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Abstract

Background: The local pivotal method (LPM) utilizing auxiliary data in sample selection has recently been
proposed as a sampling method for national forest inventories (NFIs). Its performance compared to simple random
sampling (SRS) and LPM with geographical coordinates has produced promising results in simulation studies. In this
simulation study we compared all these sampling methods to systematic sampling. The LPM samples were selected
solely using the coordinates (LPMxy) or, in addition to that, auxiliary remote sensing-based forest variables (RS
variables). We utilized field measurement data (NFI-field) and Multi-Source NFI (MS-NFI) maps as target data, and
independent MS-NFI maps as auxiliary data. The designs were compared using relative efficiency (RE); a ratio of
mean squared errors of the reference sampling design against the studied design. Applying a method in NFI also
requires a proven estimator for the variance. Therefore, three different variance estimators were evaluated against
the empirical variance of replications: 1) an estimator corresponding to SRS; 2) a Grafström-Schelin estimator
repurposed for LPM; and 3) a Matérn estimator applied in the Finnish NFI for systematic sampling design.

Results: The LPMxy was nearly comparable with the systematic design for the most target variables. The REs of the
LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18, according to the
studied target variable. The SRS estimator for variance was expectedly the most biased and conservative estimator.
Similarly, the Grafström-Schelin estimator gave overestimates in the case of LPMxy. When the RS variables were
utilized as auxiliary data, the Grafström-Schelin estimates tended to underestimate the empirical variance. In
systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.

Conclusions: LPM optimized for a specific variable tended to be more efficient than systematic sampling, but all of
the considered LPM designs were less efficient than the systematic sampling design for some target variables. The
Grafström-Schelin estimator could be used as such with LPMxy or instead of the Matérn estimator in systematic
sampling. Further studies of the variance estimators are needed if other auxiliary variables are to be used in LPM.
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Background
National Forest Inventories (NFI) commonly use system-
atic sampling where the random location of one sample
plot defines the locations of the other sample units ac-
cording to the chosen design. As a result, the sample
units are arranged according to a predefined pattern
(such as a square grid) over the inventory region
(Tomppo et al. 2010; Vidal et al. 2016). Further, for cost
efficiency reasons, the sample plots are typically ar-
ranged in clusters. The uniform coverage of the inven-
tory region achieved with systematic sampling is
generally anticipated to yield more efficient estimators of
the mean or total values of forest variables than simple
random sampling (SRS) of clusters (e.g. Magnussen et al.
2020). In addition, SRS may result in large gaps without
sample plots, which is particularly problematic when es-
timating means or totals for small sub-domains of the
inventory region.
The utilization of remote sensing data has a long trad-

ition in forest inventories (Kangas et al. 2018). Satellite
images have been applied for the Finnish multi-source
National Forest Inventory (MS-NFI) since the 1990s to
produce wall-to-wall maps of forest resources and
municipality-level statistics (Tomppo et al. 2008). MS-
NFI maps produced as a result of earlier NFI campaigns
offer spatial information which can be utilized as prior
information in the sampling design and estimation for a
new NFI.
Most of the recent efforts to enhance NFIs with auxil-

iary data have concentrated on the estimation phase.
Both model-based and model-assisted methods, includ-
ing post-stratification as a special case, have been devel-
oped (Särndal et al. 1992; Opsomer et al. 2007; Gregoire
et al. 2011; Tipton et al. 2013; McRoberts et al. 2013;
Magnussen et al. 2015; Saarela et al. 2015; Kangas et al.
2016; Ståhl et al. 2016; Myllymäki et al. 2017; Haakana
et al. 2019). However, the emergence of the local pivotal
method (LPM, Grafström et al. 2012), enabling approxi-
mately balanced sampling in a multidimensional data
space (Grafström and Lundström 2013), has also stimu-
lated attempts towards the direct use of auxiliary data
for more efficient sampling designs (Grafström and
Ringvall 2013; Grafström and Schelin 2014; Grafström
et al. 2017). MS-NFI maps have been used in Finnish
NFI since the1990s to specify the details of a systematic
cluster sampling design, such as the number of plots in
a cluster and the distance between them. In addition, it
has been used to implement double sampling for stratifi-
cation in the sparsely forested northernmost part of the
country (Tomppo et al. 2011).
Promising results have been reported concerning the

potential of LPM to improve large-scale inventories, but
the data used in these studies has caused some limita-
tions. In Grafström et al. (2017), for instance, no

independent auxiliary data were available, but the target
variables were sampled utilizing other variables of the
same remote sensing material. In Räty et al. (2018) the
auxiliary data was independent, but the population was
limited to the real NFI sample plot positions in the tar-
get data, which meant that clusters could not be closer
than about 7 km from each other. Furthermore, LPM
was not compared to systematic sampling in these
studies.
Methods for improving the efficiency must be

equipped with a proper, practically applicable estimator
of uncertainty in order to be able to report the inventory
results with the improved precision. Design-unbiased es-
timators of variance, the most commonly accepted
measure of uncertainty (e.g. Gregoire 1998), are not
available for either systematic sampling (e.g., Magnussen
et al. 2020) or LPM (Grafström and Schelin 2014). Many
NFIs use the variance estimator associated with SRS,
based on the argument that it should “safely” overesti-
mate the uncertainty due to sampling. However, this
means that the improvement achieved by applying a
more efficient sampling design will not be reflected in
the reported uncertainties.
A variance estimator associated with SRS is based on

