(Geng et al. 2017), as well as no effect (Krause et al.
2013; Sun et al. 2014). N deposition reduces (Sitaula
et al. 1995; Gulledge et al. 2004; Kim et al. 2012; Krause
et al. 2013) or increases (Geng et al. 2017) soil CH4 up-
take and accelerates soil N2O emissions (Venterea et al.
2003; Kim et al. 2012; Krause et al. 2013; Sun et al. 2014;
Song et al. 2017a). In tropical forests, N deposition re-
duces soil CO2 emissions (Mo et al. 2008; Cusack et al.
2011; Tian et al. 2019); enhances (Zhang et al. 2008b;
Wang et al. 2014; Tian et al. 2019) or has no effect
(Zhang et al. 2008b; Müller et al. 2015; Tang et al. 2018)
on soil N2O emissions; and inhibits or has no effect on
soil CH4 uptake (Zhang et al. 2012). N deposition was
shown to promote soil N2O emissions in an N-saturated
forest (Xie et al. 2018), while it increased soil CO2 emis-
sions in a bamboo ecosystem (Tu et al. 2013), an ever-
green forest (Gao et al. 2014), and a highly P-limited
forest (Liu et al. 2019). Additionally, Wang et al. (2015)
found that N deposition promoted soil N2O emissions
but reduced soil CH4 uptake in a slash pine plantation.
Li et al. (2015) also measured the effects of N deposition
in a slash pine plantation and found that soil CO2 and
N2O emissions increased, but soil CH4 uptake was un-
affected. These inconsistent results indicate that the ef-
fects of N deposition on GHG emissions strongly
depend on forest type. Moreover, most studies have only
observed the fluxes of one or two GHGs in forest soil
under N deposition (Jassal et al. 2010; Kim et al. 2012;
Wang et al. 2015; Tian et al. 2019). Studies that

simultaneously measure the fluxes of three GHGs in for-
est soils under increasing N depositions are scarce
(Krause et al. 2013; Song et al. 2017a), especially in sub-
tropical plantations (Li et al. 2015; Song et al. 2020).
An increasing number of plantations have been established

in recent years to satisfy the increasing global demand for
timber products (FAO 2005). As one of the forestry practices
that increases productivity, intensive management (IM) is es-
sential for meeting current and future timber needs (McE-
wan et al. 2020). Several studies have shown that IM
significantly increases CO2 emissions (Mori et al. 2017; Yang
et al. 2017) but does not affect CH4 or N2O emissions from
forest soils (Mori et al. 2017). Moso bamboo (Phyllostachys
edulis) plantations are one of the most important types of
forests in southern China. Approximately 4.43 million hect-
ares are under Moso bamboo cultivation in this region, com-
prising 84.02% of the global Moso bamboo forest area (Song
et al. 2017b). In recent decades, owing to the high economic
and ecological benefits of Moso bamboo, an increasing num-
ber of farmers have utilized IM practices to replace conven-
tional management (CM) practices in Moso bamboo
plantations, including fertilization, plowing, and weeding
understory vegetation (Song et al. 2015). In Moso bamboo
plantations, IM has been observed to significantly increase
soil CO2 emissions (Liu et al. 2011; Tang et al. 2016), while
its effects on soil N2O and CH4 fluxes remain unknown.
Therefore, the effect of IM on soil GHG emissions in Moso
bamboo plantations is an empirical gap that needs to be
addressed.
Furthermore, Moso bamboo plantations are located in

subtropical China where N deposition had increased dramat-
ically in recent years (Liu et al. 2013). Our previous study
showed that N deposition increased soil CO2 emissions (Li
et al. 2019) and N2O emissions (Song et al. 2020) but de-
creased soil CH4 uptake (Song et al. 2020) in Moso bamboo
plantations under IM. However, the comprehensive effects of
management scheme combined with N deposition on soil
GHG fluxes in Moso bamboo plantations remain unclear.
Here, we studied the individual and combined effects of N
deposition and management scheme on soil CO2, CH4, and
N2O fluxes for one year in a Moso bamboo plantation. We
hypothesized that (1) IM increases CO2 emissions but does
not affect N2O emissions or CH4 uptake, because IM can
promote soil respiration; (2) N addition promotes CO2 and
N2O emissions but inhibits CH4 uptake under CM, because
N addition can promote soil respiration, nitrification and de-
nitrification but inhibit methane oxidation; and (3) IM inten-
sifies the effect of N addition on soil GHG fluxes, because
IM can provide more nutriment, especially N.

