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Abstract

Background: Digital hemispherical photography (DHP) is widely used to estimate the leaf area index (LAI) of forest
plots due to its advantages of high efficiency and low cost. A crucial step in the LAI estimation of forest plots via
DHP is choosing a sampling scheme. However, various sampling schemes involving DHP have been used for the
LAI estimation of forest plots. To date, the impact of sampling schemes on LAI estimation from DHP has not been
comprehensively investigated.

Methods: In this study, 13 commonly used sampling schemes which belong to five sampling types (i.e. dispersed,
square, cross, transect and circle) were adopted in the LAI estimation of five Larix principis-rupprechtii plots (25m× 25m).
An additional sampling scheme (with a sample size of 89) was generated on the basis of all the sample points of the 13
sampling schemes. Three typical inversion models and four canopy element clumping index (Ωe) algorithms were
involved in the LAI estimation. The impacts of the sampling schemes on four variables, including gap fraction, Ωe,
effective plant area index (PAIe) and LAI estimation from DHP were analysed. The LAI estimates obtained with different
sampling schemes were then compared with those obtained from litter collection measurements.

Results: Large differences were observed for all four variable estimates (i.e. gap fraction, Ωe, PAIe and LAI) under different
sampling schemes. The differences in impact of sampling schemes on LAI estimation were not obvious for the three
inversion models, if the four Ωe algorithms, except for the traditional gap-size analysis algorithm were adopted in the
estimation. The accuracy of LAI estimation was not always improved with an increase in sample size. Moreover, results
indicated that with the appropriate inversion model, Ωe algorithm and sampling scheme, the maximum estimation error
of DHP-estimated LAI at elementary sampling unit can be less than 20%, which is required by the global climate
observing system, except in forest plots with extremely large LAI values (~ > 6.0). However, obtaining an LAI from DHP
with an estimation error lower than 5% is impossible regardless of which combination of inversion model, Ωe algorithm
and sampling scheme is used.
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Conclusion: The LAI estimation of L. principis-rupprechtii forests from DHP was largely affected by the sampling schemes
adopted in the estimation. Thus, the sampling scheme should be seriously considered in the LAI estimation. One square
and two transect sampling schemes (with sample sizes ranging from 3 to 9) were recommended to be used to estimate
the LAI of L. principis-rupprechtii forests with the smallest mean relative error (MRE). By contrast, three cross and one
dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs.

Keywords: Sampling scheme, Elementary sampling unit, Clumping index, Leaf area index, Digital hemispherical
photography, Forest, Larix

Introduction
Leaf area index (LAI) is an important forest structure
parameter that is defined as one half of the total canopy
element green area per unit ground area of forest plots
(Watson 1947; Chen and Black 1992). LAI is required in
most forest biophysical and physiological process models
(Running and Hunt 1993; Zou et al. 2018b). It can be
measured at the elementary sampling unit (ESU) scale
via direct or indirect methods, and can be retrieved from
remote sensing images at the regional, national or even
global scale. ESU-scale LAI estimates are typically used
to evaluate satellite-derived LAI products due to their
relatively high accuracies and reliabilities.
LAI is one of the 16 essential terrestrial climate vari-

ables required by the global climate observing system
(GCOS). GCOS has specified that the estimation error
of LAI products must be limited to 20% and should be
improved to 5% for future applications (Fernandes et al.
2014; Woodgate 2015). However, large differences have
been reported amongst commonly used LAI products
(Garrigues et al. 2008; Fang et al. 2013; Chen 2014).
Therefore, accurate ESU-scale LAI estimates are re-
quired to consistently evaluate LAI products in order to
pick out qualified LAI products and improve those
unqualified ones.
Optical methods are typical indirect methods to obtain

