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Abstract

stands with known age.

12 (22%) and 2 years (3%), respectively.

better SI maps were available.

Background: The age of forest stands is critical information for forest management and conservation, for example
for growth modelling, timing of management activities and harvesting, or decisions about protection areas.
However, area-wide information about forest stand age often does not exist. In this study, we developed regression
models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more
than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58°
and 65° N in an 182 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2,
and existing public map data. We performed model validation on an independent data set consisting of 63 spruce

Results: The best modelling strategy was to fit independent linear regression models to each observed site index
(S) level and using a SI prediction map in the application of the models. The most important predictor variable was
an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6%
to 26%) for Sl-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between — 1 and 3
years. The models improved with increasing SI and the RMSEs were largest for low Sl stands older than 100 years.
Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56
years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were

Conclusions: Tree height estimated from airborne laser scanning and predicted site index were the most important
variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The
models could be considered for practical applications, although we see considerable potential for improvements if

Keywords: Forest age, Lidar, Optical satellite images, Remote sensing, Forest inventory

Background

Forest stand age is a key parameter in designing both forest
management and forest conservation strategies. Determining
forest age is not a trivial task and can be difficult in a com-
plex forest structure, although it is simpler in more even-
aged forests. A description and characterization of the
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different types of forest age can be found in Chirici et al.
(2011). Forest age can be determined based on stem cores
taken at individual reference trees (Grissino-Mayer 2003).
Counting the number of year rings in the stem core ex-
tracted close to the ground leads to a good estimate of tree
age. However, this is a tedious and time-consuming method,
and therefore often unfeasible or even impossible to conduct.
Time since disturbance, which is measurable with remotely
sensed time series, could be used to estimate stand age.
However, under boreal and temperate conditions where
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rotation periods commonly are longer than 60-80 years, the
application of this method will be limited. Alternative tech-
nologies are required to estimate forest stand age for larger
areas to be of practical use for forest management and con-
servation strategies. For example, in Norway the age of
stands is often unknown, there are no public maps with reli-
able estimates of forest age, and even in areas with forest
management inventories age is often one of the most uncer-
tain parameters.

Growing processes over time result in specific tree di-
mensions and forest structure and are determined by a
combination of historic management and abiotic factors.
Management includes tree species, genetic material,
establishment history, stand density, and past harvesting
activities. Abiotic factors are environmental conditions
including topography, soil type, and macro- and micro-
climatic variables. These characteristics determine the
growth and production potential of a site for a given tree
species and result in trees of greatly varying dimensions
given the same age. Site index is typically used to de-
scribe this productivity and is tree-species specific. Site
index is commonly determined by measuring the height
and age of dominant trees in even-aged stands found on
that site (Skovsgaard and Vanclay 2008). Other methods
for estimating site index make use of climate (Nothdurft
et al. 2012; Sharma et al. 2012) or remotely sensed data
(Socha et al. 2017; Kandare et al. 2017).

Forest stand age and site characteristics described by
site index determine the status of forest height, structure
and density. Therefore, stand height and structure to-
gether with site characteristics can be used to estimate
stand age. Proxies for forest stand height and structure
can be estimated from remotely sensed data, such as air-
borne laser scanning (ALS) (Neesset 1997; Nord-Larsen
and Riis-Nielsen 2010; Hudak et al. 2014; Mura et al.
2015; Guo et al. 2017) or optical data (Kayitakire et al.
2006; Mora et al. 2013; Lang et al. 2019), which often
exist for large areas. In Norway, the site characteristics
climate and water and light availability are largely related
to geographical location, height above sea level (asl), dis-
tance from coast, and terrain slope, which determine
temperature, precipitation, water and nutrient availabil-
ity, and length of growing season (Anton-Fernidndez
et al. 2016).