the differences in the values of the target variable in the
individual sampling units from the overall mean. The
idea of reducing the overestimation by replacing these
differences with local differences computed within
groups of adjacent sampling units was already adopted
in the first Nordic NFIs (Lindeberg 1924; Langsaeter
1926). Wolter (1984) gives a review of the later develop-
ment of such approaches and a recent application can
be found in Ene et al. (2013). A generalization of one-
dimensional local difference estimators to spatially sys-
tematic sampling was introduced into forest inventories
by Matérn (1947) and has been routinely used in the
Finnish NFI since the 5th NFI (Salminen 1973;
Heikkinen 2006).
The approximate variance estimator for the LPM, pro-

posed by Grafström and Schelin (2014) and Grafström
and Matei (2018) is similar to the local difference esti-
mators used with systematic sampling. In previous stud-
ies, the approximate variance estimator has worked well
(Grafström and Schelin 2014; Grafström and Matei
2018). However, the study areas have been small and
generalization of results for NFI estimation where results
are reported at regional level has not been shown. Nor
have these studies utilized auxiliary data that would be
available in a modern NFI.
Simulated sampling from actual or artificial popula-

tions is the only practical approach for evaluating the ef-
ficiency of a sampling method and the reliability of the
associated variance estimator (Magnussen et al. 2020).
However, such simulations can never fully imitate the
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actual inventory. If we use the “actual population” of dir-
ect measurements of an earlier NFI, then only subsets
from the whole design can be sampled and the spatial
arrangement of plots in the simulated samples will be
different (sparser) than in the actual NFI. Possible artifi-
cial populations include (i) those generated as realiza-
tions from probability distributions that are designed to
capture important spatial features of actual forests (e.g.
Magnussen et al. 2020) and (ii) wall-to-wall maps of for-
est resources produced by an MS-NFI. The disadvan-
tages of option (ii) are that MS-NFI methods tend to
smooth out some of the spatial variation in the actual
forests and that the correlation between the target and
auxiliary variables may be smaller in MS-NFI popula-
tions consisting of spatial predictions than in actual for-
ests. Then again, the spatial features of populations for
option (ii) can resemble those of the target population of
the NFI much more closely than (i), because they are
based on (earlier) NFI measurements, numeric maps,
and satellite images of that specific region. Another ad-
vantage of MS-NFI populations is that they can faithfully
reproduce the dependencies between different target
variables, in particular, if they are based on most similar
neighbor or one nearest neighbor (1-nn) imputation.
The aims of this study were to compare LPM with sys-

tematic sampling and to assess the reliability of the vari-
ance estimators in a context which closely follows the
sampling design phase of an operational NFI. SRS was
also included in order to facilitate comparisons with
other studies. The main results are based on simulated
sampling from a wall-to-wall 1-nn forest resource map
constructed for this study from the most recent NFI
measurements. The auxiliary data for the LPM were de-
rived from the MS-NFI of the previous inventory cam-
paign. Such information would be available when
designing a new inventory. We considered several NFI
target variables, because an NFI is a multi-target inven-
tory. The impact of using the 1-nn population as a proxy
to actual forests was gauged with supplementary sam-
pling simulations from populations of real NFI field
plots, contrasting results based on the actual measure-
ments to those based on 1-nn predictions at the same
locations.

Methods
Study region
The study region covers a 60,000 km2 land area in
Southern Finland (Fig. 1). It was chosen to be within
one Sentinel-2 image. For the assessment of variance es-
timators, the region was divided into four subregions so
that the area of these subregions was of the same order
as that of a typical target region (province) in the Finnish
NFI.

MS-NFI forest resource maps
The Finnish MS-NFI of Finland has produced thematic
forest resource maps over three decades. Currently the
new raster maps are published biannually (http://kartta.
luke.fi/index-en.html) and include themes for 44 forest
variables. The MS-NFI predictions are computed using
satellite data, NFI field data, map data and other digital
data sources (Tomppo et al. 2008). The field data are
currently computationally updated to the set date, and
satellite images as close as possible to the date are used.
For each pixel, a prediction is computed using the iK-
NN method (Tomppo and Halme 2004). The iK-NN
method finds the k NFI field plots for each pixel where
the feature vectors formed at the field plot locations are
closest to the feature vector formed at the pixel

Fig. 1 Study region in Southern and Central Finland divided into
four parts numbered from south to north (1–4)
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regarding the chosen distance measure. The feature vec-
tors include the satellite image spectral radiances, large-
area mean volume estimates and other numeric data
available at each pixel. The weights of the features in the
distance measure are determined by a genetic algorithm.
The predictions are computed as a function of the corre-
sponding variables at the k nearest field plots. In this
study two independent sets of MS-NFI forest resource
maps were utilized. The first map was used as auxiliary
data (MS-NFI-2011) and the second as target data (MS-
NFI-2015).
The auxiliary variables were derived from MS-NFI-

2011 (Tomppo et al. 2014), where the set date was July
31, 2011. To produce these maps, the value k = 5 was
used for mineral soils and peatlands and the value k = 3
for open mires (Tomppo et al. 2014; Mäkisara et al.
2019). The satellite data was from the Landsat-5 TM im-
ages. The area used in this study included parts of sev-
eral satellite images. The pixel size in the MS-NFI-2011
was 20 by 20 m. The construction of these maps utilized
the NFI field data from the years 2007–2011.
The target variables were derived from MS-NFI maps

specifically produced for this research. These maps were
produced using the value k = 1 and based on the mate-
rials and methods of MS-NFI-2015 (Mäkisara et al.
2019). The choice k = 1 was made in order to match the
marginal distribution of the predictions with the distri-
bution of the field data as well as possible (Mäkisara
et al. 2019). The set date was July 31, 2015, and the sat-
ellite data were mostly OLI data from Landsat-8, but it
also included some data from the MSI instrument on-
board the Sentinel-2 satellite. The pixel size in the MS-
NFI-2015 was 16 by 16m. The NFI field data were col-
lected during years 2012–2016.

