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biomass carbon density for natural and
planted coniferous forests in mountainous
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Abstract

Background: Understanding the spatial pattern and driving factors of forest carbon density in mountainous terrain
is of great importance for monitoring forest carbon in support of sustainable forest management for mitigating
climate change.

Methods: We collected the forest inventory data in 2015 in Shanxi Province, eastern Loess Plateau of China, to
explore the spatial pattern and driving factors of biomass carbon density (BCD) for natural and planted coniferous
forests using Anselin Local Moran's |, Local Getis-Ord G* and semivariogram analyses, and multi-group structural
equation modeling, respectively.

Results: The result of spatial pattern of BCDs for natural forests showed that the BCD was generally higher in the
north but lower in the south of Shanxi. The spatial pattern for planted forests was substantially different from that
for natural forests. The results of multi-group SEM suggested that elevation (or temperature as the alternative factor
of elevation) and stand age were important driving factors of BCD for these two forest types. Compared with other
factors, the effects of latitude and elevation on BCD showed much greater difference between these two forest
types. The difference in indirect effect of latitude (mainly through affecting elevation and stand age) between
natural and planted forests was to some extent a reflection of the difference between the spatial patterns of BCDs
for natural and planted forests in Shanxi.

Conclusions: The natural coniferous forests had a higher biomass carbon density, a stronger spatial dependency of
biomass carbon density relative to planted coniferous forests in Shanxi. Elevation was the most important driving
factor, and the effect on biomass carbon density was stronger for natural than planted coniferous forests. Besides,
latitude presented only indirect effect on it for the two forest types.

Keywords: Spatial pattern, Spatial heterogeneity, Multi-group structural equation modeling, Stand age, Elevation,
Mountainous terrain
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Introduction

The role of forests as terrestrial sinks of atmospheric
carbon dioxide has received increasing attention since
the late 1990s (FAO 2010, 2015). Assessment of carbon
density and storage of forests has been a focus in recent
years (Fang 2001; Pan et al. 2011). Mountain forests ac-
count for 28% of the total global forest area (Price et al.
2000), and are considered to be important terrestrial
sinks of carbon dioxide (Chang et al. 2015; Zald et al.
2016). Understanding the spatial patterns and driving
factors of forest carbon density in mountainous terrain
is of great importance for monitoring forest carbon in
support of sustainable forest management for mitigating
climate change (Zald et al. 2016).

The spatial pattern information of forest carbon dens-
ity can play an important role in evaluating carbon se-
questration potentials and forest management (Fu et al.
2015; Lin et al. 2017; Verkerk et al. 2019). Ren et al.
(2013) examined the spatial pattern of carbon density in
forest ecosystems in Guangdong Province, and found
that the spatial distribution of forest carbon density was
uneven, and it was a reflection of the difference in forest
management and economic and social development. Fu
et al. (2014) observed a clear spatial pattern of forest lit-
ter carbon density in Zhejiang Province using Anselin
Local Moran’s I and geostatistical interpolation. A simi-
lar result was found for forest biomass carbon density in
the same province (Fu et al. 2015). Using the same
methods, Dai et al. (2018) further found that the forest
carbon density decreased from southwest to northeast in
Zhejiang Province, roughly in line with the topographic
feature across this province. Using Anselin Local Moran’s
I, Local Getis-Ord G* and geostatistical interpolation, Lin
et al. (2017) analyzed the spatial variability of forest carbon
density in Jiangle County, Fujian Province. However, little
attempt has been made to compare the spatial patterns of
carbon densities between natural and planted forests
(Wang et al. 2018a).

Forest carbon density and their spatial patterns in
mountainous terrain may be the result of complex inter-
action among various driving factors. Temperature and
precipitation are two critical climatic factors driving bio-
mass carbon density. For example, structural equation
modeling (SEM) revealed that forest biomass carbon
density were primarily controlled by climate factors, and
increased with rising temperature and precipitation
along the north-south transect of eastern China (Wen
and He 2016); while multi-group SEM showed that
mean annual temperature had negative indirect effect on
carbon density in old-growth tropical forests across the
globe (Durdn et al. 2015). Meanwhile, previous studies
have revealed that stand age and canopy coverage are
important driving factors of forest carbon density. For
instance, Xu et al. (2010) reported that forest age had
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significant effect on biomass carbon density for most
forest types in China. The average above-ground bio-
mass carbon density of mature forests increased with
stand age for the forests younger than 450 years (Liu
et al. 2014); while the biomass carbon density of ponder-
osa pine forest increases rapidly until 150-200 years
(Law et al. 2003). The SEM indicated that canopy cover-
age and stand age were the most important driving fac-
tors of biomass carbon density in subtropical forests (Xu
et al. 2018a, 2018b). Moreover, the effect of elevation on
forest carbon density has attracted great attention, espe-
cially in mountainous areas. For example, Gairola et al.
(2011) found a significant positive relationship of forest
biomass carbon density with elevation in moist tem-
perate valley slopes of the Garhwal Himalaya (India). Liu
and Nan (2018) reported a positive relationship between
carbon density and elevation for three natural coniferous
forests in the Guandi Mountain, Shanxi Province. In
addition, as another important geographical factor, lati-
tude may have indirect effect on forest biomass carbon
density by affecting plant growth and productivity
through temperature and precipitation effects. It was
found that the forest biomass carbon density decreased
with increasing latitude along the north-south transect
of eastern China (Wen and He 2016); while the biomass
carbon density of Moso bamboo forests linearly
increased with latitude (Xu et al. 2018a, 2018b).