Previous research demonstrated that forest stand age
can be modelled using spectral data (Jensen et al. 1999;
Reese et al. 2003; Buddenbaum et al. 2005; Kayitakire
et al. 2006; Dye et al. 2012), 3D data from ALS (Maltamo
et al. 2009; Racine et al. 2014; Zhang et al. 2014), and a
combination of both (Straub and Koch 2011). Kayitakire
et al. (2006) used image texture features from IKONOS-2
satellite images with 1 m x 1 m ground resolution and lin-
ear modelling to explain forest stand age and other
structure-related variables. Their study site was in Belgium
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and included 29 sample plots in even aged Norway spruce
stands with age between 27 and 110 years. Age was best
explained by the correlation texture feature calculated
within a 15m x 15 m window, resulting in R* of 0.81 with
a mean absolute error of 10 years. Racine et al. (2014) used
ALS data and the k-nearest neighbour (kNN) approach to
estimate forest stand age based on 158 forest plots in
managed boreal forest in central Quebec, Canada. The
mean plot age ranged from 11 to 94 years. The best model
combining ALS based forest structure variables and ALS
based variables describing site characteristics resulted in
R? of 0.83 and root-mean-squared error (RMSE) of 8.8
years. Maltamo et al. (2009) used ALS data and the k-
most similar neighbor approach on 335 NFI plots in a 22,
000 ha study site in Finland and reported RMSE of 23.5,
18.8, and 18.7 years for age of pine, spruce, and deciduous
plots, respectively. Straub and Koch (2011) used both air-
borne ALS and multispectral variables to model forest
stand age in a small study area (9.24km? 108 forest
stands, 300 inventory plots) in south-west Germany using
linear regression, reporting RMSE and RMSE% of 19.7
years and 28.8%, respectively. Buddenbaum et al. (2005)
used hyperspectral HyMap data from the spectral angle
mapper to classify Norway spruce and Douglas fir age
classes on a study site located within one HyMap scene
covering 2.5km x 10km in south-west Germany. Their
best result of 81% overall accuracy was achieved with the
maximum likelihood classifier for the four age categories
10-30, 30-50, 50—80, and > 80 years. Reese et al. (2003)
performed estimation of forest stand age using Landsat 7
satellite data, field data from the Swedish NFI, and the
kNN approach in south-western Sweden. In this area, field
data for 89 Norway spruce dominated stands ranging from
6 to 106 years were available. RMSE of predicted age for
these stands was 12 years or 23%. Maltamo et al. (2020)
found that modelling age of stands using ALS for forests
older than 100years was infeasible. For forest stands
below 100 years, their model resulted in RMSE of 14 years.

In other studies outside the temperate and boreal
zone, Dye et al. (2012) used spectral and texture infor-
mation from high resolution satellite QuickBird images
and random forest to predict the age of pine forests in
the west of South Africa. They used 142 sample stands,
and age ranged from 4 to 24vyears. Their normalized
out-of-bag errors ranged from 28% to 34%. Jensen et al.
(1999) modelled coniferous forest age of a small study
site in Brazil using Landsat TM satellite data and regres-
sion and artificial neural network approaches. Main tree
species was loblolly pine and tree age ranged from 1 to
40 years. Percentage of stands with absolute age errors
below 2 years were up to 83% of all stands for multiple
regression modelling and up to 98% of all stands for the
best artificial neural network. In a study in central Italy
comprising 128,402ha forest in various growing
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conditions, Frate et al. (2015) used multispectral satellite
imagery and 304 field plots to first model timber volume
using the kNN approach, and subsequently used
inverted yield models to predict forest age. On 305 inde-
pendent validation stands covering 3137 ha and stand
age from 1 to 127 years with a mean of 52 years, they ob-
tained forest age estimates with RMSE of 16 years (30%).
Zhang et al. (2014) used forest height from spaceborne
ALS and non-linear regression modelling to predict for-
est age in China at 1km resolution. The authors fitted
first biomass-height and then age-biomass models using
field observations from 3543 forest plots, and reported
R? of 0.6 and 0.7, respectively. However, the spatial reso-
lution was 1 km, which is too coarse for operational for-
est management. To the best of our knowledge there are
no large-scale studies predicting forest stand age that
can be used for practical forest management.

The objective of the present study was to model and
map forest stand age of Norway spruce (Picea abies (L.)
H.Karst.), Scots pine (Pinus sylvestris L.), and broadleaved
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(mostly downy birch (Betula pubescens Ehrh.)) dominated
forest using National Forest Inventory (NFI) sample plots
with ALS and optical satellite variables. We validated the
results on an independent data set consisting of forest
stands with known age. Even though we conducted all
analyses for all three tree species, we focus on spruce in
the main text and present the results for pine and birch in
the Supplementary Information.

Material and methods

Study area

The 18.2 Mha study area is located in Norway between
latitudes 58° and 65.3° N and was determined by the
availability of ALS data (Fig. 1). Growing conditions vary
considerably with latitude and elevation. The natural
tree line is at around 1100 m asl in southern Norway
and around 130 m asl in the north. Depending on these
factors, climate zones range roughly from subarctic in
the north and east, oceanic at the coast, and continental
in the south-east. Tree species of main economic
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Fig. 1 Map of the study site in Norway; ALS data coverage is displayed in red, and location of independent validation stands in blue

20°E 25°F 30°F




Schumacher et al. Forest Ecosystems (2020) 7:60

interest are Norway spruce and Scots pine, making up
the majority of biomass and timber volume. Birch is the
most abundant species in terms of tree number and
mainly occurs as an early succession species after har-
vests or in high elevation forests.