Materials and methods
Study site
The details of the study site were reported previously
(Song et al. 2015). Briefly, the site is located in Lin’an
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District (30°14′ N, 119°42′ E), Hangzhou City, Zhejiang
Province, China, and is characterized by a subtropical
monsoon climate with a mean annual temperature of
15.6 °C and a mean annual precipitation of 1420mm.
The soil belongs to the Ferrisols derived from granite
(Song et al. 2015). The landscape is hilly, with an eleva-
tion range of 100 to 300m a.s.l. The Moso bamboo plan-
tations were initially established in the late 1970s to
replace a native evergreen broadleaf forest, with similar
soil type and topography (a southwest slope of approxi-
mately 6°). Moso bamboo forests in the study area are
divided into CM and IM plantations according to the
management scheme to which they are subjected. Con-
ventionally managed plantations are selectively and regu-
larly harvested for bamboo stems and shoots according
to demand, with no other management practices in
place. In IM plantations, additional management prac-
tices such as plowing, weeding by herbicide spray, and
fertilization are practiced, in addition to bamboo har-
vesting as per CM plantations. Specifically, every year in
September, fertilizers (67.5 kg N·ha− 1, 11.8 kg P·ha− 1,
and 74.7 kg K·ha− 1) are evenly spread on the ground and
then plowed to mix with the 30-cm topsoil (Song et al.
2015). Compared with CM plantations, IM plantations
have fewer understory species and lower shrub and
herbal biomass. Forest stand and soil characteristics at
the study site are shown in Table 1 (Song et al. 2015).

Experimental design and measurements
In November 2012, 24 plots (20 m × 20m) with a 20-m-
wide buffer zone (to avoid disturbing nearby plots) were
set up in the Moso bamboo plantations of the study site.
According to the N-deposition simulation method re-
ported by Mo et al. (2007) and background atmospheric
N deposition data of the site (30.9 kg N·ha− 1·year− 1; Xie
et al. 2008), the N addition rate was set to equal, double,
and triple the local N deposition rate. There were 12 IM
plots and 12 CM plots with three replications of four
treatment levels: control (ambient N deposition), N30
(low N treatment, ambient + 30 kg N·ha− 1·year− 1), N60
(medium N treatment, ambient + 60 kg N·ha− 1·year− 1),
and N90 (high N treatment, ambient + 90 kg N·ha− 1·
year− 1) (Song et al. 2015, 2017c). The N source for N-
deposition simulation was ammonium nitrate (NH4NO3;
Song et al. 2015). It has been reported that NH4

+ and
NO3

− account for 56.1% and 43.9% of the wet N

deposition in China, respectively, and the average NH4
+:

NO3
− ratio was 1.28 (Lei et al. 2016). From January 2013

to December 2015, the amount of NH4NO3 (Xilong
Chemical Co. Ltd., China) corresponding to each N
treatment was dissolved in 10 L of water and uniformly
sprayed on the forest floor of each N-treated plot in CM
and IM plantations once a month (Song et al. 2015).
Each control treatment plot was sprayed with 10 L of N-
free water to balance the effects of added water.

Measurement of soil GHG fluxes
Soil CO2, CH4, and N2O were collected using the static
chamber method. The static chamber assembly consists
of a permanently mounted base box (40 cm × 40 cm × 10
cm) with a U-shaped groove (5 cm wide and 5 cm deep)
at the top and a removable cover box (40 cm × 40 cm ×
40 cm). During gas sampling, the cover boxes were
placed onto the base boxes and the grooves filled with
water to serve as an air seal. A small fan was installed in
each chamber to mix the air within the chamber during
sampling. The base frame was directly inserted 5 cm into
the soil in January 2013. Sampling was conducted be-
tween 9:00 am and 10:00 am to minimize the influence
of variation. Four samples were taken with a 60-mL plas-
tic syringe attached to a 3-way stopcock every 10 min for
30 min (i.e., at 0, 10, 20, and 30min). Button thermome-
ters (iButton DS1923; Wdsen Electronic Technology Co.
Ltd., China) buried at a depth of 5 cm were used to
monitor soil temperature at hourly intervals. GHG con-
centrations were analyzed after Li et al. (2019) using a
gas chromatographer (GC-2014 Shimadzu Corp., Japan)
within two days. We collected GHG emission data on a
clear day once a month from January to December 2015.
Gas fluxes were calculated using the following equation
(Li et al. 2019):