the ESU LAI of forests with high efficiency and low cost
(Jonckheere et al. 2004; Zou et al. 2009), including LAI-
2000/LAI-2200 (LI-COR, Lincoln, NE, USA), digital hemi-
spherical photography (DHP) (Jonckheere et al. 2004;
Weiss et al. 2004), multiband canopy imaging methods
such as multiband vegetation imager (Zou et al. 2009) and
multispectral canopy imager (Kucharik et al. 1997), as well
as the tracing radiation of canopy and architecture
method (3rd Wave Engineering, Winnipeg, Manitoba,
Canada) (Leblanc and Chen 2002). Previous studies re-
ported that the LAI estimation error of optical methods in
the ESU LAI estimation of forests are mainly caused by in-
version models (Liu et al. 2015; Zou et al. 2018b), clump-
ing effects (Leblanc and Chen 2002; Leblanc et al. 2005;
Chen et al. 2006; Zou et al. 2018b), nonphotosynthetic
components (Weiss et al. 2004; Zou et al. 2009; Ercanlı
et al. 2018; Zou et al. 2018a), terrain slopes (Gonsamo and

Pellikka 2008; Cao et al. 2015), sampling schemes
(Nackaerts et al. 2000; Weiss et al. 2004; Majasalmi
et al. 2012; Pfeifer et al. 2018) and observation condi-
tions (Leblanc and Chen 2001; Jonckheere et al. 2004;
Zhang et al. 2005). In recent years, great efforts have
been made to reduce the ESU LAI estimation errors
of optical methods, and numerous advancements have
been achieved through the involvement of appropriate
inversion models (Leblanc and Fournier 2014;
Woodgate 2015; Zou et al. 2018b), terrain slope cor-
rection methods (Cao et al. 2015) and woody compo-
nents (nonphotosynthetic components) correction
methods (Zou et al. 2018a; Zou et al. 2019). However,
to the best of our knowledge, no attempt has been
made to evaluate the impact of sampling schemes on
the ESU LAI estimation of forests via optical
methods. Sampling schemes with various numbers
and spatial arrangements of sample points have been
adopted by optical methods such as DHP and LAI-
2000/LAI-2200, to estimate the ESU effective plant
area index (PAIe), effective woody area index and LAI
of forest plots. For example, sample points were
spatially arranged in certain patterns such as circle
(Soto-Berelov et al. 2015; Woodgate 2015), square
(Neumann et al. 1989; Baret et al. 2005; Macfarlane
et al. 2007; Ryu et al. 2010a; Pisek et al. 2011;
Woodgate et al. 2012; Liu et al. 2015), transect
(Cutini et al. 1998; van Gardingen et al. 1999; Hyer
and Goetz 2004; Abuelgasim et al. 2006; Ryu et al.
2010a; Majasalmi et al. 2012), cross (Leblanc 2008;
Woodgate et al. 2012; Leblanc and Fournier 2014;
Zou et al. 2018a) and dispersed (Abuelgasim et al.
2006; Majasalmi et al. 2012). Moreover, different sam-
ple sizes ranging from 1 to 176 have been applied at
the ESU scale (Cutini et al. 1998; van Gardingen
et al. 1999; Nackaerts et al. 2000; Macfarlane et al.
2007; Gonsamo et al. 2010; Ryu et al. 2010a; Pisek
et al. 2011; Woodgate 2015; Calders et al. 2018; Zou
et al. 2018a; Zou et al. 2018b).
Previous studies have reported obvious differences in

the PAIe estimates from different sampling schemes
(Nackaerts et al. 2000; Majasalmi et al. 2012; Calders
et al. 2018). Similar to the PAIe obtained indirectly from
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gap fraction measurements, canopy element clumping
index (Ωe), which can be estimated by current available
algorithms such as gap-size analysis (CC) (Chen and
Cihlar 1995a), finite-length averaging (LX) (Lang and
Yueqin 1986) and combination of gap-size and finite-
length averaging (CLX) (Leblanc et al. 2005), also de-
pends on gap fraction and gap size measurements from
the optical method. Therefore, Ωe estimation should also
be affected by sampling schemes.
Different zenith angles (θ) have been used by different