Data

National Forest Inventory data

We used the permanent sample plots of the Norwegian
NFI as reference data (Breidenbach et al. 2020a). In the
study area, the NFI is based on a systematic grid of 3
km x 3 km in the lowland region and 3 km x 9 km in the
low-productive, birch-dominated mountain region. For
trees with a diameter at breast height >5cm (dbh, 1.3 m
above ground), parameters are measured on circular
plots with a size of 250 m>.

Stand parameters such as age and site index are deter-
mined on circular sample plots of 1000 m? Each plot
center is permanently marked with a metal pole buried
in the ground with known coordinates determined by a
global navigation satellite system (GNSS) device. For
currently 70% of the plots within forest, survey-grade
differential GNSS measurements are available with an
assumed location uncertainty of less than 1 m. For the
majority of the remaining plots, the uncertainty is as-
sumed to be less than 5m. The Norwegian NFI com-
pletes one full cycle every five years, i.e. each year one
fifth of all plots are visited and forest variables measured.
Relevant variables for the present study are stand age,
mean height, and site index (SI).

Stand age is determined for each plot from one repre-
sentative tree just outside the 250 m>-plot boundary by
taking a stem core using an increment borer. In multi-
layered forests, a representative tree per layer is selected.
The biological age, rather than chronological age, is re-
corded that corrects years of suppression below canopy
after germination. Alternatively, the number of whorls is
counted in young forest where this is possible. In forests
that consist of either one or more than two layers, age is
the basal-area weighted age of all trees. In two-layered
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forests, age is the basal-area weighted age of all trees in
the dominant layer.

SI is determined in classes of 6, 8, 11, 14, 17, 20, 23,
and 26 which describe the height (m) of the top 100
trees per ha at age 40. To this end, height and age of a
tree representative of the 10 largest trees on the 1000
m” plot are measured and SI is determined based on SI
curves (Tveite 1977). For more information on the Nor-
wegian NFI, we refer the reader to Breidenbach et al.
(2020a).

We used NFI plots located in stands dominated by
spruce, pine, and broadleaved species (defined as plots
with >75% timber volume of each tree species, respect-
ively). The major tree species in broadleaved dominated
forests is downy birch (Betula pubescens Ehrh.), and in
the following we only refer to birch when addressing
broadleaved dominated forest. From these plots, we only
selected NFI plots in productive forest (yearly volume
increment > 0.1 m*ha™'), and removed plots with can-
opy emergent seed-trees, resulting in 2121 spruce, 1779
pine, and 929 birch dominated plots that were used for
modelling. Age for these plots ranged from 3 to 270, 4
to 287, and 3 to 223 years, respectively (Table 1).

Independent validation data

We used stand-level observations of forest age from 63
forest stands covering a total area of 170 ha as an inde-
pendent validation data set. The age of these stands was
quality-assured by the local forest administration. The
stands were located in central Norway in Trendelag
County (Fig. 1) and their age ranged from 11 to 89 years
(Table 1). This age range does not cover the full age
range in the models. Therefore, we cannot assess the
model behavior for forests above 90 years of age with in-
dependent data. However, most productive forest is
below 100 years of age.

The SI of the stands was reported in another system
than for NFI plots and consisted of the three categories
“Low”, “Medium”, and “High”. The SI of the stands was,
however, not used for predicting stand age.

Table 1 Summary of national forest inventory (NFI) plots and independent validation stands (Val) with known age; characteristics
described are number of plots/stands (n), minimum (min), maximum (max), mean, and standard deviation (sd) of age and of mean
height, and min, max, and mean of site index (SI), predicted SI (pSI, see next section), and area in hectares (ha)

Age (years) 95th percentile of ALS first return heights (m) SI (pSI) Area (ha)
[Field measured arithmetic mean height (m)]
n min max mean sd min max mean sd min max mean min mMax mean sum
NFI

Spruce 2121 3 270 84 45 03 [3.8] 322 [33.8] 145 [15.3] 5.3 [4.6] 6(8) 26(23) 13(15) 0025 0025 0025 53
Pine 1779 4 287 106 43 02 [53] 29.3 [28.1] 13.8 [14.2] 4.0 [3.6] 6(8) 23(23) 10(15) 0025 0025 0025 44
Birch 929 3 223 79 33 1.0[45] 27.1 [263] 12.5[11.8] 4.8 [4.0] 6(8) 23(23) 11 (15 0025 0025 0025 23
Validation 63 11 89 53 17 65 213 131 34 L M H 0.8 102 27 170
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A total of 62 stands were dominated by spruce, and
one stand was dominated by pine according to a tree
species map produced independently from this study.
The spruce, pine, and birch proportions of the stands ac-
cording to the species map ranged from 48% to 100%,
from 1% to 52%, and from 1% to 39%, respectively. None
of the stands were dominated by birch. Therefore, the
birch models cannot be evaluated with this independent
data set.