Field plot data
In a supplementary study, the analyses were limited to
the locations of 16,608 NFI sample plots from 1718 clus-
ters measured within the study region during the same
period as the training data of MS-NFI-2015, i.e. the years
2012–2016 (Fig. 2). The study region intersects three dif-
ferent NFI sampling regions. In all of them the sampling
design was based on systematic cluster sampling, but the
cluster configurations and cluster-to-cluster distances
varied between them. Generally, the clusters and dis-
tances were smaller in the south than in the north. The
distance between the sample plots in a cluster was 300
m in the central and northern part of the study region,
while in the southernmost region it was 250 m. The
cluster dimensions varied from 1.2 km × 1.2 km to 1.5
km × 1.5 km. The clusters were organized in five cluster
groups which were replicated over the area. In this part
of the study, we utilized both the NFI measurements

from these plots and the 1-nn predictions (MS-NFI-
2015) at their locations.

Target populations
Our sampling simulation aimed to imitate, the oper-
ational cluster sampling design of the Finnish NFI and
some practically relevant alternatives to it. Thus, our
sampling units were clusters of sample plots. To avoid
unnecessary complications due to two-phase sampling
(see, e.g., Grafström et al. 2017), we also defined the tar-
get populations to consist of clusters.
The field plot population of the supplementary study

is already a collection of 1718 clusters. In the primary
sampling simulations from the 1-nn map, we decided to
mimic the NFI cluster of the southernmost part of the
study region. Each cluster consisted the locations of
eleven sample plot centers arranged in an L-shape with
250 m intervals between neighboring plots. The primary
1-nn population was defined as a dense grid of such
clusters over the study region with 50 m × 50m intervals
between the corner points of neighboring clusters in the
population, and the cluster-level values of the target and
auxiliary variables were computed as means over the
pixels containing the plot center points.

Fig. 2 Locations of field sample plot clusters in the study region
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Population characteristics
The target variables considered in this study include
both growing stock characteristics and area proportions
(Table 1). The tree species groups in which the growing
stock volumes were estimated were spruce, pine and
broadleaves. The pine group included mainly Scots pine
trees (Pinus sylvestris) but also all other conifer species
than Norway spruce (Picea abies). Most of the broadleaf
volume consisted of birch trees (Betula pendula and
Betula pubescens). Following the convention of the
Finnish NFI, the estimation of stock variables was con-
fined to the national forestry land classes: “forest land”
and “poorly productive forest land” (Tomppo et al.
2011). In this study, the combination of these two classes
is called “forested land”; it is close to the forest land as
defined by the United Nations Food and Agriculture
Organization (FAO 2012). The forested land comprised
71% of the study area and 85% of land area.
In addition to the geographic coordinates, five auxil-

iary variables were considered: the volume of all trees,
volumes by tree species groups, and the forested land
proportion of pixels in a cluster (Table 1). This set of
auxiliary variables was chosen based on the experience
gained in the previous studies (Räty et al. 2018; Räty and
Kangas 2019). Spatial autocorrelation in the target data-
sets, as well as correlations between the target and auxil-
iary data were quite similar in the 1-nn population and

the field plot population (Fig. 3, Tables 2 and 3). Already
between the closest sample plots at about 300 meters
distance the spatial autocorrelation was of an order of
0.2 or less and decreasing with distance. The mean vol-
ume target variables, mean diameter, mean height, basal
area, age as well as the area of mineral soils correlated
strongly with the auxiliary data. The remaining area pro-
portion variables included two rare classes with shares of
~1% of the study region, namely the proportion of forests
older than 140 years and open mires, which had negligible
correlations with the auxiliary data. Further, the propor-
tion of pine and spruce dominated mires had weak corre-
lations with the auxiliary data (Tables 2 and 3).

Sampling designs
In the context of cluster sampling, simple random sam-
pling (SRS) refers to selecting a completely random sub-
set of clusters in the target population. The sample size
n is fixed, each set of n clusters has an equal probability
of being selected, and each cluster has the same prob-
ability of inclusion in the sample. No auxiliary informa-
tion or predefined limitations are involved.
In systematic sampling, one random cluster is first se-

lected from the target population and thereafter all the
other sample clusters are spread over the study region at
predetermined distances from each other. Hence the
auxiliary information utilized in (spatially) systematic

Table 1 Population values for auxiliary and target variables in the study region in the 1-nn population and the field plot population.
The target is derived from the MS-NFI-2015 map for the 1-nn population and from the NFI field measurements for the field plot
population