Shanxi Province is a mountainous terrain in north
China, characterized by six mountain ranges, namely the
Hengshan and Wutai Mountains in the north, the
Zhongtiao Mountains in the south, the Liiliang Moun-
tains in the west, the Taihang Mountains in the east,
and the Taiyue Mountains at the center (Fig. 1a). Con-
iferous forests are widely distributed in the province,
prominently in the high mountains. In the past few de-
cades, China has launched a series of large-scale afforest-
ation and forest protection programs, including the
Three-North Shelter Forest Program since 1978, the
Program for Conversion of Cropland into Forests since
1999, and the Natural Forest Protection Program since
2000. With the implementation of these national pro-
jects, the areas of natural and planted coniferous forests
(NCFs and PCFs, respectively), and their contributions
to regional carbon stocks may have changed substan-
tially in this region.

Previous studies have examined the carbon density
and carbon stocks of Pinus tabulaeformis forest in
Shanxi on a local (Sun 2011; Cheng et al. 2012; Chi et al.
2014) or provincial scale (Wang et al. 2014a). Recently,
Liu and Nan (2018) examined the carbon stocks of three
natural coniferous forests (Larix principis-rupprechtii
forest, Picea meyerii forest and Pinus tabulaeformis for-
est) along an altitudinal gradient from 1200 to 2700 m in
the Guandi Mountain. Wang et al. (2018a) analyzed the
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Fig. 1 Maps showing the general topography in Shanxi Province (a) and the distribution of the sample plots for the investigation of biomass
carbon density of natural and planted coniferous forests (NCFs and PCFs) in the region (b). The number in parentheses denotes the number of

spatial patterns of carbon densities of natural and
planted forests in the Liilliang Mountains. An integrated
study of carbon density of coniferous forests is urgently
needed for a proper evaluation of the current capacity of
carbon sequestration of natural versus planted conifer-
ous forests and for a better understanding of how
various factors affect the carbon density of natural versus
planted coniferous forests in the mountainous region.
Within this context, the main objectives of this study
were to quantify the biomass carbon densities and stocks
of natural and planted coniferous forests in Shanxi Prov-
ince, China, and to explore the spatial patterns and driv-
ing factors of biomass carbon density of natural and
planted coniferous forests in the mountainous terrain.
We first used the national forest inventory data in 2015
to quantify the biomass carbon densities based on the
method of biomass expansion factor. We then character-
ized the spatial patterns of biomass carbon density of
natural and planted coniferous forests using Anselin
Local Moran’s I, Local Getis-Ord G* and semivariogram
analyses. Finally, we used multi-group structural equa-
tion modeling to evaluate relative importance of driving

factors selected in explaining variations of biomass car-
bon density, to estimate the direct and indirect effects of
each driving factor, and to reveal the similarities and dif-
ferences between the models for natural and planted
coniferous forests.

Materials and methods

Study region

Shanxi Province is located in the middle reach of the
Yellow River, and the east of the Loess Plateau in north
China, at 34°34'-40°43" N and 110°14'-114°33" E, with
a total area of 156,271 km? (Fig. 1a). As a mountainous
plateau, the mountains and hills make up 80.3% of the
province’s land area (Fan and Wang 2011). Climatically,
Shanxi belongs to the temperate monsoon climate zone
(Guo et al. 2015) and is influenced by the summer and
winter monsoons, with a hot and wet summer and a dry
cold winter. The total area of forests is about 32,100 km?,
accounting for 20.05% of the province’s land area. Conifer-
ous forests account for 43% of all the forests in the prov-
ince (Editorial Board of Forests in Shanxi 1992; Ma 2001).
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Data collection and preprocessing

Forest inventory data

The data from a total of 508 field sample plots were
used in this study. Of all the plots from the 9th national
forest inventory data in 2015, 289 and 219 are natural
and planted coniferous forests plots, respectively
(Table 1, Fig. 1b). The permanent plots (each with an
area of 667 m?) were established systematically based on
a 4kmx4km grid (Xiao 2005). The data collected in
each plot included forest origin, forest type, forest stand
factors (stand age, age group, diameter at breath height
of 1.3m (DBH), tree height and forest coverage), and
geographic location (latitude, longitude and elevation).
For trees with DBH > 5 cm, their DBH were recorded. A
total of 12 dominant coniferous tree species were identi-
fied over the study region. According to the dominant
species, all the natural (planted) coniferous forests were
classified into five categories: Pinus, Platycladus, Larix,
Picea and other forests (Fig. 1b).