Auxiliary data

Variables extracted from ALS data, a mosaic of atmo-
spherically and topographically corrected Sentinel-2 im-
ages, and a raster of the distance to the closest coast line
were used for developing models and for mapping age
by applying the models. Furthermore, a site index map
(pSI), and a tree species map were only used for map-
ping age by applying the developed models.

Airborne laser scanning data ALS data were collected
in several campaigns for the study area, except for high
mountain ranges above the tree line. Data were collected
between 2010 and 2018 with a density of 2 to 5 pulses
per m? resulting in first return densities ranging be-
tween 0.5 and 36 and a mean of 8 first returns per m> A
fine-resolution digital terrain model (DTM, 1mx1m
pixel size) was produced from the last return data by the
Norwegian Mapping Authority (Kartverket 2019). The
ALS point cloud was height-normalized by subtracting
the DTM elevation from corresponding point cloud ele-
vation using bi-directional interpolation. The height-
normalized point cloud was used to calculate various de-
scriptive metrics for each NFI plot based on first returns,
first returns above 2m height above ground, and last
returns. The metrics included mean, variance, coeffi-
cients of variation, kurtosis and skewness of ALS return
heights, 10th, 25th, 50th, 75th, 90th, and 95th height
percentiles, and ALS return density metrics for 10 height
slices (d0 — d9). Crown coverage metrics were calculated
as percentage of first returns above 2, 5 and 10 m. The
DTM was resampled to 16 m x 16 m, such that the cell
size corresponded approximately to the area covered by
an NFI plot (250 m?). From the DTM, terrain slope was
computed as a raster with a cell size of 16 m x 16 m. All
ALS variables, DTM elevation and slope were extracted
for each NFI plot and rasters for those variables with a
cell size of 16 m x 16 m were created for prediction pur-
poses. Furthermore, the time difference between the
ALS and the NFI data acquisitions was calculated for
each NFI plot.

Sentinel-2 satellite images The two Sentinel-2 (S2) sat-
ellites are equipped with multispectral sensors, which
detect a broad electromagnetic spectrum (443 nm to
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2202 nm) in 13 bands. Three of these bands (bands 1, 9,
and 10) are measuring atmospheric properties and were
not used in this study. S2 bottom of atmosphere (BOA)
reflectance images acquired between 30 June and 31 July
2018 were mosaiced using the bands B2, B3, B4, B5, B6,
B7, B8, B8A, B11, and B12, measuring reflectance in the
visible, near infra-red (NIR) and short wave infra-red
(SWIR) spectrum (Drusch et al. 2012). The normalized
difference vegetation index (NDVI) was calculated as
band 8 minus band 4 divided by band 8 plus band 4.
Bands 2-4 and 8 are acquired with 10 m spatial reso-
lution, and the bands 5-7, 8A, 11 and 12 with 20 m. The
bands in 20 m resolution were resampled to 10 m with
the nearest neighbor resampling method. To cover en-
tire Norway, 73 S2 scenes were necessary. For each S2
scene, cloud and cloud-shadow areas were masked out
and replaced with data from cloudless scenes. The
remaining scenes were mosaiced to obtain one mosaic of
entire Norway, and color balancing was performed using
the PCI Geomatics software (see Puliti et al. (2020) for
more information).

S2 variables for each NFI plot were derived by extract-
ing the area-weighted means of the pixel values of each
band intersecting with the sample plot polygons. These
variables were named corresponding to their S2 band
numbers S2_2 through S2_12.

Predicted site index The site index layer of the Norwegian
Forest Resource Map SR16 (Astrup et al. 2019) with a 16
m x 16 m pixel size was used to apply our age models. The
(predicted) site index (pSI) was mapped using climate and
terrain variables in a boosted regression model utilizing the
SI observed on NFI plots as the response (Astrup et al.
2019). Independence of age is crucial for age modelling that
utilizes site index as a predictor variable. This was the case
for the pSI map which was only based on climate and terrain
variables. The pSI map has a resolution of 16 m x 16 m and
is freely available (Norwegian Institute of Bioeconomy Re-
search 2020). Weighted means of the pSI pixels intersecting
with the NFI plots were calculated. These weighted means
were mapped to the closest SI level (Fig. 2). The RMSE and
MD of the pSI were 3.9 (29.7%) and - 2.3, respectively for
spruce, 5.5 (54.8%) and - 4.5, respectively for pine, and 5.1
(45.5%) and - 3.5, respectively for birch. Clear regression to-
wards the mean effects were visible as the lowest (6) and
highest (26) SI levels never occurred in the pSL