Unit 1-nn population Field plot population, NFI measurements

Auxiliary variable; MS-NFI-2011 All volume m3∙ha−1 130.8 131.1

Pine volume m3∙ha−1 55.6 55.6

Spruce volume m3∙ha−1 46.7 46.9

Broadleaf volume m3∙ha−1 28.5 28.5

Forested land proportion % 85.6 82.4

MS-NFI-2015 NFI field

Target variable All volume m3∙ha−1 136.0 136.0

Pine volume m3∙ha−1 56.3 57.2

Spruce volume m3∙ha−1 50.3 50.6

Broadleaf volume m3ha−1 29.7 28.5

Age years 51.8 40.1

Mean height dm 140.0 140.0

Mean diameter cm 16.1 16.0

Basal area m2∙ha−1 17.4 17.4

Age 140+ yrs. % 1.4 0.7

Mineral soils % 63.3 60.8

Spruce mire % 8.8 9.1

Pine mire % 13.5 12.9

Open mire % 1.2 1.4

Räty et al. Forest Ecosystems            (2020) 7:54 Page 5 of 17



sampling are the geographic cluster coordinates. In our
systematic sampling design, a systematic square grid of
clusters was selected at 6 km intervals, yielding a sample
size of n = 1,678 clusters on average.
The local pivotal method (LPM, Grafström et al. 2012,

2017) aims at samples where the empirical distributions
of auxiliary variables are similar to the corresponding
population distributions. This is implemented by pro-
moting one unit in the sample selection at the expense
of the unit closest to it in the auxiliary variable space.
The closeness of population units i and j are measured
by the Euclidean distance metric between the units’ stan-
dardized auxiliary variables.
In LPM, an iterative selection algorithm is used to se-

lect the sample. We used equal-probability sampling giv-
ing a fixed inclusion probability for each observation. In
the iterative algorithm, these initially non-zero inclusion
probabilities are first assigned to all population units and
later they are updated and act as inclusion indicators. In
each selection round one population unit, the state of
which is not yet determined (i.e., the unit is neither ex-
cluded nor included to the sample), is randomly chosen
and its closest unit in the group of units with an

undetermined state is found. The two units i and j are
then compared, and their inclusion indicators updated
according to the equation:

πi
;;π j

;
� � ¼

a; bð Þ with probability a - π j
� ��

a - π j
� �

b; að Þ with probability a - π j
� ��

a - π j
� �

8>>><
>>>:

ð1Þ

where a =min(1, πi + πj) and b = πi + πj – a. As a result,
at least one of them is either included in the sample, if
its inclusion indicator becomes 1, or excluded if its in-
clusion indicator is 0. At the end of the selection algo-
rithm all population units are in a determined state. We
considered six different LPM designs, i.e., combinations
of the auxiliary variables (Table 4).
In the SRS and LPM the sample size was matched to

the same density per land area as in the systematic de-
sign. The total number of all possible different samples
for the systematic design was (6, 000 m/50 m)2 = 14,400.
Results were calculated for each of these. The total

Fig. 3 Spatial autocorrelation of the mean volume target variables in the 1-nn map data, field data and for the map production updated National
Forest Inventory field plot data
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Table 3 Cluster-level correlations between each cluster-level auxiliary variable and the other auxiliary variables in the data itself and
the auxiliary data and the target variables in the field plot data study

Auxiliary data, MS-NFI-2011

All volume Pine volume Spruce volume Broadleaf volume Forested land
proportion

Auxiliary data; MS-NFI-2011 All volume 1.00 0.72 0.80 0.65 0.81

Pine volume 0.72 1.00 0.23 0.23 0.72

Spruce volume 0.80 0.23 1.00 0.47 0.48

Broadleaf volume 0.65 0.23 0.47 1.00 0.60

Forested land proportion 0.81 0.72 0.48 0.60 1.00

Target data; NFI field data All volume 0.82 0.57 0.67 0.53 0.69

Pine volume 0.53 0.76 0.15 0.17 0.56

Spruce volume 0.61 0.14 0.76 0.41 0.39

Broadleaf volume 0.41 0.15 0.32 0.58 0.40

Age 0.69 0.71 0.39 0.35 0.73

Mean height 0.84 0.69 0.58 0.56 0.81

Mean diameter 0.83 0.69 0.58 0.53 0.80

Basal area 0.82 0.64 0.59 0.56 0.79

Age 140+ yrs. 0.08 0.11 0.05 0.00 0.07

Mineral soils 0.72 0.48 0.58 0.54 0.72

Spruce mire 0.31 0.21 0.20 0.31 0.39

Pine mire 0.07 0.38 −0.22 −0.05 0.33

Open mire −0.13 −0.03 −0.15 −0.11 −0.02

Table 2 Cluster-level correlations between each auxiliary variable with the other auxiliary variables and the target variables in the
1-nn population study

Auxiliary data, MS-NFI-2011

All volume Pine volume Spruce volume Broadleaf volume Forested land
proportion

Auxiliary data; MS-NFI-2011 All volume 1.00 0.70 0.80 0.66 0.80

Pine volume 0.70 1.00 0.20 0.22 0.72

Spruce volume 0.80 0.20 1.00 0.48 0.45

Broadleaf volume 0.66 0.22 0.48 1.00 0.60

Forested land proportion 0.80 0.72 0.45 0.60 1.00

Target data; MS-NFI-2015 All volume 0.81 0.56 0.65 0.56 0.71

Pine volume 0.57 0.74 0.21 0.22 0.63

Spruce volume 0.61 0.18 0.72 0.42 0.38

Broadleaf volume 0.40 0.17 0.29 0.57 0.44

Age 0.69 0.73 0.35 0.39 0.81

Mean height 0.84 0.70 0.57 0.57 0.84

Mean diameter 0.83 0.71 0.55 0.54 0.83

Basal area 0.83 0.67 0.58 0.57 0.83

Age 140+ yrs. 0.10 0.16 0.02 0.00 0.13

Mineral soils 0.74 0.49 0.59 0.56 0.73

Spruce mire 0.25 0.18 0.14 0.27 0.34

Pine mire 0.07 0.39 −0.24 −0.02 0.37

Open mire −0.10 0.00 −0.13 −0.09 −0.00
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number of samples drawn by the SRS and all the LPM
designs was at least 56,700.
The supplementary sampling simulations from the

field plot population were carried out with a set-up simi-
lar to Räty et al. (2018). The sample size in these simula-
tions was 130 clusters. This set-up enabled a
comparison of only the SRS and LPM sampling
methods. Because the initial NFI population was already
a sparse systematic design selecting an even sparser sys-
tematic design from it was out of the question. Each
sampling design was replicated 100,000 times and results
were calculated for each of them.