inversion models. For instance, the effective zenith angle
range for the Nilson model (Nilson 1999) and the Miller
theorem (Miller) (Miller 1967) is from 0° to 90°, while
the zenith angle range for the LAI calculation method of
the LAI-2200 instrument is from 0° to 74° (LAI-2200)
(LI-COR 2009), and zenith angles near 57.3° are used for
Beer’s law (Beer) (Ross 1981; Leblanc and Fournier 2014;
Zou et al. 2018b). Variations in gap fraction or Ωe mea-
surements with zenith angles ranging from 0° to 90° are
usually large for forest plots (Leblanc et al. 2005; Liu
et al. 2015; Woodgate 2015; Zou et al. 2018b). Therefore,
LAI estimation is expected to be influenced by inversion
models which depend on gap fraction and Ωe measure-
ments. For example, the plant area index (PAI) estimates
of forest plots were reported to be largely affected by in-
version models (Zou et al. 2018b). Therefore, accurate
ESU-scale LAI should be obtained by the joint consider-
ation of inversion models, Ωe algorithms and sampling
schemes.
The following three aspects of sampling schemes need

further investigation to improve LAI estimates from
DHP. First, the PAIe estimated from DHP is 35%–75%
of the PAI of forest canopies if Ωe is ignored in the esti-
mation (Leblanc and Chen 2002; Zou et al. 2018b).
Therefore, the impact of sampling schemes on PAI esti-
mates should be started by investigating the impact of
sampling schemes on Ωe estimation. However, no atten-
tion has been paid to such impact yet. Second, large dif-
ferences were observed in the PAI or LAI of the same
forest plot obtained from optical methods with different
inversion models (Ryu et al. 2010a; Zou et al. 2018a; Zou
et al. 2018b). However, only one inversion model (i.e.
Beer or LAI-2200) was used to evaluate the impact of
sampling schemes on the PAIe estimation of forest plots
(Nackaerts et al. 2000; Majasalmi et al. 2012; Calders
et al. 2018). Thus, whether the impact of sampling
schemes on LAI estimation varies with different inver-
sion models should be investigated. Third, recommenda-
tions should be given to select optimal sampling
schemes for accurate ESU LAI estimation of forests.
In this study, DHP images were collected at 89 unique

sample points of 13 sampling schemes in five typical
Larix principis-rupprechtii forest plots. Three commonly
used inversion models (i.e. Miller, LAI-2200 and Beer)

and Ωe estimation algorithms (i.e. CC, LX and CLX)
were adopted to estimate the ESU LAI of forests. The
main purposes of this study are to: (1) analyse the im-
pact of sampling schemes on gap fraction, Ωe, PAIe and
LAI estimations; (2) evaluate the performance of sam-
pling schemes on the ESU LAI estimation of forests
using litter collection LAI measurements; and (3) iden-
tify the best sampling scheme for the ESU LAI estima-
tion of forests.

Theory
The LAI of forest canopies can be obtained on the basis
of the PAI from DHP and woody-to-total area ratio (α)
measurements:

LAI ¼ PAI� 1 − αð Þ: ð1Þ

In the current study, three models (i.e. Miller, LAI-
2200 and Beer) were used because they were reported to
outperform other commonly used inversion models in
the PAI estimation of forest canopies (Zou et al. 2018b).
Several algorithms have been proposed to estimate the
Ωe of forest canopies using gap fraction or gap size mea-
surements collected from DHP. They include CC, LX,
CLX, modified gap-size analysis (Pisek et al. 2011),
modified finite-length averaging (Gonsamo and Pellikka
2009) and Pielou’s coefficient of spatial segregation
(Walter et al. 2003). Pielou’s coefficient of spatial segre-
gation algorithm was claimed to produce inaccurate Ωe

estimates (Walter et al. 2003; Pisek et al. 2011; Zou et al.
2018b). High similarities were found between CC and
modified gap-size analysis as well as between LX and
modified finite-length averaging algorithms (Zou et al.
2018b). Moreover, amongst CC, LX and CLX, no single
algorithm is better than the other two in the Ωe estima-
tion of all forest plots (Zou et al. 2018b). Therefore, all
three algorithms (i.e. CC, LX and CLX) were adopted in
the PAI estimation in this study. The details of the for-
mula to obtain the Ωe and PAI of forest plots can be
found in Additional file 1.