Tree species map The tree species layer (Breidenbach
et al. 2020b) of the Norwegian Forest Resource Map
SR16 (Astrup et al. 2019) with a 16 m x 16 m pixel size
was used to apply our age models for spruce, pine, and
birch pixels. The tree species map was based on multi-
temporal S2 data and the random forests classifier using
NFI plots as a reference. Overall accuracies of this map
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were 75% on plot level and 90% on stand level (Breiden-
bach et al. 2020b). The stand-level user’s accuracies for
spruce, pine, and birch were 85%, 95%, and 88%,
respectively.

Methods

Age modelling

An area-based approach (Neesset 2002) was utilized to
model age observed at NFI plots using remotely sensed
variables from ALS and S2 as predictors. Independent
linear regression models for each SI were fit with the
structure

y=XB+e withe~N(0,0%), (1)

where y = g(Age) is the n-vector of observed age with n =
number of NFI plots and g as a link function, X = design
matrix for predictor variables including an intercept, B =
estimated parameters, € = independently and normally dis-
tributed residuals, and ¢* = the residual variance. For each
SI-specific model, we started with a model including only
the 95th percentile of first ALS returns (h95_first) as a
proxy for mean height. Final models were fit by forward
and backward selection based on Akaike’s Information
Criterion (AIC) as stopping rule and further selection
based on p-values (p <0.05). We tested models with the
identity (untransformed response variable), square-root,
and natural logarithm as the link functions. Based on an
initial analysis, the log transformation showed the best re-
sults and was chosen for further model development. We
corrected for back-transformation bias by adding half the
residual variance to the predictions before the back-

transformation. Furthermore, we tested if adding predic-
tors such as squared terms, and interactions between pre-
dictors, improved the model.

The explanatory variables tree species and site index
are observed at the NFI sample plots, but for mapping
stand age, the prediction maps as described in Sections
‘“Tree species map’ and ‘Predicted site index” have to be
used. To analyze the effect of using uncertain explana-
tory variables on the model accuracy, models based on
using the observed and predicted explanatory variables
were compared. For the comparison with the validation
stands, age was predicted using the predicted explana-
tory variables, but the model was fit using the observed
explanatory variables.

We evaluated the models based on coefficient of deter-
mination (R?), root mean squared error (RMSE), and
mean deviance (MD) according to

(2)

MD = % En: wi(y; = ;) 3)

with w; = 1. Relative error statistics such as RMSE% and
MD% were obtained by division by the mean of the ob-
served values and multiplying by 100.

Validation with independent data

We evaluated our final models with the independent val-
idation data. We mapped the stand age by applying our
regression models according to the mapped tree species
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and pSI to the grid cells with predictor variables on a
16 m x 16 m raster. Synthetic estimates of stand age
were obtained by calculating the mean predicted age
for each forest stand. Finally, we compared the esti-
mated stand age with the known age by calculating
weighted versions of RMSE, RMSE%, and MD accord-
ing to Egqs. 2 and 3, where the weights w; corre-
sponded to the stand area proportion of the ith stand
that sum up to 1 and n=63. All calculations were
performed in R version 3.6.1 (R Core Team 2019).

Results

Age modelling

In the following, we will focus on results for spruce.
Corresponding results for pine and birch can be
found in the Additional file 1. The age-height rela-
tionship got stronger with increasing SI for all tree
species. More variation was observed for NFI plots in
forest stands above 100 years of age, especially for SI
levels below 14-.

The strength of the relationship between observed
and predicted forest age for the eight Sl-specific
models increased with increasing SI (Fig. 3. for
spruce; for pine and birch see Additional file 1: Figure
S1 and Figure S2). A larger variation in the predic-
tions of the models for SI 6 and 8 was clearly visible.
For spruce, the adjusted R* ranged from 0.46 to 0.96,
RMSE from 2.9 to 31.2years, RMSE% from 6.4% to
25.8%, MD from -1.0 to 2.6years, and MD% from
-22% to 2.2% (Table 2). Average RMSE, RMSE%,
MD, and MD% for all plot classes were 21.2years,
25.1%, 1.0 years, and 1.2%, respectively (Table 2). The
results for pine and birch models were worse than for
spruce, with R® ranging from 0.33 to 0.84 for pine
and from 0.32 to 0.87 for birch (Additional file 1:
Table S1). For all models, the standard errors were
much smaller than their corresponding parameter
estimates, and most parameter estimates had p-values
<0.001. The model details for the spruce models can
be found in Additional file 1: Table S4 (for pine and
birch models Additional file 1: Table S5 and Table
S6, respectively).