R ¼ Δc
Δt

� ρ� 273
273þ T

� V
A
� n ð1Þ

where R is gas flux (mg CO2-C·m
− 2·h− 1 for CO2, μg

CH4-C·m
− 2·h− 1 for CH4, and μg N2O-N·m− 2·h− 1 for

N2O), ρ is gas density under normal conditions
(mg·m− 3), V is the volume of the static chamber (m3), A
is the area that the static chamber covered, Δc/Δt is the
change in gas concentration (Δc) during a certain time
(Δt), T is air temperature (°C), and n is the coefficient

Table 1 Forest stand and soil characteristics in the Moso bamboo forests at the study site

Management Scheme Stand density
(trees·ha− 1)

DBH
(cm)

SBD
(g·cm− 3)

SOC
(mg·g− 1)

TN
(mg·g− 1)

AN
(mg·g− 1)

TP
(mg·g− 1)

AP
(mg·g− 1)

Soil pH

CM 3106 ± 386a 10.08 ± 0.38a 1.06 ± 0.07a 27.8 ± 0.3a 0.9 ± 0.03b 0.06 ± 0.00b 0.4 ± 0.01a 0.002 ± 0.000a 4.53 ± 0.02a

IM 3362 ± 309a 10.16 ± 0.13a 0.97 ± 0.07a 23.7 ± 0.2b 1.1 ± 0.04a 0.09 ± 0.00a 0.5 ± 0.01a 0.002 ± 0.000a 4.46 ± 0.01a

CM conventional management; IM intensive management; DBH diameter at breast height; SBD soil bulk density; SOC soil organic C; TN soil total N; AN available N;
TP soil total P; AP available P. Different small letters within columns indicate significant difference at the 0.05 level
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for converting the masses of CO2, CH4, and N2O to the
masses of C and N (12/44 for CO2, 12/16 for CH4, and
28/44 for N2O).
The following equation was used to calculate cumula-

tive soil CO2, CH4, and N2O fluxes (Liu et al. 2011):

Fg ¼
X

Riþ1 þ Rið Þ=2� tiþ1 − tið Þ � 24� d ð2Þ

where Fg is cumulative soil CO2 (kg CO2-C·ha
− 1·

year− 1), CH4 (kg CH4-C·ha
− 1·year− 1), or N2O (kg N2O-

N·ha− 1·year− 1) flux; R is soil CO2 (mg CO2-C·m
− 2·h− 1),

CH4 (mg CH4-C·m
− 2·h− 1), or N2O (mg N2O-N·m− 2·

h− 1) flux determined at each sampling time; i is the sam-
pling number, t is the sampling time, and d is the num-
ber of days in each month.
Based on these measurements, an exponential regres-

sion model was used to describe the relationship be-

tween soil CO2 efflux and soil temperature (Li et al.
2019):

Y ¼ α� ekT ð3Þ
where Y is soil CO2 efflux, T is soil temperature at 5-

cm depth, and α and k are the model coefficients. Soil
CO2 efflux temperature sensitivity (Q10) was calculated
as in Li et al. (2019):

Q10 ¼ α� ek Tþ10ð Þ=α� ekT ¼ e10k ð4Þ
The Global warming potential (GWP) metric was de-

veloped to allow comparisons of the global warming im-
pacts of different gases. The GWP of soil GHG
emissions was computed by considering the respective
GWP coefficients of CH4 and N2O using the following
equation (Tian et al. 2015):

where FCO2 − C, FCH4 − C, and FN2O − N are the annual
fluxes of CO2, CH4, and N2O respectively based on
the masses of C and N; 25 and 298 indicate the ra-
diative forcing of CH4 and N2O, respectively, in terms
of a CO2eq unit at a 100-year time horizon (Forster
et al. 2007).

Soil analysis
Ten soil cores (3.5-cm inner diameter) were collected
randomly from the topsoil layer (0–20 cm) in each
plot in every quarter of 2015. The soil samples were
sieved through a 0.15-mm sieve and divided into two
portions. One portion was air-dried for measuring
soil pH and conducting soil organic carbon (SOC),
soil total N (TN), and soil total phosphorus (TP) as-
says, and the other portion was stored in a refriger-
ator for measuring soil microbial biomass carbon
(MBC), NH4

+, and NO3
−. Briefly, soil pH was mea-

sured in a soil:water ratio of 1:2.5 using a pH meter
(Li et al. 2016). Soil SOC and TN concentrations
were determined using an elemental analyzer (Ele-
mentar Vario EL III; Germany). Soil TP was extracted
with a Bray-2 solution (Bray 1945) and determined
using the molybdate blue colorimetric method. Soil
MBC was estimated using the chloroform-fumigation
extraction method (Bao 2000). Samples were ex-
tracted with a 2-mol·L− 1 KCl solution, and the con-
centrations of NH4

+ and NO3
− were determined

using a Dionex ICS 1500 ion chromatographer (Dio-
nex Corp. Atlanta, GA).