Materials and methods
Plot description
The study area is located in the Saihanba National For-
est Park in Hebei Province, China. Five even-aged plots
of 25 m × 25m (ESU) that covered typical ages of L.
principis-rupprechtii in the study area were used. L.
principis-rupprechtii is one of the dominant and wide-
spread tree species in northern China. The five plots are
at least about 120 m away from the forest border. The
structure characteristics of the canopy around the plots
are similar to those of the plots. The majority of
branches below the live canopy in plot 1 and 2 were har-
vested by local forest managers before our field
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experiment. Dead branches at heights below 2.5 m in
plots 3 and 4 were harvested in the low and medium
levels before the field campaign (Zou et al. 2018a). The
main characteristics of the five plots are listed in
Table 1.

Data acquisition and processing
DHP
Thirteen sampling schemes (SS1–SS13) (predefined sam-
pling schemes) comprising 89 unique sample points were
used in this study (Fig. 1). Figures 1a–d show four square
sampling schemes, amongst which 9, 16 and 25 sample
points were evenly distributed in the plots for SS2, SS3
and SS4, respectively. Figures 1e–g show three cross sam-
pling schemes (i.e. SS5, SS6 and SS7), amongst which the
sample points were located at or close to the two perpen-
dicular centre lines of each plot. Compared with SS6, one
additional sampling point was added in each quadrant 2.5
m away from the centre lines for SS7 to increase the can-
opy sampling of the centre areas of the plots (Leblanc
2008). Two dispersed sampling schemes are shown in
Fig. 1h and i. For SS8, three sample points were randomly
distributed within the plot along with one central point
and eight others were distributed evenly on the boundary
lines. For SS9, four sample points were distributed evenly
along one of the diagonal lines and 12 sample points were
distributed evenly on the four boundary lines. Figure 1j–l
illustrate three transect sampling schemes, in which sam-
ple points were evenly distributed along the diagonal lines.
A total of 13 sample points in a circle sampling scheme
(i.e. SS13) were evenly distributed with a distance interval
of 5m along three intersecting lines with the same inter-
section angle of 60° (Woodgate 2015). The number of
sample points for these 13 sampling schemes ranged from
3 (i.e. SS10) to 25 (i.e. SS4). To increase the number of
sample points, a sampling scheme (SS14) (simulated sam-
pling scheme) was generated using all the sample points

from these 13 sampling schemes to represent the sample
scheme with 89 sample points (Fig. 1n). For SS14, the dis-
tances between the neighbour points for all sampling
points ranged from 0.7 to 5.9m (Fig. 1n). The position of
each sampling point of all sampling schemes in the field
was established with tape and marked with wooden stakes
with flags to facilitate the DHP image collection (Zou
et al. 2018a). Parts of the 89 sampling points were slightly
moved from its designed positions to new adjacent posi-
tions in the field in order to make the positions of all sam-
pling points were at least about 0.6 m away from its
nearest large tree stems. This movement is necessary in
order to avoid the greatly increased visible proportion of
stems in DHP images.
DHP images were collected using a Canon 6D cam-

era with a Sigma 8 mm fisheye lens before sunrise,
after sunset or under overcast conditions (Zou et al.
2018a). The DHP image resolution was 5472 × 3648
pixels. Manual exposure mode was used in the DHP
image collection. The exposure was determined using
the method described in Leblanc et al. (2005) and
Woodgate et al. (2015) to achieve good contrast be-
tween canopy element and sky. The camera was set
approximately 1.2 m above the ground. The DHP im-
ages were acquired one by one at all 89 unique sam-
ple points of the 13 sampling schemes in each plot. A
total of 445 DHP images were obtained from the five
plots. The DHP images were taken in 2017 from Au-
gust 11 to September 2, which was the peak season
with maximum LAI of the year for the five plots
(Zou et al. 2018a; Zou et al. 2019).
The DHP images were manually processed using

Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA,
USA). The image preprocessing procedures included
image cropping, blue channel selection, gamma correc-
tion (the gamma of the blue channel was corrected to
about 1.0) and image classification (Gonsamo and

Table 1 Characteristics of the Larix principis-rupprechtii plots (Zou et al. 2018a)

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Longitude and latitude 42°24′43″ N, 117°19′4″
E