Evaluation of sampling designs and variance estimators
As a result of the sampling simulations, we thus ob-
tained T samples of clusters from the target populations
with each of the sampling methods. Let St, t ∈ 1, 2, …, T
be the set of clusters included in the t’th sample by one
of the methods. Following the convention of the Finnish
NFI, both the growing stock characteristics and area
proportions were estimated from each sample using ra-
tio estimators of the general form

μ̂t ¼
P

i∈St yiP
i∈St xi

ð2Þ

in which the target μ was an area proportion, yi was the
number of those plots of cluster i that belong to the tar-
get land class (old-growth forests, mineral soils, or dif-
ferent types of mires; see Table 1) and xi represented the
number of land plots in that cluster. In the case of grow-
ing stock characteristics, yi was the sum of their plot-
level values over the forested land plots of cluster i and
xi was the number of forested land plots.
The comparison of the sampling designs was based on

the mean squared errors (MSE):

MSE ¼ 1
T

XT
t¼1

μ̂t − μð Þ2 ð3Þ

where μ is the value of the target parameter computed
from the entire target population (see Table 1). Relative
efficiencies (REs) were estimated as ratios between the
MSEs (Eq. 3) associated with the different sampling de-
signs: the MSE of the reference sampling design, MSEref,
was divided by the MSE of an alternative sampling de-
sign, MSEi:

REi ¼ MSEref

MSEi
ð4Þ

Consequently, REi > 1 identified the designs that were
more efficient (i.e., with a smaller MSE) than the refer-
ence sampling design.
The empirical variance over the replications,

V sim μ̂ð Þ ¼ 1
T

XT
t¼1

μ̂t −Mð Þ2 ð5Þ

where M ¼ 1
T

PT
t¼1μ̂t , served as the benchmark, when

assessing the performance of various estimators of sam-
pling variance based on single samples. The conven-
tional (SRS) variance estimator for the ratio estimator of
Eq. (1) is (e.g. Cochran 1977, sec. 6.3)

V̂ srs μ̂tð Þ ¼
P

i∈St yi − μ̂txið Þ2P
i∈Stxi

� �2 ð6Þ

Local difference estimators, including the approximate
variance estimator proposed for the LPM by Grafström
and Schelin (2014), essentially replace the squared sum
of global residuals zi ¼ yi − μ̂txi in the numerator of Eq.
(6) with a squared sum of local differences of zi ’s. For
the ratio estimators, the general form of the Grafström-
Schelin estimator is modified into:

V̂ sb μ̂tð Þ ¼ 1P
i∈St xi

� �2X
i∈St

n�i
n�i − 1

zi −
1
n�i

X
j∈S�t;i

z j

0
@

1
A

2

ð7Þ
where S�t;i is a subset of St including cluster i and its
closest neighbors in the space of auxiliary variables and
n�i is the number of clusters in S�t;i.

For the LPM samples, we used the version of V̂ sbðμ̂tÞ,
where S�t;i consisted of cluster i and its one closest neigh-
bor j∗(i) ∈ St. In that case, Eq. (7) simplified into:

V̂ sb μ̂tð Þ ¼ 1

2
P

i∈St
xi

� �2X
i∈St

zi − z j� ið Þ
� �2

ð8Þ

(c.f. Grafström and Schelin 2014, eq. 8). For systematic
samples, S�t;i contained cluster i and all its nearest geo-
graphic neighbors so that n�i ¼ 5 for “interior” clusters i
and n�i < 5 for the edge clusters.
From systematic samples, we also computed the vari-

ance estimates by Matérn (1947).

V̂Mat μ̂tð Þ ¼ 1

4
P

i∈St xi
� �2X

g

zg1 − zg2 − zg3 þ zg4
� �2

ð9Þ
where the sum extends over all groups g of four neigh-
boring clusters of the square grid so that at least one
point in the group belongs to the sample St. The z-values
corresponding to grid points outside the study region
were set to 0 (c.f. Matérn 1960, sec 6.7).
Reliability of variance estimators of Eqs. (6), (7), (8),

(9) were assessed by comparing the averages of the
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single sample estimates V̂ srsðμ̂tÞ , V̂ sbðμ̂tÞ , and V̂Matðμ̂tÞ
over the replications t to the benchmark V simðμ̂Þ.
The Monte Carlo error of the variance estimators was

estimated using the formula for the standard error of the
mean:

s:e: V̂ μ̂ð Þ� � ¼
ffiffiffiffi
1
T

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

V̂ μ̂t0ð Þ − 1
T

XT
t¼1

V̂ μ̂t0ð Þ
 !2

vuut
ð10Þ

For the empirical variance we used the formula (Rao
1973):

s:e: V sim μ̂ð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

M4 −M2
2

� �r
ð11Þ

where Mk ¼ 1
T

PT
t¼1ðμt −M1Þk for k = 2, 4 and M1

¼ 1
T

PT
t¼1μt .