All models for spruce contained the 95th percentile
of the ALS first returns (h95_first) as a predictor vari-
able. The predictor variable h95_first squared (h95_
first2) was included in all models except the one for
SI 26, and one of the predictor variables latitude or
longitude was included in all models except the
models for SI 23 and 26. The models for SI 6, 8, 14,
and 17 included at least one of the spectral S2-based
variables such as NDVI, S2 band 8A (s2_8A) or 11
(s2_11). The models for SI 11, 14, and 17 contained
the largest number of variables with 8, 10, and 8, re-
spectively (Additional file 1: Table S4). Besides the
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already mentioned predictors, they also included
crown coverage in a height of 2 and 10m above
ground (cc2, ccl0), DTM elevation, distance to the
coast (distC), terrain slope (slope), and the time dif-
ference between field and ALS data acquisition
(diffT). The variable h95_first was the most important
predictor in all models. This was assessed by re-
fitting the models with standardized predictors. The
predictors were centred around their mean, and then
scaled by dividing by their standard deviation. The
parameter estimates of the centred and scaled version
of h95_first were the largest in all models.

We assessed the model behaviour by applying the
models to data where the variable h95_first ranged
from O to the maximum observed value of this vari-
able and all other variables were set to their mean
values (Fig. 4, for pine and birch see Additional file 1:
Figure S3 and Figure S4). Below a h95_first of 10 m,
all models behaved similarly. Above 10m, we ob-
served similar models for SI 6, 8, and 11, and for SI
14, 17, 20, and 23. Given h95 first, the model for SI
23 appeared more similar to the models for SI 14
and 17 than to the models for SI 20 and 26. The
models, however, contained more predictors whose
influence is not considered in Fig. 4.

We applied the SI-specific models to the NFI data
using the SI map (pSI) to get accuracy metrics, which
are more realistic for a practical application where only
pSI is available. Because pSI did not contain predictions
of 6 and 26, models for these SI categories were never
used. RMSE ranged from 18.6 to 56.0 years (29.4% to
53.2%), and MD from 5.4 to 37.2 years (5.3% to 31.2%).
Average RMSE and MD for all pSI categories were 41.1
years (48.8%) and 20.6years (24.5%), respectively
(Table 3, for pine and birch see Additional file 1: Table
S2). Except for pSI 8, RMSE and MD decreased with in-
creasing pSI (Table 3). Age predictions for sample plots
with SI corresponding to pSI follow the 1:1 line well,
whereas plots with disagreement between observed SI
and pSI showed systematic lack-of-fit (Fig. 5). This trend
was most obvious for pSI 11 to 20. If pSI was larger than
SI, the predicted age was too small (positive residual),
whereas the opposite was observed if pSI was larger than
SL

In the same way as for pSI, we used mapped tree spe-
cies for applying the SI-specific models to the NFI data
to get accuracy metrics, which are more realistic for a
practical application where only a tree species map is
available. To isolate the effect of predicted tree species
from the pSI effect, we used observed SI for this analysis.
RMSE ranged from 3 to 32years (7% to 25%), and MD
from -4 to 2years (-4% to 2%). Average RMSE and
MD for all SI categories were 21 years (25%) and O years,
respectively (Table 4, for pine and birch see Additional
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Table 2 Characteristics of the fitted models for spruce. (S: site index)

Sl 6 SI 8 SI 11 Sl 14 S 17 SI 20 SI 23 Sl 26 All SI
Norway spruce
R? 0.46 0.60 0.75 0.79 0.79 0.84 091 0.96 -
RMSE (Years) 305 312 233 154 108 93 70 29 212
RMSE (%) 21.8 258 255 22.8 18.6 175 14.2 6.4 25.1
MD (Years) 2.1 26 18 05 -0.2 —04 -0.7 -10 10

MD (%) 1.5 22 1.9 08 -03 -08 -1.5 -2.2 1.2
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file 1: Table S3). RMSE decreased with increasing SI;
however, there was no clear trend for RMSE% and
MD%. Age predictions for sample plots with predicted
tree species corresponding to the tree species specific
model followed the 1:1 line well, whereas plots with dis-
agreement between observed and predicted tree species
often showed lack-of-fit. This trend was most obvious
for pine and birch. Overall, less variability was intro-
duced by the tree species predictions compared to pSI.