42°24′2″ N, 117°18′40″
E

42°18′2″ N, 117°18′9″
E

42°25′22″ N, 117°19′32″
E

42°17′42″ N, 117°16′53″
E

Mean tree height (m) 19.43 20.4 12.58 13.31 8.73

Average DBHa (cm) 26.58 27.22 12.71 14.14 9.23

Stand density
(stems∙ha− 1)

464 384 2320 1760 3904

Tree age (~yrs) 54 55 21 22 13

Needle-to-shoot area
ratio

1.30 1.17 1.14 1.17 1.28

Woody-to-total area ratio 0.16 0.16 0.20 0.24 0.23

Litter collection LAI 4.65 3.58 4.96 3.04 6.69

Slope ~ 0°
aDiameter at breast height
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Pellikka 2008; Zou et al. 2018a). The threshold values
for the DHP images to be classified into canopy element
and sky were determined by referring to the mean digital
numbers of the canopy element and sky peaks in the
histogram of the blue channel images.

In this study, a narrow zenith angle range of 52°–62°
was used by the Beer inversion model. Segment size is a
key parameter required by LX and CLX in Ωe estima-
tion. This parameter was used to divide each annulus of
DHP into several small segments and make the canopy

Fig. 1 Sample points in 13 predefined (SS1–SS13) and 1 simulated sampling scheme (SS14) in each plot. Red dots represent the position of
sample points
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element at the segment scale approach random spatial
distribution which was assumed by LX. The 5° segment
size recommended by Gonsamo et al. (2010) was
adopted for LX (hereinafter, LX_5, in which ‘5’ repre-
sents the segment size of 5°); this size would result in 72
segments for each annulus of DHP. As for CLX, no large
differences were found between the root mean square
error and mean absolute error of the PAI of forest plots
estimated using the same inversion model and CLX but
with three segment sizes of 15°, 30° and 45° (Zou et al.
2018b). Therefore, for simplicity, only the 15° segment
size was chosen for CLX (CLX_15) to calculate Ωe in
this study. For CC, two transect processing schemes (i.e.
CCW and CCS) were used in the Ωe estimation. CCW
merges the transects of all DHP images into a whole
transect to calculate the Ωe for each sampling scheme.
By contrast, CCS treats the transect of each DHP image
individually and the final Ωe is obtained by averaging the
Ωe of all DHP images for each sampling scheme. The
same estimation procedure to obtain Ωe at zenith angles
ranging from 0° to 90° with a 1° interval, as suggested by
our previous study (Zou et al. 2018b), was also used in
the current study. MTVSP software (version 2018) (Zou
et al. 2015; Zou et al. 2018a) was operated to estimate
the canopy element gap fraction at θ (pe(θ)), Ωe, PAIe,
PAI and LAI of the five plots from the preprocessed
DHP images. PAIe and PAI of each plot were calculated
using the mean pe(θ) of all processed DHP images of
each sampling scheme, as suggested by Ryu et al.
(2010b). For each sampling scheme of each plot, 3 PAI
estimates were calculated using Equations A6–A8 on
the basis of the pe(θ), canopy element gap fraction of the
ith annulus of LAI-2200 (pe _ i), canopy element gap frac-
tion at 57° (pe(57)) and Ωe estimate, which was obtained
from one Ωe algorithm amongst the four Ωe algorithms
(i.e., CCS, CCW, LX_5 and CLX_15). Then 12 PAI esti-
mates were obtained for each sampling scheme of each
plot. Next, 12 LAI estimates were calculated for each
sampling scheme of each plot using Equation (1) based
on the calculated PAI and α measurements, which were
obtained with destructive measurements (detailedly de-
scribed in section below).
The pe(θ) measurements of annuli with zenith angles

close to 90° were tended to approach or equal to zero.
In this study, PAI or LAI under the condition of zero
gap fraction was defined as 10 (Zou et al. 2018b). The
upper limit of the estimated LAI for very small pe(θ)
measurements was set to 10 to avoid obtaining unrealis-
tically high LAI estimates (Leblanc et al. 2005; Pisek
et al. 2011; Yan et al. 2019).