All the simulations of the two studies were per-
formed with freely available open software R (R Core
Team 2018) and Julia (Bezanson et al. 2017). The
function used to perform the LPM was ‘lpm2_kdtree’
of the R package ‘SamplingBigData’ (Lisic and Graf-
ström 2018).

Fig. 4 Relative efficiencies ±2 Monte Carlo standard errors (horizontal bars) for different sampling designs with the target variables when the
systematic design was the reference. For the definition of the sampling designs see Table 4
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Results
Comparison of sampling designs
The MSEs of the target variable estimates for the whole
1-nn population were calculated over all repetitions de-
fined in section sampling designs (Table 5). The means
of the target variables coincided with the population
values in Table 1 and the estimates were approximately
normally distributed around the means.
The REs of SRS for single target variables varied be-

tween 0.5 and 1.0 in comparison to the systematic de-
sign (Fig. 4). The mean RE of SRS was 0.77.
When considered over all target variables, the mean

RE of LPMxy was close to the systematic method and

was 0.97. The other LPM designs resulted in slightly lar-
ger overall REs than the systematic method on average.
However, the differences between the different LPM de-
signs were small: the mean REs varied between 1.06 and
1.09. In addition, the Monte Carlo error associated with
the target variable estimation was negligible (Fig. 4).
Examining the results with the all target variables

separately, the most efficient sampling design and its
efficiency varied (Fig. 4). For the mean volume of all
tree species, all the LPM designs including some in-
formation on the forest resources had REs close to
1.1. For tree-species-specific mean volumes the largest
enhancements were gained with the LPM designs

Fig. 5 Relative efficiencies for different sampling designs with the target variables in comparison to the LPM with geographical coordinates
(LPMxy) when the target variables were derived from real field measurements (field) or the Multi-Source National Forest Inventory forest resource
maps (1-nn)
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which included auxiliary information on that specific
tree species. The maximum REs reached for the mean
spruce and broadleaves volume were ~ 1.1 and for the
mean pine volumes ~ 1.2.
For the variables associated and generally known to

correlate with volume, namely the mean diameter, mean
height, age and BA, the REs of the LPM designs (other
than LPMxy) were between 1.0–1.2. For the main site
type class variables, the results differed (Fig. 4, third
row): For the class of mineral soils, which encloses the
most productive forests, the LPM designs had larger REs
than for the poorly productive mires. Further, all the
LPM designs including LPMxy were poor for the treeless
open mires. In estimations of the area proportion of old

forests aged over 140 years all the sampling designs had
the same efficiency.

Supplementary field data study
When the population was limited to the field sample plot
locations and the efficiencies were estimated against
LPMxy, in all cases SRS was the least efficient sampling
method (Fig. 5). Enhancements at individual target variable
level were from 1.2 to 1.4 for the mean volume and stand
variables for the LPM designs. For the land class variables
all REs were less than 1.2. The REs were typically a bit lar-
ger for the target variables derived from the real field data
than for the targets derived from the MS-NFI-2015 maps.

Fig. 6 Empirical variance ±2 Monte Carlo standard errors of mean volume estimates for LPM simulations with geographical coordinates (LPMxy)
(horizontal bars) and the mean values of the conventional variance estimates (‘srs’; Eq. 6) and the Grafström-Schelin estimates (‘vsb’; Eq. 8) in the
whole study region (Full) and its four subregions (see Fig. 1)
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Reliability of variance estimators
In simulations of LPMxy, averages of both the Graf-
ström-Schelin estimates V̂ sb and conventional variance
estimates V̂ srs were never smaller than the empirical
variance over the replicated samples, V simðμ̂Þ . Taking
into account the Monte Carlo error of V simðμ̂Þ , both
V̂ srs and V̂ sb were significant overestimates in most
cases, but V̂ sb much less so (Fig. 6). The average devi-
ation from the empirical variance was 7.2% for V̂ sb and
24% for Vsim (Additional file 1: Table S1).
In the simulations of systematic sampling, the averages

of the V̂ sbðμ̂tÞ and the Matérn estimates V̂Matðμ̂tÞ over
the replications t were practically identical to each other
(Fig. 7). The most common result was that they

overestimated the empirical variance (they were
significantly greater than V simðμ̂Þ), but less so than V̂ srs .
However, we also observed underestimation in some
cases, most notably for the area of mineral soils in sub-
population 4.
In LPM simulations utilizing other auxiliary vari-

ables in addition to the coordinates, V̂ sb underesti-
mated the sampling variance in several cases. For
example, when all auxiliary variables were used in
LPM, significant underestimation occurred in almost all
the subpopulation results (Fig. 8). For the whole popula-
tion, the Monte Carlo error of Vsim was always so small
that the error bar ostensibly reduced into a point (Fig. 8),
and V̂ sb agreed with it so well that the points are hardly
visible.