Validation with independent field data

The estimated stand age of the validation stands resulted
in area-weighted RMSE of 11.5 years (21.6%), and MD of
1.6 years (3.0%). The RMSE decreased with increasing pSI
(Table 5). MD was large and negative for pSI 11, and large
and positive for pSI 20. This is also reflected in the

Table 3 Root mean squared error (RMSE), RMSE%, mean deviance
(MD), and MD% of the site index () specific models applied using
the predicted site index (pSl)

pSI 8 pSI11

Norway spruce
RMSE 344 560 478 288 226 186 411
RMSE (%) 294 470 53.2 422 39.0 325 488
MD 6.2 372 255 122 88 54 206
MD (%) 53 31.2 284 18.0 152 94 24.5

pSI 14 pSI17 pSI20 pSI23 All pS|

graphical representation of the results (Fig. 6). For esti-
mated pSI 11, stand ages were estimated with too large
values; one stand in particular with observed SI “Medium”
was heavily overestimated. For estimated pSI 20, all stands
with observed SI “Medium” were underestimated.

Figure 7 provides an impression of the age map in
comparison to an aerial image for two validation stands.
Observed stand ages were 52 and 72 years, and site index
of the stands was “Medium”. Estimated stand age was 50
and 82 years and the estimated site index was 14 and 17
for the two stands, respectively.

Discussion

We mapped forest stand age using a combination of
ALS and Sentinel-2 based variables over a large study
area in Norway encompassing various growing condi-
tions. We used more than 4800 NFI sample plots with
stand ages ranging from 3 to over 280 years and fitted
SI-specific models that were validated on stand level
using independent data. We found that forest age can be
predicted with relatively high accuracy, especially for for-
ests younger than 100years and that tree height esti-
mated from airborne laser scanning and predicted site
index were the most important variables in predicting
age. While the main manuscript only describes the re-
sults for spruce forests, the Additional file 1 provides
similar results for pine and broadleaved (birch)
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dominated forests. In order to apply the proposed mod-
elling approach, site index and tree species maps are re-
quired as input variables. Errors in these maps
introduced errors in the prediction of age. With im-
proved maps of tree species and site index, our results

will improve as well, especially for forest stands above
100 years of age.

We obtained the best results with SI-specific models,
which showed that SI was a critical variable for describing
age. We observed that the age predictions corresponded

Table 4 Root mean squared error (RMSE), RMSE%, mean deviance (MD), and MD% of the site index (SI) specific models applied
using the predicted tree species Norway spruce

Sl 6 SI 8 Sl 11 Sl 14 SI 17 Sl 20 SI 23 Sl 26 All SI
Norway spruce
RMSE 324 299 231 153 109 108 7.1 30 213
RMSE (%) 236 24.9 26.0 229 19.1 20.1 154 7.0 254
MD —4.1 18 03 -03 -038 -03 -1.7 -10 -02
MD (%) -30 15 04 -04 -15 -06 -37 -23 -0.2
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Table 5 Area-weighted root mean squared error (RMSE) and
area weighted mean deviance (MD) separately for estimated
site index (pSl) classes in 63 validation stands

pSI 11 pSl 14 pSI 17 pSI 20 All pSI
RMSE 25.7 129 9.0 8.6 115
RMSE (%) 484 244 169 16.2 216
MD —23.1 2.8 1.9 6.6 1.6
MD (%) -390 5.1 38 116 30

well with the reference age where observed and predicted
site index agree. However, plots with observed SI lower
than pSI were underpredicted, whereas plots with ob-
served SI larger than pSI were overpredicted. Besides un-
certainties in the models, this can be explained by the fact
that trees on higher SI grow faster and therefore are taller
at a given age. In the opposite case, if the actual SI is
smaller than the predicted SI, age at a given height is
underpredicted because trees grow slower than expected.
While using the mapped instead of the observed tree spe-
cies hardly changed the RMSE, a 100% increase in RMSE
was observed when using the mapped instead of the ob-
served SI. This underlines the importance of an accurate
site index map for using the proposed modelling approach
to obtain an age map with relatively high accuracy. None-
theless, the quality of the SI map was sulfficient for obtain-
ing reasonably good results (RMSE of 11.5 years) of stand
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age estimates for validation stands although errors in the
SI map were noticeable also on stand level. The limita-
tions of the dependence on SI are that SI can change, for
example due to disturbances, fertilization, or other man-
agement activities, and its meaningfulness may be limited
in mixed-species stands or on organic soils. However,
these uncertainties are reflected in our models, at least
partially, because SI was used to fit stratified models
and the aforementioned limitations caused uncertain-
ties that are inherent to the models and documented
in this study.