Statistical analysis
Data analyses were performed using SPSS 22.0 (SPSS
Inc., Chicago, IL, USA) for Windows. One-way analysis
of variance (ANOVA) and least significant difference
multiple comparisons were used to identify significant
differences in Q10, GWP, and soil CO2, CH4, and N2O
fluxes. Two-way ANOVA was used to test the signifi-
cance of the interaction between N addition and man-
agement scheme for the variation in soil CO2, CH4, and
N2O fluxes. All data were tested for homogeneity of
variance and distribution normality before conducting
the ANOVA. In addition, Pearson’s correlation analyses
between soil characterization and soil CO2, CH4, and
N2O fluxes were conducted.

Results
Soil GHG fluxes
The seasonal variation of soil CO2 flux showed the same
pattern in all treatments, peaking in summer and reach-
ing a trough in winter (Fig. 1). Compared with CM, IM
significantly promoted annual soil CO2 emissions by
7.5%. Compared with the control treatment, N30 and
N60 significantly promoted annual soil CO2 emissions
by 31.7% and 22.1% in CM plots, and by 34.0% and
20.9% in IM plots, respectively, while N90 had no signifi-
cant effect on annual soil CO2 emissions in either CM
or IM plots (Fig. 1). Management scheme had no signifi-
cant effect on annual soil CH4 uptake. Compared with
the control treatment, N30 had no significant effect on
annual soil CH4 uptake in either CM or IM plots, but

GWP t CO2eq � ha − 1� � ¼ FCO2 − C � 44
12

þ FCH4 − C � 25� 16
12

þ FN2O − N � 298� 44
28

ð5Þ
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Fig. 1 Soil CO2 emission rates under different N addition treatments (control, 0 kg N·ha− 1·year− 1; N30, 30 kg N·ha− 1·year− 1; N60, 60 kg
N·ha− 1·year− 1; N90, 90 kg N·ha− 1·year− 1) in plots under conventional management (CM, a) or intensive management (IM, b) and annual soil CO2

emissions (c) from a Moso bamboo plantation (mean ± standard deviation, n = 3). Lowercase letters indicate differences in soil CO2 emissions
under different N addition treatments in CM plots (P < 0.05). Uppercase letters indicate differences in soil CO2 emissions under different N
addition treatments in IM plots (P < 0.05). The asterisk indicates differences in soil CO2 emissions between different management schemes under
the same N addition treatment (P < 0.05)

Fig. 2 Soil CH4 emission rates of different N addition treatments (control, 0 kg N·ha− 1·year− 1; N30, 30 kg N·ha− 1·year− 1; N60, 60 kg N·ha− 1·year− 1; N90,
90 kg N·ha− 1·year− 1) in plots under conventional management (CM, a) or intensive management (IM, b) and annual soil CH4 emissions (c) from a
Moso bamboo plantation (mean ± standard deviation, n = 3). Lowercase letters indicate differences in soil CH4 emissions under different N addition
treatments under CM (P < 0.05). Uppercase letters indicate differences in soil CH4 emissions under different N addition treatments under IM (P < 0.05)
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N60 and N90 significantly inhibited annual soil CH4 up-
take by 23.6% and 27.1% in CM plots, respectively
(Fig. 2).
The dynamics of annual soil N2O emission rates were

not significantly affected by management scheme, but N
addition caused N2O emission rates to peak from March
to April (Fig. 3). In CM plots, compared with the control
treatment, N30 did not significantly affect annual soil
N2O emissions, while N60 and N90 significantly pro-
moted annual soil N2O emissions by 52.7% and 47.0%,
respectively (Fig. 3). On the contrary, in IM plots, com-
pared with control treatment, N30, N60, and N90 sig-
nificantly promoted annual soil N2O emissions by 61.3%,
69.2%, and 49.3%, respectively. Two-way ANOVA
showed that N addition or management scheme inde-
pendently had significant effects on soil CO2 emissions,
CH4 uptake, and N2O emissions, but the interactions be-
tween them did not (Table S1).