Fig. 7 Empirical variance ±2 Monte Carlo standard errors of mean volume estimates for simulations of systematic sampling from the 1-nn
populations (horizontal bars) and the mean values of the conventional variance estimates (‘srs’; Eq. 6), the Grafström-Schelin estimates (‘vsb’; Eq.
8), and the Matérn estimates (‘matern’; Eq. 9) in the whole study region (Full) and its four subregions (see Fig. 1)
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Discussion
To the best of our knowledge, this is the first study that
has compared LPM with systematic sampling in NFI. In
previous studies (Grafström and Ringvall 2013;
Grafström and Schelin 2014; Grafström et al. 2017; Räty
et al. 2018), SRS or LPMxy has been used as the refer-
ence when assessing the efficiency of LPM with add-
itional auxiliary variables. We found that for some target
variables, LPMxy was markedly less efficient than sys-
tematic sampling. This is one reason why our observed
REs of LPM designs that are relative to the systematic
design were smaller than the REs in previous works rela-
tive to SRS or LPMxy.
Several studies have observed enhancements in the

estimation efficiency when LPM has utilized auxiliary

data correlating with the target variables in addition
to the geographic coordinates, (e.g. Grafström and
Ringvall 2013; Roberge et al. 2017; Grafström and
Matei 2018; Räty et al. 2018). As in Grafström and
Ringvall (2013), also in our data, the correlations
which we used to explore the explanatory power be-
tween the auxiliary and target variables were strong
between the mean volume related target and auxiliary
data (Tables 4–5). However, compared to the previ-
ous studies the improvements in estimation efficiency
were modest. In the previous studies (Grafström and
Ringvall 2013; Roberge et al. 2017; Räty et al. 2018),
the REs were on the level of 1.5–3 relative to LPMxy
and 1.1–7.5 relative to SRS depending on the target
variable. In our study the overall REs of all designs

Fig. 8 Empirical variance ±2 Monte Carlo standard errors of mean volume estimates for LPM simulations utilizing all auxiliary variables (horizontal
line segments) and the mean values of the conventional variance estimates (‘srs’; Eq. 6) and the Grafström-Schelin estimates (‘vsb’; Eq. 8) in the
whole study region (Full) and its four subregions (see Fig. 1)
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were markedly smaller, 1.07–1.11 compared to LPMxy
and 1.3–1.45 compared to SRS.
Our 1-nn target population was a map based on mod-

elling, which adds uncertainty to the pixels in the target
maps (Magnussen et al. 2009) compared to earlier stud-
ies where, for example, the target has been inventory
field data (Räty et al. 2018). In addition, the spatial pat-
tern might be different in the maps than in reality. We
gauged the impacts of such deviations from directly
observed forest variables in a supplementary study, in
which both field observations and 1-nn predictions
were available to all population units. The REs of
LPM with additional variables vs. LPMxy were larger
with the field data than with the map and these lar-
ger REs were in line with the previous study by Räty
et al. (2018). This implies that the above-mentioned
map uncertainty or the spatial differences had some
impact on the results. However, the differences were
small (Fig. 4).
NFI is a multi-target inventory, which places demands

on the considered sampling methods. Therefore, the
LPM should also be examined using several variables. In

the previous studies the efficiencies have been studied
mostly with variables related to the growing stock
(Grafström et al. 2017; Räty et al. 2018). One could
argue that this is not enough because NFIs deal with
dozens if not hundreds of variables (Tomppo et al. 2010;
Vidal et al. 2016) and not all of them correlate with the
chosen auxiliary variables. For continuous variables, for
instance, the mean diameter, mean height, age, and basal
area, which are known to correlate with the auxiliary
data (volumes), the REs were similar to those for the
mean volume of all tree species when compared to the
systematic design. Additionally, the area estimates for
the main site type classes, which correlated with the aux-
iliary data, improved with LPM even though more mod-
est REs were detected. On the other hand, if the target
variable was a rare and uncorrelated phenomenon, there
were two possible outcomes: 1) in the area proportion
estimation of old forests, all the sampling methods were
equal; and 2) in the area proportion estimation of the
open mires, all LPM designs were significantly less effi-
cient than the systematic design (Fig. 4). In the first case,
the variable was visually observed to be evenly spread

Table 4 Combinations of cluster-level auxiliary variables utilized with the LPM designs. The ‘+’ sign indicates the variables included
to the design

Sampling
design

Coordinates All
volume

Pine
volume

Spruce
volume

Broadleaf
volume

Forested land
proportionX Y

LPMxy + +

LPMvp + + + +

LPMspruce + + + + +

LPMpine + + + + +

LPMbl + + + + +

LPMall + + + + + + +

Table 5 The mean squared errors (MSEs) of the target variable estimates from the simulation replications

Variable LPMxy LPMvp LPMspruce LPMpine LPMbl LPMall SRS Systematic

All volume (m2∙ha−1) 0.94 1.38 1.06 0.85 0.86 0.87 0.87 0.88

Pine volume (m2∙ha−1) 0.43 0.51 0.41 0.42 0.39 0.35 0.40 0.36

Spruce volume (m2∙ha−1) 0.62 1.02 0.71 0.61 0.55 0.59 0.63 0.57

Broadleaf volume (m2∙ha−1) 0.19 0.22 0.19 0.19 0.19 0.18 0.17 0.17

Age (years) 0.10 0.13 0.10 0.10 0.10 0.09 0.09 0.09

Mean height (dm) 0.47 0.60 0.48 0.39 0.40 0.40 0.40 0.41

Mean diameter (10−3 cm) 7.14 8.48 7.25 5.92 5.99 5.92 5.97 6.05

Basal area (10−3 m2∙ha−1) 8.38 10.37 8.83 7.16 7.31 7.35 7.31 7.49

Age 140+ yrs. (10−2%) 1.08 1.12 1.09 1.09 1.09 1.10 1.09 1.08

Mineral soils (%) 0.27 0.34 0.21 0.20 0.19 0.19 0.20 0.20

Spruce mire (10− 2%) 5.73 6.14 5.62 5.62 5.67 5.62 5.58 5.60

Pine mire (10−1%) 0.95 2.10 1.01 1.07 0.99 0.97 1.06 0.99

Open mire (10−2%) 1.01 1.85 1.44 1.47 1.47 1.47 1.45 1.46
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over the study region and, in the second case, oppositely,
the open mires were spatially clustered and more con-
centrated in the northern part of the study region.
Hence, we conclude that efficiency of LPM depends on
the chosen auxiliary and target variables and their spatial
pattern. Thus, caution should be retained if applied in
the NFI for many target variables.
Another concern, when applying LPM in practice, is