For each forest plot (each forest stand), the carbon
density (CD) (Mgha ') of living trees was estimated
using the biomass expansion factor (BEF) method
(Wang et al. 2018a):

CD = (V x WD x BEF) x (1+R) x CF (1)

where V is the volume of biomass (m>ha 1), ie., the
sum of the above-ground trunk volumes of individual
living trees; WD is the wood density (Mg-m™?), BEF is
the biomass expansion factor, R is the root-shoot ratio,
and CF represents carbon content in oven-dried
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biomass, i.e., the ratio of carbon (Mg) to oven-dried bio-
mass (Mg). The V for individual trees was calculated
using the diameter at breath height of 1.3m and the
height of each tree based on the formula for each tree
species (Wang et al. 2018b).

In this study, the biomass carbon density (BCD,
Mgha™ ') represented only the carbon density of living
trees, and did not include that from shrubs, herbs, litter,
and soil. The mean BCD of each forest type was esti-
mated by dividing the sum of biomass carbon densities
of the forest plots by the number of the forest plots for
the forest type. The total biomass carbon stock (Mg) for
each forest type was estimated by multiplying the mean
biomass carbon density by the area of the forest type,
which was approximated by multiplying the representa-
tive area (4km x 4 km) of a sample plot by the number
of the forest plots.

Climate data

The data of annual mean temperature (TEMP) and
mean annual precipitation (PRCP) for the period 1981—
2010 at the 61 meteorological stations were obtained
from the meteorological database of the scientific data
platform of Shanxi Province. The TEMP (PRCP) for
each sample plot was computed by interpolation of the
measurements (1981-2010 means) of the 61 stations
using regression-kriging interpolation method (Lamsal
et al. 2011; Plouffe et al. 2015), which combined regres-
sion of the climatic variable on topography variables
(slope degree, slope aspect and slope position) with
kriging of the regression residuals (Eldeiry and Garcia

Table 1 Descriptive statistics of stand age, stand coverage, elevation, latitude, annual mean temperature and annual precipitation

for natural and planted coniferous forests in the study region

Forest type AGE (year) COV (%) ELE (km) LAT (9) TEMP (°C) PRCP (mm) N
mean Range mean Range mean Range mean  Range mean  Range mean  Range

Natural coniferous forests
Pinus 54 14-95 55 20-90 1428 0950-1.940 3681 3541-3844 6.7 3.0-105 5008  4063-599.3 222
Platycladus 48 25-85 50 20-85 1.018  0483-1.600 36.01 3497-3751 95 54-133 5292 4256-6078 35
Larix 62 17-91 54 29-75 2235 1.870-2500 3847 37.84-3913 1.7 -05-4.2 476 430.3-5582 15
Picea 65 26-86 65 20-97 2305 1.862-2560 3876  37.89-39.09 1.1 -05-3.7 4681  4465-5698 14
others 27 9-55 38 22-62 1509 1.260-1647 3799 36.72-39.75 5.7 3.6-8.1 4333  3953-4789 3
All 54 9-95 55 20-97 1464  0483-2560 3691 3497-39.75 65 -05-133 5007 3953-607.8 289

Planted coniferous forests
Pinus 31 5-61 59 20-91 1306  0476-2.100 3698  35.10-4050 7.3 27-115 5108  3742-6040 148
Platycladus 13 5-42 33 20-90 0916  0400-1.300 3676  34.83-3990 9.8 6.2-136 5073  3744-581.7 20
Larix 26 8-60 57 20-95 1893  1.260-2383 3842 3643-3967 32 -0.1-78 4897  4045-6209 45
Picea 35 15-47 69 30-92 2209 1.717-2410 3889  38.79-3897 14 04-34 4957  4525-6198 4
others " 6-15 23 20-25 1067 0697-1436 3714  3549-3880 87 6.1-113 5048  4308-5788 2
Al 28 5-61 56 20-95 1405 0400-2410 3729 3483-4050 66 -0.1-136 5058 3742-6209 219

AGE, stand age; COV, stand coverage; ELE, elevation; LAT, latitude; TEMP, annual mean temperature; and PRCP, annual precipitation. N, number of sample plots
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2010). Similar as in the previous study (Wang et al.
2018a), the TEMP of each plot from the interpolation
was further corrected according to the difference be-
tween the plot elevation and the interpolated elevation
using the temperature lapse rate of 4.89 °C.km™" as the
correction factor (Wang et al. 2014b).

Data analysis

Statistical analyses

The dataset of mean BCDs for each forest type met the
normal distribution and passed the homogeneity of vari-
ances test, and then One-way ANOVA with Duncan’s
multiple tests was used to examine the difference in
mean BCD between/among forest types.

Spatial pattern analyses

Anselin Local Moran’s 1, Local Getis-Ord G* and semi-
variogram analyses were used to investigate the spatial
patterns of forest BCDs from different aspects. Anselin
Local Moran’s I can be used to identify spatial clusters
and outliers (Fu et al. 2015). The significant positive
values of the index show clusters that represent positive
spatial autocorrelation; the significant negative values of
this index show outliers that represent negative spatial
autocorrelation; and the “not significant” values repre-
sent no spatial autocorrelation. The clusters consist of
high-high clusters (high values in a high value neighbor-
hood) and low-low clusters (low values in a low value
neighborhood); and the outliers include high-low outlier
(a high value surrounded by low values) and low-high
outlier (a low value surrounded by high values) (Fu et al.
2015; Lin et al. 2017; Dai et al. 2018). The statistic of
Anselin Local Moran’s I can be expressed as:

xi—)_( 1

li==g > wij(x-X) (2)
T =W
> (%)

2 oLy

Si=—— 1 (3)

where x; and x; are the values of attribute for observa-
tions i and j, respectively, X is the mean of the corre-
sponding values of the attribute, w; ; is the spatial
weight between observations i and j, which can be de-
fined as the fixed distance, which was obtained based on
the largest global Moran’s I value, indicating the stron-
gest spatial autocorrelation of carbon density (Fu et al.
2014). The w; ; is given the same weight within the dis-
tance, while those outside the distance band are given
the weight of 0. The symbol of # is the total number of
observations.