Sentinel-2 bands or NDVI were included in 11 of the
22 models as predictor variables. However, the contribu-
tion of these predictors was relatively small compared to
the predictor h95_first. This was evaluated by fitting the
models with standardized data (centered around their
mean and scaled by dividing by their standard deviation).
While the standardized variable h95 first was the most
important predictor in all models with the largest par-
ameter estimates, the Sentinel-2 based predictors and
the other variables contributed only very little to the
models.

Other studies in boreal and temperate forests model-
ling forest age obtained comparable results, even though
they were conducted on smaller study sites. Racine et al.
(2014) used a kNN approach and reported RMSE from
leave-one-out cross-validation of 8.8 years (19%) for a
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Fig. 6 Observed and estimated stand age in validation stands by estimated site indices (pSl); the observed site index (SI) on stand level was
recorded as “Low”, "Medium”, and “High", which are presented in color
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66 km? study site with 158 sample plots in Canada,
where mean reference age ranged from 11 to 94 years.
Maltamo et al. (2009) also used a kNN approach and re-
ported RMSE of 18.8 years (88%) for spruce, 23.5 years
(51%) for pine, and 18.7 years (102%) for deciduous
dominated sample plots in Finland, where reference age
ranged from 0 to 150 years. In total they used 335 NFI
sample plots in a 22,000 ha study site for modelling. A
study in temperate forests was conducted by Straub and
Koch (2011) who used both airborne ALS and multi-
spectral variables to model forest stand age in a small
study area covering 9.2 km? with 108 forest stands and
300 inventory sample plots in south-west Germany

using linear regression. Forest age ranged from 0 to
153 years, and the forest area was composed of vari-
ous deciduous and coniferous tree species. They re-
ported an R* of 0.63, and RMSE of 19.7 years (29%).
We obtained RMSE between 21 and 25years (23% to
29%) for more than 4800 NFI sample plots with age
ranging from 3 to over 280 years. However, our study
represents with 18.2 Mha a much larger area, encom-
passing a wide range of growing conditions and forest
structures. Our models can, therefore, be applied for
practical forest management throughout the study
area corresponding to the majority of the productive
forests in Norway.
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In the study by Maltamo et al. (2009), 69 independent
validation stands with an average area of 1ha and age
ranging from 0 to 126 years were used, resulting in stand
level RMSE of 18.3 years (36%) for spruce. In a Mediter-
ranean to temperate climate in central Italy, Frate et al.
(2015) obtained RMSE of 16 years (30%) using 305 inde-
pendent validation stands with stand age ranging from 1
to 127 years and mean of 52 years. Our results on 63 in-
dependent validation stands were comparable with
RMSE of 11.5 (22%). The smaller errors in our study
might be related to younger stands ranging from 11 to
89 years, and the better performance of our models in
younger forest stands compared to older ones.

Maltamo et al. (2020) reported for forest stands youn-
ger than 100 years a RMSE of 14 years. Our overall result
for spruce with age up to 270 years was a RMSE of 21
years. As results for the independent validation stands
with age up to 89 years showed, our models performed
well for stands younger than 100 years of age. In an ini-
tial analysis, a model fitted with data using only NFI
plots in spruce stands younger than 100 years (model
not presented) resulted in smaller errors with RMSE and
MD of 12.7 and 1.6 years, respectively, which fits with
the results of Maltamo et al. (2020). However, 36% of
the NFI plots in the productive managed forest are older
than 100 years, and predictions for those stands would
have resulted in severe underestimates. It was also not
possible to find a satisfying model distinguishing forest
older than 100 years from younger forest.

Conclusions

The age of spruce, pine and broadleaved (birch) domi-
nated forest stands was mapped on a fine scale (16 m x
16 m) for a large study area using variables from re-
motely sensed data and SI-specific models. Tree height
estimated from airborne laser scanning and predicted
site index were the most important variables in the
models describing age. Errors decreased with increasing
site index. Improved site index maps would be the single
most important measure to improve the age prediction.
The contribution of optical Sentinel-2 data was limited
for forest age modelling in this study. However, the syn-
ergy of optical and 3D remote sensing data provides
great opportunities to map various forest attributes in
general. Stratification by tree species improves predic-
tions of forest attributes relying on 3D remote sensing
data in many cases. In the present study we relied on
tree species information that was classified and mapped
using optical satellite data. High-quality ground refer-
ence data are key in most remote sensing based studies
modelling forest attributes. Also this study profited from
the precise geo-location of field plots and accurate data
collection of tree and stand properties that result from
the Norwegian NFI system.
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