The Q10 value of soil CO2 efflux varied from 1.89
to 2.37 under the different treatments combining
management scheme and N addition (Table S2). IM
significantly increased the Q10 value by 11.3% relative
to that in CM when no N was added. N addition had
no significant effect on the Q10 value in CM plots but
significantly decreased the Q10 value in IM plots
(Table S2). Furthermore, the significantly higher Q10

value in IM than in CM plots under no N addition
treatments decreased under both N60 and N90 treat-
ments (Table S2).
Soil CO2 flux was significantly and positively corre-

lated with soil MBC and TP concentrations but signifi-
cantly and negatively correlated with soil SOC and TN
concentrations, and C/N ratio (P < 0.05, Table 2). Soil
CH4 flux significantly and negatively correlated with soil
MBC, TP, and NH4

+ concentrations (P < 0.05, Table 2).
Soil N2O flux was significantly and positively correlated

Fig. 3 Soil N2O emission rates from plots under different N addition treatments (control, 0 kg N·ha− 1·year− 1; N30, 30 kg N·ha− 1·year− 1; N60, 60 kg
N·ha− 1·year− 1; N90, 90 kg N·ha− 1·year− 1) under conventional management (CM, a) or under intensive management (IM, b), and annual soil N2O
emissions (c) from a Moso bamboo plantation (mean ± standard deviation, n = 3). Lowercase letters indicate differences in soil N2O emissions
from plots under different N addition treatments in CM plots (P < 0.05). Uppercase letters indicate differences in soil N2O emissions from plots
under different N addition treatments in IM plots (P < 0.05). The asterisk indicates a significant difference in soil N2O emissions between
management schemes with the same N addition treatment (P < 0.05)

Table 2 Pearson correlation coefficients between soil physicochemical properties and CO2, CH4, and N2O fluxes

MBC SOC TN TP C/N pH NO3
− NH4

+

CO2 fluxes 0.430** −0.814** −0.606** 0.529** −0.291* 0.261 −0.035 0.200

CH4 fluxes −0.374** −0.065 − 0.247 −0.325* 0.144 −0.082 − 0.114 −0.290*

N2O fluxes 0.334** −0.172 0.267 0.092 −0.409** −0.237* 0.621** 0.178

MBC soil microbial biomass carbon; SOC soil organic carbon content; TN total nitrogen; TP total phosphorus. ** P < 0.01, * P < 0.05
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with soil MBC and NO3
− concentrations and negatively

correlated with C/N ratio and pH (P < 0.05, Table 2).

Annual GWP of soil GHG fluxes
Annual GWP owing to soil CO2, CH4, and N2O emis-
sions was 34.88 ± 1.19 t CO2eq·ha

− 1 in the Moso bam-
boo plantations under CM and without N addition
(Fig. 4). Compared with CM, IM significantly increased
the annual GWP by 7.98%. Furthermore, compared with
the control treatment, N30 and N60 significantly in-
creased the annual GWP by 31.5% and 23.7% in CM
plots, and by 35.6% and 23.6% in IM plots, respectively,
while N90 had no significant impact on the annual
GWP under either CM or IM treatments.

Discussion
Effect of management scheme on soil CO2, CH4, and N2O
emissions
We observed that the mean annual soil CO2, CH4, and
N2O emission rates in control plots under CM were
9106.09 ± 297.15 kg CO2-C·ha

− 1, − 3.98 ± 0.12 kg CH4-
C·ha− 1, and 3.48 ± 0.46 kg N2O-N·ha− 1, respectively
(Table S3). Our study showed that the mean annual soil
CO2 emission rate in the Moso bamboo forest was
higher than that of boreal forests (3220 ± 310 kg CO2-
C·ha− 1·year− 1), temperate coniferous forests (6810 ± 950
kg CO2-C·ha

− 1·year− 1), deciduous forests (6470 ± 510 kg
CO2-C·ha

− 1·year− 1; Raich and Schlesinger 1992), sub-
tropical bitter bamboo (Pleioblastus amarus) (4280 ±
110 kg CO2-C·ha

− 1·year− 1; Tu et al. 2013), and Chinese
fir (Cunninghamia lanceolata) forests (6637.36 ± 581.24

kg CO2-C·ha
− 1·year− 1; Wang et al. 2018); however, it

was lower than the corresponding rate in subtropical
evergreen broad-leaved (11,509.09 ± 463.64 kg CO2-
C·ha− 1·year− 1; Liu et al. 2011) and tropical moist forests
(12,600 ± 570 kg CO2-C·ha

− 1·year− 1; Raich and Schle-
singer 1992). The mean annual soil CH4 emission rate in
this study was similar to that in mid-subtropical nature
forests (− 4.13 ± 0.44 kg CH4-C·ha