Meantime, Local Getis-Ord G* can be used to detect
spatial hot spots and cold spots that represent clusters of
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similar values that are significantly larger and smaller
than the mean, respectively. There is a Z score for each
target value in the test. For statistically significant posi-
tive Z scores, the larger the Z score is, the more intense
the clustering of high values (hot spot). For statistically
significant negative Z scores, the smaller the Z score is,
the more intense the clustering of low values (cold spot).
The “not significant” positive or negative Z scores repre-
sent no spatial autocorrelation (Manepalli et al. 2011).
Getis-Ord Gi* can be described as:

where x;, x;, X, w; ;, and 7 are the same as in Eq. 2.

Anselin Local Moran’s I can be used to study a certain
spatial regularity, while Local Getis-Ord Gi* enables dif-
ferentiation between clusters of similar values that are
high or low relative to the mean, thus aiding in the de-
tection of unusual events (Lin et al. 2017). The two indi-
cators of exploring spatial autocorrelation were carried
out using the modules of Cluster and Outlier Analysis
(Anselin Local Moran’s I) and Hot Spot Analysis (Getis-
Ord Gi*) of Spatial Statistics Toolbox within software
ARCGIS 10.2.

Furthermore, semivariogram analysis was used to ex-
plore the spatial heterogeneity of forest biomass carbon
density. Semivariogram analysis is a useful tool for ana-
lysis and interpretation of spatial data in ecology (Rob-
ertson 1987; Rossi et al. 1992) and has been used in
quantification of spatial heterogeneity of forest carbon
density (Wang et al. 2018a). We performed this analysis
based on the standard principles of semivariogram
model fitting in geostatistics (Wang 1999) using GS+ 9.0
Geostatistics Software (Gamma Design Software, LLC).
This analysis was not only performed for the data of
BCD but also for the data from the cluster and outlier
analysis, and hot spot analysis to examine further the
spatial heterogeneity of BCD of natural versus planted
forests over the study region.

Multi-group SEM
Multi-group SEM was used to compare the direct and in-
direct effects of the main driving factors on BCD between
NCFs and PCFs. Before constructing the multi-group
SEM model, we tested the collinearity of the driving fac-
tors, and eliminated annual mean temperature (TEMP)
from further analysis (see Annex 1 of Additional file 1).
We began with the construction of a priori model for
the multi-group SEM procedure. The priori model was
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constructed to include all hypothesized causal relation-
ships between BCD and potential driving factors based
on the known effects of driving factors and the relation-
ships among driving factors of forest growth and bio-
mass accumulation (Bollen 1989; Shipley 2004; Xu et al.
2018a, 2018b). As shown in Annex 2a of Additional file
1, five driving factors were included in the priori model:
stand age, stand coverage, mean annual precipitation,
latitude, and elevation.

The second step was to find a good-fitting structural
equation model (Grace et al. 2010) to the data of all con-
iferous forests based on the priori model. We compared
the actual and estimated covariance matrices to deter-
mine whether the model was acceptable using the chi-
square (y°) test, comparative fit index (CFI) and root
square mean error of approximation (RMSEA). If the
model is not acceptable, the model is further revised by
removing or adding a connection between variables ac-
cording to the modification indices and corresponding
parameter changes expected. The process is performed
continuously until finding a good-fitting model (see
Annex 2b of Additional file 1).

The final step was to fit a multi-group SEM model for
NCFs and PCFs. (1) The most constrained multi-group
SEM was first performed, for which individual path coef-
ficients were forced to be equal between groups (Shipley
2004). If the multi-group model was rejected (P < 0.05),
indicating that at least one path is not equal between
groups (Shipley 2004), and further analysis will be per-
formed. Otherwise, if it was acceptable (P> 0.05), indi-
cating that there is no any difference between groups;
and no further analysis will be carried out. (2) By taking
a full free multi-group model as a starting point, fitting a
series of nested models to find which paths were equal
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or which paths differ across groups. For the nested
models, only one path of the model could be constrained
to be equal between groups at a time (Table 2). The dif-
ference in the maximum likelihood y? statistics between
models before and after adding an equal constrained
path was used to test if this change is acceptable. (3)
Multi-group SEM was fitted by constraining those path
coefficients acceptable across groups. The SEM and
multi-group SEM were implemented using the R version
3.4.4 and lavaan package version 0.6—3 (Rosseel 2012).