that gaps or areas of more sparsely placed sample plots
in the middle of the inventory region are possible even
though the geographical spread is also used besides the
other auxiliary data. The NFI results are estimated in
many different spatial scales which such gaps may affect.
Even though NFIs were originally designed for large-
scale estimation, the demand for reporting results for
smaller and smaller areal units is growing. In Finland,
based on the field sample plots the inventory result esti-
mation is solely possible for 3000–5000 km2 with the
current systematic design (Tomppo et al. 2008), but by
combining remotely sensed and other spatial data results
can be calculated for municipalities with areas from 6
km2 upwards. With the systematic design approach
there is no risk of gaps, which may be regarded as its ad-
vantage over the LPM.
This and previous studies (e.g. Grafström et al. 2017;

Räty et al. 2018) have been based on simulating a sample
selection with different sampling methods and designs.
However, we observed that the response depended both
on the target variable and target dataset. In the 1-nn
population the average distance between the clusters
was markedly smaller than in the field plot population,
which gives another explanation to the differences on
the observed levels of the REs in the different study set-
ups. In fact, if in the 1-nn-population we would have
sampled using the same average distance as in the field
plot population, we would have obtained rather similar
results, at least for the mean volume target variables. Be-
sides the cluster distance, we assume that REs also de-
pend on the study region; its size and variability in
conditions and forest characteristics. Even though our
observations are not generalizable as such, it is worth
noticing and considering these aspects in similar types
of studies.
In agreement with many previous studies (e.g., Stevens

Jr and Olsen 2003; Grafström and Schelin 2014;
Magnussen et al. 2020), our results demonstrate that the
SRS variance estimator fails to reveal improved precision
due to spatially balanced sampling and that local differ-
ence estimators are much less biased. In the case of
LPMxy, local difference estimators never underestimated
the true sampling variance. A guarantee against variance
underestimation is important from the practical point of
view: we do not want to end up claiming our estimators
to be more precise than they really are.

For systematic sampling, the Grafström-Schelin vari-
ance estimates were practically identical to the Matérn
estimates. This finding lends support to the use of Graf-
ström-Schelin estimator for spatially systematic samples
other than rectangular grids, for which the Matérn esti-
mator is not directly applicable. This is relevant, for ex-
ample, in Finnish NFI, where the sampling design has
evolved from a square grid of clusters to a combination
of two different grids, one for permanent sample plots
and another for temporary plots. Irregular designs also
occur, when the estimation is needed over period with
partial samples from two consecutive inventories with
different systematic designs.
In LPM designs with further auxiliary variables in

addition to the geographic coordinates, we found that
the Grafström-Schelin estimator tended to underesti-
mate the sampling variance for the subpopulations. This
phenomenon may be associated with the domain estima-
tion context (LPM sampling was conducted at the level
of the whole population). Some support for this hypoth-
esis was obtained from a spot test, where we generated
LPM samples with all auxiliary variables from subpopu-
lation 2. The Grafström-Schelin variance estimates for
the ‘All volume’ were at the same level as those com-
puted from the whole-population LPM samples, but the
empirical variance of volume estimates was so much
smaller that significant underestimation did not occur.
In the case of cluster sampling designs such as here,

there is potential for improvement in the definition of
the neighborhood for LPM sampling and the Grafström-
Schelin variance estimator. The Euclidean distance
metric based on cluster-level mean values of the auxil-
iary variables could be replaced by another metric that
would also reflect within cluster variation. For example,
cluster-level quantiles of auxiliary variables could be
used to identify the most similar cluster. This could
affect the efficiency of the LPM algorithm, as very differ-
ent plot combinations could produce exactly the mean
volume within the cluster.

Conclusions
According to our simulation study, LPM designs utiliz-
ing auxiliary data can be more efficient than systematic
sampling for specific target variables, but it appears to
be difficult to make gains in efficiency simultaneously
for all target variables of an NFI. In our study, we in-
cluded thirteen different target variables and for some of
them the LPM designs were less efficient than the sys-
tematic sampling design. All in all, to make gains in effi-
ciency using LPM, for some target variables it might be
necessary to accept smaller efficiencies for other target
variables. Nevertheless, even though the use of LPM as a
general tool in an NFI seems challenging, it enables un-
equal probability sampling and fixed-size samples with
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an approximate spatial balance, which may be useful
when designing a special inventory.
In the systematic design, the Grafström-Schelin esti-

mator of variance was practically equivalent to the
Matérn estimator applied in the Finnish National Forest
Inventory. Both are easy to implement in an operational
NFI, but the Grafström-Schelin estimator is more flex-
ible, since it is also directly applicable to geographically
balanced designs other than rectangular grids. However,
we found that the Grafström-Schelin estimator can
underestimate true sampling variance in subpopulation
estimates when LPM is applied with other auxiliary data
in addition to the coordinates.
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