− 1·year− 1; Chen et al.
2014) but lower than that in typical tropical montane
rainforests (− 1.93 ± 0.15 kg CH4-C·ha

− 1·year− 1; Yang
et al. 2018), evergreen broad-leaved forests (− 1.90 kg
CH4-C·ha

− 1·year− 1; Fang et al. 2009), larch plantations
(− 0.54 kg CH4-C·ha

− 1·year− 1; Kim et al. 2012), and Ko-
rean pine forests (− 0.05 kg CH4-C·ha

− 1·year− 1; Song
et al. 2017a). The mean annual soil N2O emission rate in
this study was higher than that of typical tropical mon-
tane rainforests (1.67 ± 0.04 kg N2O-N·ha− 1·year− 1; Yang
et al. 2018), larch (Larix kaempferi) plantations (1.13 kg
N2O-N·ha− 1·year− 1; Kim et al. 2012), and Korean pine
(Pinus koraiensis) forests (1.11 kg N2O-N·ha− 1·year− 1;
Song et al. 2017a) but was lower than that of evergreen
broad-leaved forests (6.00 kg N2O-N·ha− 1·year− 1; Fang
et al. 2009) and three subtropical forests (6.40 ± 2.41 kg
N2O-N·ha− 1·year− 1; Tang et al. 2006). Overall, compared
with other subtropical forests, bamboo forest soils under
CM showed lower CO2, CH4, and N2O emission rates,
which have a significant positive effect in decreasing the
GWP of soil GHG emissions.
We found that IM significantly increased annual CO2

emissions, which partially supports our first hypothesis
and was consistent with the results of Liu et al. (2011) in

Fig. 4 Annual global warming potential (GWP) of soil greenhouse gas emissions (CO2, CH4, and N2O) in Phyllostachys edulis plantations (mean ±
standard deviation, n = 3). Lowercase letters indicate differences in GWP under different N addition treatments in CM plots (P < 0.05). Uppercase
letters indicate differences in GWP under different N addition treatments in IM plots (P < 0.05). The asterisk indicates differences in GWP under
different management schemes within the same N addition treatment (P < 0.05)
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Moso bamboo forests. However, some studies indicate
that the state box method using linear fitting will cause
an underestimation of soil CO2 efflux (Wang 2005; Luo
and Zhou, 2006). Therefore, the real soil CO2 efflux may
be greater in the Moso bamboo plantation. Soil CO2 ef-
flux mainly comprises root respiration and microbial
respiration (Coleman 1973). IM practices, such as
fertilization, stimulate root respiration (Jassal et al. 2010;
Mori et al. 2013; Tang et al. 2016). Concomitantly,
ploughing disaggregates soil and releases protected SOC
(Sainju et al. 2008; Li et al. 2013; Tivet et al. 2013),
which provides more substrate for microbial respiration,
and the decomposition of protected SOC can increase
soil CO2 emissions. Meanwhile, fertilization increases
soil MBC by providing abundant nutrients for microbial
growth (Li et al. 2016) and accelerates the decompos-
ition of organic matter by heterotrophic microorganisms
(Cleveland et al. 2002; Ilstedt et al. 2003), resulting in a
decrease in SOC concentration (Ma et al. 2011) and pro-
motion of soil CO2 emissions (Tu et al. 2013). We ob-
served that soil CO2 flux was significantly and positively
correlated with soil MBC and significantly and negatively
correlated with SOC (Table 2). IM had no significant ef-
fect on annual CH4 uptake or N2O emissions, which
partially supports our first hypothesis regarding the
fluxes of these two gases, i.e., IM does not affect soil
N2O emissions or CH4 uptake. Previous studies have
also shown that management does not affect soil CH4

uptake or N2O emissions (Whalen and Reeburgh 2000;
Jassal et al. 2010; Zhang et al. 2015). The response of soil
N2O emissions to external environmental factors and
the influence on soil CH4 uptake were determined to be
the major reasons for the differences observed in soil
GHG emissions (Yan et al. 2014). Some studies found
that applying N fertilizer could stimulate soil N2O emis-
sions in farmland soil (Jäger et al. 2013) and vineyard
soil (Tatti et al. 2012). However, compared with CM, IM
did not significantly increased soil N2O emissions (Fig.
3), which may be attributed to infrequent fertilization
(once a year).
The Q10 value reflects the temperature dependence of