Results

Biomass carbon density and storage

The mean BCD of NCFs was significantly larger than
that of PCFs (26.46 Mg-ha ' versus 18.69 Mg-ha™ '), with
an average BCD of 23.07 Mg-ha™ " for all coniferous for-
ests (Table 3). A significant difference was detected
among the average BCDs of the four main types of for-
ests (Table 3). For the four main types of forests: Pinus,
Platycladus, Larix and Picea forests, the mean BCD for
natural forests was significantly larger than that for
planted forests for the first three types of forests, but not
for the last one. The average BCD of natural and planted
forests was the largest for Picea forests, followed by
Larix and Pinus forests, and it was the smallest for Pla-
tycladus forests.

The BCD varied with forests age. For all the natural or
planted coniferous forests, the BCD increased from
young to near-mature forests, while it slightly decreased
for mature forests (there was no over-mature forests)
relative to near-mature forests (Table 4). Although the
average BCD of NCFs appeared higher than that of PCFs
for every age group, a significant difference was only de-
tected for young and half-mature age groups (Table 4).

Table 2 Multi-group comparison of path coefficients between natural and planted coniferous forests. A non-significant value,
highlighted in bold, indicates that the path contribution to the model is equal between forest types

Free parameter between-groups was constrained MLy AMLY? P-value
None 9.688

path from LAT to PRCP 18.075 8434 0.004
path from LAT to ELE 45411 35723 0.000
path from COV to BCD 9.726 0.038 0.846
path from PRCP to BCD 10.115 0427 0.514
path from ELE to BCD 13.816 4127 0.042
path from LAT to AGE 16.807 7.101 0.008
path from ELE to AGE 9.844 0.153 0.696
path from AGE to COV 14.844 5233 0.022
path from AGE to BCD 9.854 0.166 0.684
path from PRCP to COV 9.707 0.024 0.876

The first row shows the maximum likelihood x? estimates (MLx?) when all parameters are free. The remaining rows show the result by constraining one parameter
at a time. The difference between the fully free model and the rest is given as AMLy? and the P-value indicates the probability that the constraint of that
parameter changes the model. Bonferroni-corrected P-value threshold, 0.05/13 = 0.0038. BCD, biomass carbon density; AGE, stand age; COV, stand coverage; LAT,

latitude; ELE, elevation; PRCP, mean annual precipitation
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Table 3 Mean biomass carbon density (Mean BCD) and
biomass carbon storage (BCS) of natural, planted and all
coniferous forests in the study region

Forest type ~ Mean BCD (Mgha™') BCS (10" Mg)

Natural ~ Planted  All Natural ~ Planted  All
Pinus® 2336, 1702, 2083, 81918 39799 121717
Platycladus® 1174, 1.95, 807, 6491 6.46 7137
Larix® 5283, 2767, 3396, 125.18 196.7 321.88
Picea 85764 6748.  81.704 18967 4264 23231
others 1537 1.69 10.81 4.88 0.27 5.15
Mean®/Total 2646 18.69 23.07 120382 644.06 1847.88

(1) There is a significant difference between the mean BCDs of natural and
planted forests (P < 0.05). (2) Within a column, means followed by different
letters are significantly different (P < 0.05)

It was also observed that the total amount of biomass
carbon storage (BCS) for all the coniferous forests was
18.48 x 10° Mg (Table 4). The BCS of NCFs was nearly
two times that of PCFs (12.04 x 10° Mg versus 6.44 x
10° Mg), and accounted for 65.1% and 34.9% of the total
BCS, respectively. For the four main types of forests, the
Pinus forests had the largest contribution (65.9%) to the
total BCS, followed by Larix and Picea forests (17.4%
and 12.6%, respectively), and Platycladus forests had the
smallest contribution (3.9%). Of the total BCS, half-
mature forests accounted for 54.6%, and near-mature,
young, and mature forests 28.6%, 10.5% and 6.3%, re-
spectively (Annex 4 of Additional file 1).

Spatial autocorrelation and heterogeneity of biomass
carbon density

Anselin Local Moran’s I analysis showed that the num-
ber of the high-high clusters of BCD for NCFs was more
than twice that for PCFs (Fig. 2). The high-high cluster
areas for the NCFs were identified in the Wutai,
Guancen and Guandi Mountains. In contrast, the high-
high cluster areas for the PCFs were observed in the
Hengshan, Wutai, Guancen and Luya Mountains. The
low-low clusters for NCFs were mainly distributed in the
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southernmost part of Liilliang Mountains, the southern-
most part of Taihang Mountains, the south of Taiyue
Mountains and the northeast of Zhongtiao Mountains,
while the only one low-low cluster for PCFs was ob-
served in the middle section of Liiliang Mountains. Be-
sides, some high-low outliers were found in the Taiyue,
and Zhongtiao Mountains, and the southernmost part of
the Taihang Mountains for NCFs, but only two high-low
outliers were observed in Guandi Mountain for PCFs.
As a whole, the total number of clusters of BCD for
NCFs was substantially larger than that for PCFs (81 and
14, respectively), accounting for 28.0% and 6.4% of the
forest stands for them, respectively. Noticeably, the
high-high and low-low cluster areas of BCD for NCFs
were distributed in the north and south mountainous
areas of Shanxi, respectively; while both high-high and
low-low clusters of BCD for PCFs were distributed in
the north mountainous areas of Shanxi.

Moreover, the Getis-ord G* analysis showed that for
NCFs, all the hot-spots of BCD were distributed in the
north of 37°N in Shanxi (Fig. 3), including some areas of
Luya, Guandi, Wutai and Taihang Mountains, while all
the cold-spots of BCD were located in the south of 37°N
in the province, including some areas of the southern-
most part of Lilliang Mountains, the southernmost part
of Taihang Mountains, the south of Taiyue Mountains
and the northeast part of Zhongtiao Mountains. In con-
trast, for PCFs, there were a small number of hot- and
cold-spots of BCD that were distributed in the north of
37°N in Shanxi. The hot-spots occurred in some areas of
the Wutai, Hengshan and Luya Mountains, and the
cold-spots in the middle section of the Taihang Moun-
tains. This suggests that relative to the regional average,
the BCD was generally higher in the north but lower in
the south for NCFs, while the BCD was only higher or
lower in some mountainous areas in the north of 37°N
for PCFs over the province. The hot-spot and cold-spot
patterns for NCFs and PCFs were in line with the high-
high and low-low clusters revealed by Anselin Local
Moran’s I analysis for them, respectively.

Table 4 Mean biomass carbon density (Mg-ha™') of individual age groups of natural, and planted coniferous forests in the study

region

Forest Young Half-mature Near-mature Mature

type Natural Planted Natural Planted Natural Planted Natural Planted
Pinus 12.56, 645, 24.12, 17.70, 29.29, 25.73, 2861, 2247,
Platycladus 6.53, 344, 1495, 11834 - - 6.09 -

Larix 1249, 1559, 5136, 3597, 80.29, 2937, 6549, 395,
Picea 12.52, 39.06, 111974 15274 4 7662, - - -
others 057 1.69 30.16 - - - - -
Mean 11.33 6.87 29.28 22.62 34.01 26.07 33.51 25.63

(1) The mean highlighted in bold for natural forests is significantly different from that for planted forests (P < 0.05). (2) Within a column, means followed by

different letters are significantly different (P < 0.05)
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Furthermore, semivariogram analysis showed a clear
difference in the spatial heterogeneity of biomass carbon
density between natural and planted forests (Table 5).
The smaller value of nugget-to-sill for natural than for
planted forests (0.692 versus 0.887) indicated that the
spatial dependence of biomass carbon density was sub-
stantially higher for the former than the latter across the
entire region. Noticeably, this analysis also showed a
much higher spatial dependence of BCD for natural than
for planted forests based on the data from the cluster
and outlier analysis (sill =0.5540 and 0.1592, respect-
ively) and the hot spot analysis (sill = 0.6580 and 0.0427,
respectively).

Influences of various factors on biomass carbon density

The multi-group SEM model accounted for 56.0% and
57.0% of the variation in BCD for NCFs and PCFs, re-
spectively (Fig. 4). ELE had the greater total effect on
BCD than other driving factors for both NCFs and PCFs
in Shanxi, with the total effect stronger for NCFs (0.409)
than PCFs (0.339). The effects of ELE on BCD included
the direct effect and indirect effect by affecting AGE for

both NCFs and PCFs, with direct effect stronger than in-
direct effect for NCFs (0.348 versus 0.062) and PCFs
(0.264 versus 0.076). Meanwhile, AGE, COV and PRCP
also showed positive direct effects on BCD, and AGE
and PRCP had indirect positive effects by affecting COV.
The total effects of the three driving factors decreased in
the order: AGE > COV > PRCP for both NCFs and PCFs.
Moreover, LAT presented only indirect effects on BCD
for NCFs and PCFs (Annex 5 of Additional file 1), with
the total effect stronger for NCFs than PCFs. The result
of multi-group analysis generally indicated that ELE and
AGE were important driving factors of BCD for both
NCFs and PCFs. Compared with other factors, the ef-
fects of both latitude and elevation on BCD showed
much greater difference between NCFs than PCFs.

Discussion

Increasing biomass carbon density and storage

The current study revealed that the BCD was signifi-
cantly greater for natural than for planted coniferous
forests in Shanxi. The higher BCD for the former than
the latter can be primarily attributed to the distinct
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difference in stand age. The stand age for NCFs was
nearly twice that for PCFs (at an average age of 54.1 and
28.5 years, respectively). For the largely same reason, the
BCD was higher for each type of the natural coniferous
forests than for its planted counterparts, because the
stand age for the former was at least 1.7 times that for
the latter. For example, the huge difference in BCD be-
tween natural and planted Platycladus forests (11.74
Mgha ! versus 1.95Mgha ') was obviously related to
the larger stand age for natural than for planted Platy-
cladus forests (at an average age of 47.9 and 12.9 years,
respectively).