soil CO2 efflux, calculated from a series of soil CO2 ef-
flux measurements over a time period while soil
temperature changes (Rey et al. 2002; Ma et al. 2014).
The Q10 value of the soil CO2 efflux in plantations under
CM is 2.13, which is close to the Q10 value of Moso
bamboo forests in the Wanmulin Natural Reserve (2.08;
Wang et al. 2011) and the average Q10 of bamboo forests
in China (2.10; Song et al. 2014). Compared with CM,
IM significantly increased the Q10 of soil CO2 efflux
(Table S2). Tang et al. (2016) observed the same result
and concluded that the main reason might be the in-
crease in Q10 of soil microbial respiration. In the present
study and the previous study on the same site, IM

significantly increased soil MBC (Table S4; Li et al.
2016). Moreover, a significant positive correlation be-
tween soil CO2 flux and soil MBC was found in this
study (Table 2), which supports the conclusion of Tang
et al. (2016). Li et al. (2020) have found that root respir-
ation does not affect Q10 of soil CO2 efflux in forest
ecosystems.
Compared with CM, IM significantly increased the an-

nual GWP in Moso bamboo plantations (Fig. 4), which
can be mainly attributed to the increase in CO2 emis-
sions (Table S5). The results suggest that IM induces
greater GHG emissions from soils than CM did, al-
though IM may enhance the productivity of Moso bam-
boo plantations (Zhou et al. 2010). Therefore, the C
benefits of IM to Moso bamboo plantations need further
comprehensive evaluation, especially in the scenarios of
increasing atmospheric N deposition.

Effect of N addition on soil CO2, CH4, and N2O fluxes
In this study, N addition enhanced CO2 emissions in
both CM and IM plots, which partially supports our sec-
ond hypothesis, i.e., N addition promotes CO2 emissions.
Tu et al. (2009) observed that simulated N deposition
promoted soil CO2 emission in a bitter bamboo planta-
tion. Some short-term simulated N deposition studies
have also shown similar results (Madritch and Hunter
2003; Mo et al. 2005; Song et al. 2007). Soil CO2 emis-
sions are related to above-ground biomass, litter mass,
underground root biomass, and soil biological factors
(e.g., microorganisms and animals) (Zhang et al. 2008a).
Our previous studies showed that N input increased the
amount of leaf litter (Zhang et al. 2017), decomposition
of leaf litter (Song et al. 2015), fine root litter (Song
et al. 2017c), and soil microbial biomass (Li et al. 2016)
in the current study site, all of which contributed to oxi-
dizing organic C to CO2 (Steudler et al. 1991; Emmett
1999), thus increasing CO2 emissions. In this study, soil
MBC significantly and positively correlated with CO2

flux (Table 2), which supports the conclusion that N
addition increased soil CO2 emissions by increasing
MBC. However, Li et al. (2017) found that the CO2

emissions of the Moso bamboo forest soil did not
change after N addition (40 kg N·ha− 1, KNO3) in their
incubation experiment, which was different from our ex-
perimental results. This difference may be owing to the
difference in N source, the external environment of the
experiment, and the processing time.
N addition significantly inhibited soil CH4 uptake in

CM, which supports our second hypothesis, i.e., N
addition decreases CH4 uptake in CM. Similar results
have been observed in a Douglas fir stand (Jassal et al.
2011) and a young Japanese larch plantation (Kim et al.
2012). Soil CH4 uptake rate is usually negatively corre-
lated with soil NH4

+ concentration (Zhang et al. 2012),
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as was observed in this study (Table 2). The inhibitory
effect of NH4

+ on soil CH4 oxidation can be attributed
to the production of the intermediates, hydroxylamine
and NO2

−, during the nitrification of NH4
+, which likely

inhibits the activity of methane-oxidizing bacteria,
thereby extending the inhibition time (Nyerges and Stein
2009). Further, low pH can reduce the activity of
methane-oxidizing bacteria (Semenov et al. 2004), be-
cause soil acidification may increase the concentration
of Al3+ in the forest soil solution, while Al3+ ions have
an obvious toxic effect on CH4-oxidizing bacteria
(Nanba and King 2000; Tamai et al. 2007).
In this study, N addition (N60 and N90) significantly

increased N2O emissions, which partially supports our
second hypothesis, i.e., N addition increases soil N2O
emissions. Similar results were observed in a young Japa-
nese larch forest (Kim et al. 2012) and in incubated
Moso bamboo forest soil (Li et al. 2017). N input can in-
crease soil N availability, nitrification, and denitrification
and, thus increase N2O emissions (Repo et al. 2009). N
addition decreased soil pH significantly (Table S4), while
NO2

− may have induced aerobic denitrification in acidic
soils (Mørkved et al. 2007), thereby increasing N2O
emissions. A significant negative correlation between soil
pH and soil N2O flux was found in this study (Table 2).
N addition increased soil total N content and, thus de-
creased the soil C/N ratio (Li et al. 2019), which is bene-
ficial for the proportion of external N input converted to
N2O (Zhang et al. 2008a). Similarly, a significant nega-
tive correlation between soil C/N ratio and soil N2O flux
was found in this study (Table 2).
N addition had no effect on Q10 of soil CO2 efflux relative

to that in the control treatment in plots under CM but sig-
nificantly decreased Q10 value in IM plots (Table S2). Similar
results have been reported by Mo et al. (2007), who found
three-year high-N addition (150 kgN·ha− 1·year− 1) reduced
Q10 values in a mature tropical forest. Tu et al. (2013) also
observed that N addition decreased Q10 of soil CO2 efflux in
a bamboo ecosystem in southwestern China. Karhu et al.
(2014) suggested that microbial community responses in-
crease the temperature sensitivity of soil heterotrophic respir-
ation. Our previous studies have shown that, although N
addition significantly increased soil MBC, it also decreased
soil pH (Li et al. 2016), which might result in microbial activ-
ity being inhibited by soil acidity (Kunito et al. 2016). This, in
turn, may hamper the microbial community responses,
whereby the microbial community has no effect on the
temperature sensitivity of soil CO2 efflux. Furthermore, our
previous studies have shown that increases in soil MBC are
inhibited when N addition exceeds 60 kgN·ha− 1·yr− 1 (Li
et al. 2016). We suspect that N input from N addition and N
fertilizer in IM treatments inhibited any increase in soil MBC
and even reduced soil MBC. This might be why N
addition did not affect the temperature sensitivity of

soil CO2 efflux under CM, yet it reduced the Q10

value in the plots under IM.
The GWP of a GHG is a measure of how much energy

the emissions of 1 kg of a gas will absorb over a given
period of time relative to that absorbed by the emissions
of 1 kg of CO2 (Tian et al. 2015). The larger the GWP,
the more that a given gas warms the Earth compared
with CO2 over that time period. Moderate N addition sig-
nificantly increased annual GWP of soil GHG fluxes in
both CM and IM plots, which is mainly attributed to the
increase in annual soil CO2 emissions. Annual soil CH4

uptake and N2O emissions did not significantly affect an-
nual GWP. The reason was that the GWP values of CH4

and N2O were much larger than that of CO2 (25 and 298
times, respectively), but the annual soil CH4 uptake and
N2O emissions were only 0.12‰–0.18‰ and 0.16‰–
0.31‰ of the annual CO2 emissions, respectively.
In addition, IM enhanced soil CO2 and N2O emissions

under low N addition (N30), which partly supports our
third hypothesis, i.e., IM promotes soil CO2 and N2O
emissions under N addition. The finding that IM pro-
vided more N input may be why IM significantly in-
creased soil CO2 and N2O emissions under low N
addition. IM did not affect soil CH4 uptake under N
addition, which was consistent with the effect on plots
without N addition, but it did not support our third hy-
pothesis that IM inhibits soil CH4 uptake under N
addition. This may due to the combination of IM and N
addition offsetting the inhibitory effect of N addition on
soil CH4 uptake. In summary, IM significantly increased
GWP under low N addition owing to the main contribu-
tion of CO2 emissions to GWP.

Conclusion
Compared with CM, IM significantly increased the
GWP of soil GHG emissions and sensitivity of soil CO2

efflux to soil temperature (Q10), mainly owing to an in-
crease in soil CO2 emissions. Nitrogen deposition (≤60
kg N·ha− 1·year− 1) significantly increased soil CO2 and
N2O emissions but inhibited CH4 uptake, which resulted
in a significant increase in GWP. However, N addition
(> 60 kg N·ha− 1·year− 1) decreased all soil CO2 and N2O
emissions and CH4 uptake. Concomitantly, the Q10 value
of soil CO2 efflux was significantly reduced after N
addition in plots under IM, which indicates that N
addition might mitigate the effect of future climate
warming on soil CO2 efflux in intensively managed
Moso bamboo plantations. Soil MBC correlated signifi-
cantly and positively with soil CO2 and N2O fluxes but
correlated negatively with soil CH4 fluxes, indicating that
soil microbes have a strong influence on soil GHG emis-
sions. These results demonstrate that management
scheme and N application influenced the GWP of the
Moso bamboo plantation ecosystem under study.
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