Li and Lei (2010) have reported that natural and
planted forests accounted for 83.05% and 16.95% of the
total carbon stock across China, respectively. In our
study, the representative area of a sample plot is 15.8
km?, and the total area of natural and planted coniferous
forests is 45.50 and 34.46 ha, respectively. The natural
and planted coniferous forests accounted for 65.1% and
34.9% of the total carbon stock, respectively (Table 3).
The large contribution of planted coniferous forests to
the carbon stock was chiefly due to vast changes in land
use in past decades. The implementation of the Three-
North Shelter Forest Program and the Program for

Table 5 Estimated parameters of semivariogram based on the data of biomass carbon density and from cluster and outlier analysis

for natural and planted coniferous forests

Forest type  Data Model Nugget (Co)  Sill (Co+CO)  Nugget effect Co/(Co+C)  Range (km)  RSS R’

Natural Biomass carbon density Exponential  0.2680 0.8710 0.692 576 00445 0.728
Cluster and outlier analysis ~ Gaussian 0.0470 0.5540 0915 885.1 00015 0915

Planted Biomass carbon density Exponential  0.0040 0.0349 0.887 153 00002  0.022
Custer and outlier analysis ~ Exponential ~ 0.0306 0.1592 0.808 21330 00020 0591

RSS residual sum of squares; and R?, coefficient of determination
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Conversion of Cropland into Forests has led to a huge
increase in planted coniferous forests. Moreover, be-
cause majority of the natural coniferous forests and most
of the planted coniferous forests (67.8% and 83.1%, re-
spectively) were at young and half-mature ages under
the current inventory, it is expected that the total carbon
stock of coniferous forests will increase in future, and
that planted coniferous forests will contribute more to
future carbon stock in Shanxi.

Spatial patterns of biomass carbon density

The spatial pattern of BCD for NCFs was clearly differ-
ent from that for PCFs. Although the spatial variation of
BCD was related to natural and anthropogenic factors
for both NCFs and PCFs, the spatial pattern of BCD for
the former was likely shaped to a greater extent by nat-
ural influences, while that for the latter was probably
formed to a greater extent due to anthropogenic influ-
ences. For NCFs, the spatial pattern of BCD was first
closely related to the spatial distribution patterns of for-
est types across the region, and the associated difference
in BCD among forest types. As shown in Fig. 1b, most
of the natural Picea and Larix forests are distributed in
the north Shanxi, while majority of the natural Pinus
and Platycladus forests are located in the south Shanxi.
More important, the BCDs for the former were much
higher, while the BCDs for the latter were much smaller
compared with the average BCD for NCFs as a whole
(Tables 3 and 4). Meanwhile, the establishment of nat-
ural reserves for the protection of natural Picea and
Larix forests might have enhanced the formation of the
high-high clusters of BCD or hot spots of BCD in the

core areas of natural reserves, where the forests had a
continuous distribution and were well protected. On the
other hand, the spatial distribution patterns of planted
coniferous forests were to great extent different from
those of their natural counterparts (Fig. 1b) as a result of
reforestation and particularly afforestation. For instance,
the planted Pinus forests, which accounts for 67.6% of
all the planted forests, were distributed across the entire
region, at lower elevations generally. Because most of
the planted coniferous forests were still at the young and
half-mature stages as above mentioned, the BCDs for
planted Pinus and Platycladus forests were generally
lower than the average BCD for PCFs as a whole (Ta-
bles 3 and 4), and only some of planted Picea and Larix
forests had a higher than average BCD. Therefore, only a
small number of the high-high clusters of BCD or hot
spots of BCD were identified for planted coniferous for-
ests in the north mountainous areas of Shanxi.

Effect of elevation versus temperature on biomass carbon
density

We found that ELE was the most important driving fac-
tor of BCD among the five factors tested, and effect of
ELE was greater for NCFs than for PCFs. Elevation gra-
dient is associated with changes in temperature and pre-
cipitation, and forest type (Sanaei et al. 2018). ELE can
affect forest canopy, stem density and stand basal area,
and therefore affect aboveground biomass (Xu et al.
2018a, 2018b) through regulating moisture and soil
water availability (Fisk et al. 1998). Based on the SEM,
Xu et al. (Xu et al. 2018a, 2018b) reported that ELE was
the most important abiotic driving factor of vegetation
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carbon stocks, while canopy density and forest age were
the most crucial driving factors of vegetation carbon
stocks in Zhejiang Province, China. The unusually large
effect of ELE on BCD for NCFs in Shanxi was probably
due to that the range of elevation (483 to 2560 m) over
this mountainous region is much larger than that in
Zhejiang Province (2 to 1530 m), and noticeably, the
Picea and Larix forests are generally distributed at a
higher elevation than Pinus and Platycladus forests
across the entire region (Table 1); and the BCD for the
former was generally greater than for the latter, as indi-
cated by the much higher mean BCDs for the former,
while much lower mean BCDs for the latter compared
with the overall average BCD of natural coniferous for-
ests (Table 4). In addition, the positive correlation of
ELE with AGE and COV also enhanced the total positive
effect of ELE on BCD. This was probably due to that the
forests at higher elevations have usually experienced lit-
tle disturbance, and can grow steadily and present higher
BCD until the mature stage.

However, it was worthy note that we eliminated annual
mean temperature (TEMP) in the multi-group SEM because
of the collinear relationship between ELE and TEMP, and
the stronger correlation of biomass carbon density with ELE
than with TEMP (Annex 1 of Additional file 1). To examine
further what the result could be if TEMP rather than ELE
was selected, we performed the multi-group SEM for NCFs
and PCFs again (Fig. 5 and Annexes 3, 6 and 7 of Additional
file 1). It was interesting that similar result was found from
the analysis except for that the effect of elevation was re-
placed by the effect of TEMP, which showed a significant
direct negative effect on BCD for NCFs and PCFs (Fig. 5).
The total effects of the driving factors were — 0.367 (TEMP),
0.244 (LAT), 0.200 (AGE), 0.177 (COV) and 0.110 (PRCP)
for NCFs; and - 0.367 (TEMP), 0.248 (AGE), 0.177 (COV),
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0.110 (PRCP) and 0.038 (LAT) for PCFs (Annex 7 of Add-
itional file 1). This result suggested that TEMP could be to
great extent taken as an alternative factor to ELE in the
multi-group SEM for NCFs and PCFs. The negative effect
of TEMP on BCD is consistent with the latest study in the
Liliang Mountains (Wang et al. 2018a).

Effects of other factors on biomass carbon density

AGE and COV were other important factors in modulat-
ing the BCD in NCFs and PCFs. The strong positive ef-
fect of AGE on BCD could be attributed to cumulative
tree growth over time (Ali et al. 2016). Meanwhile, as
hypothesized, we found that AGE was significantly posi-
tively related to COV, which had a strong direct effect
on BCD. Our findings were in agreement with Xu et al.
(Xu et al. 2018a, 2018b) who found that canopy density
and forest age were the dominant determinants of vege-
tation carbon density in subtropical forest ecosystems.
The pronounced effect of AGE on BCD was a good re-
flection of the process that the BCD increased with
stand age from young to near-mature ages (Annex 4 of
Additional file 1). Although the BCD declined slightly at
the mature stage, the forests at this stage only accounted
for a small proportion of the total forests.

Multi-group SEM revealed that LAT affected BCD indir-
ectly and the total positive effect for NCFs was much
greater than that for PCFs. Similarly, Guo and Ren (2014)
reported that tree biomass had stronger latitudinal trend in
natural forests than in planted forests across China. It was
interesting that further analysis showed much stronger cor-
relation, for NCFs than for PCFs, of LAT with the corre-
sponding BCDs derived from Hot spot analysis (r=0.893,
P<0.001; »=0.361, P<0.001) and Clusters and Outliers
analysis (r=0.543, P <0.001; r=0.215, P = 0.001). This im-
plied that the relationship between LAT and BCD detected

a b
(a) NCFe (b) PCFs
TEMP TEMP
) ~ N
S5 6> P %2>
LAT 0.288 > ACE 0.152 > BoD. LAT 015 | ,Ge 0.152 > JBoD
03 ok
% %, o %, of
& < S
2> =8.086
df=10, P=0.620
0.146 N _ _ 0.146 N
PRCP > cov CFI=0.999, RMSEA=0.001 PRCP > cov
Fig. 5 The multi-group structure equation model for natural and planted coniferous forests when annual mean temperature (TEMP) was taken an
alternative factor to elevation (ELE). See Fig. 4. for details on the description of the model
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by multi-group SEM well reflected the spatial pattern of
BCDs for NCFs and PCFs.

Different from the previous studies in which the rela-
tionships of latitude and other factors with vegetation
carbon density were analyzed separately (Guo and Ren
2014; Wen and He 2016), our study incorporated LAT
into SEM to assess the indirect effects of LAT via other
driving factors. In this way, we found that the final total
indirect effect of LAT on BCD was the combined effects
of LAT on ELE, AGE and PRCP (Fig. 4). Therefore, the
introduction of LAT into SEM could help us to under-
stand the mechanism of effect of LAT on BCD. Notice-
ably, we found that the difference in the total effect of
LAT between NCFs and PCFs was mainly due to the dif-
ferent effect of LAT on ELE and AGE (Fig. 4). The
stronger positive effect of LAT on BCD for NCFs than
PCFs was due to the larger positive effect of LAT on
ELE for the former than the latter and no effect of LAT
on AGE for NCFs but a large negative effect on AGE for
PCFs. The larger difference in the effect of LAT on BCD
between NCFs and PCFs was to some extent a mirror of
the difference in the spatial patterns of BCDs between
these two types of forests in the study region.

Conclusions

The present study found that the biomass carbon density
and carbon stock were significantly greater for natural than
planted coniferous forests in Shanxi. However, the planted
coniferous forests will contribute more to future total car-
bon stock. Spatially, the higher biomass carbon density for
the two forest types was clustered in the north mountain-
ous areas, and the clustered number was larger for natural
than planted coniferous forests. Meanwhile, the biomass
carbon density of only natural coniferous forests was de-
tected the clustered area in the south mountainous areas.
Obviously, a much higher spatial dependence of biomass
carbon density for natural than for planted forests. The ef-
fect of each driving factor on biomass carbon density was
not always consistent between forest types. Elevation was
the most important driving factor, and the effect on bio-
mass carbon density was stronger for natural than planted
coniferous forests. Latitude presented only indirect effects
on biomass carbon density, and the difference between the
two forest types was to some extent a mirror of the differ-
ence in the spatial patterns of BCDs between them in the
study region.
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