α, γ and LAI
The α for each plot was estimated with destructive mea-
surements of two or three representative trees that were

selected and harvested. The stems and branches of the
harvested trees were divided into height classes with a
height interval of 1 m and a starting height of 1.2 m. The
stem, branch and fruit areas of each height class for each
harvested tree were measured with a tape or a digital
calliper, with the assumption that the stem or branch
sections were circular truncated cones and the fruits
were spheroids (Zou et al. 2018a). Approximately 300–
350 typical needles were randomly selected from the
branches of each height class or several height classes
with similar needle characteristics. The needle cross sec-
tion was assumed to be rectangular in shape. The hemi-
surface area of typical needles was measured with the
volume displacement method described by Chen et al.
(1997). The dry mass of typical needles and all needles
of each height class of each tree were obtained by drying
the needles at 65 °C for 48 h until the weights of the nee-
dles remained almost unchanged. For these typical nee-
dles, the specific leaf area was obtained by dividing the
hemisurface area by the dry mass. The leaf area of a
height class was calculated by multiplying the specific
leaf area with the dry mass of all needles in that height
class. The leaf area of each harvested tree was the sum
of the leaf area of every height class for that tree. The α
of each harvested tree was then calculated by dividing
the area of the woody components (stem, branches and
fruits) by the sum of the woody components and leaf
areas of that tree. The α of each plot was calculated
using the α of the representative trees and the DBH
measurements of each plot. Details of the α estimation
of the five plots are available in our previous work (Zou
et al. 2018a).
For each plot, two to four typical shoots were ran-

domly selected from each height class of forest canopy
(i.e. bottom, middle and top) for needle-to-shoot area
ratio (γ) determination. Incomplete and abnormal (un-
typical) shoots were discarded before the estimation of
γ. For each typical shoot, the projection areas were re-
corded using a Canon 6D camera equipped with a
Canon 24–70 mm lens and a flat, levelled white panel
with two rulers laid on its top surface (Zou et al. 2018a).
Three shoot projection images were taken right above
each shoot sample at a distance of approximately 0.6 m
by rotating the shoot main axis to three zenith angles
(i.e. 0°, 45° and 90°) and one azimuth angle (i.e. 0°).
Afterwards, the three projection areas of the typical
shoot (Ap(0°, 0°), Ap(45°, 0°) and Ap(90°, 0°)) were calcu-
lated according to the three shoot projection images
(Zou et al. 2018a). The half of the total needle area in a
typical shoot (An) was measured by the volume displace-
ment method described by Chen et al. (1997). Then, the
effective needle-to-shoot area ratio (γe) of each shoot
could be obtained with Equation (A1). The γe of each
plot was obtained by averaging the γe of all typical
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shoots. Then the γ of each plot was obtained with Equa-
tion (A2) on the basis of γe and α.
In each plot, nine litter traps of 50 cm × 50 cm in

size were placed 50 cm aboveground at each sample
point of SS2. The litter collection was started before
defoliation and ended after it. The measurements

were performed six times during the entire period, on
September 1, 18 and 29 and October 13, 18 and 24
in each plot. During each measurement time, approxi-
mately 300–350 typical needles were randomly se-
lected from the litter collections of each plot to
measure the specific leaf area. The method for the

Fig. 2 Canopy element gap fraction (pe(θ)) obtained at four typical zenith angles (i.e. 0°, 30°, 57° and 90°) with the 13 predefined sampling
schemes (SS1–SS13) in the five plots
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calculating the specific leaf area of the typical needles
was the same as those for calculating α. The dry mass
of all needles of each measurement time for each plot
was obtained by drying the needles at 65 °C for 48 h
until the weights of the needles remained almost un-
changed. Totally six specific leaf area and dry mass
measurements corresponding to the six measurement
times, respectively, were obtained for each plot. In
each plot, the one-half of the area of fallen needles
for each measurement time was obtained by multiply-
ing the specific leaf area by the dry mass of all fallen
needles of that measurement time. The LAI of each
plot was then obtained by dividing one-half of the
total area of the fallen needles collected during the
six measurement times by the area of the litter traps.

Statistical analysis
Mean relative error (MRE), which is similar to the mean
relative deviation from Calders et al. (2018), was used in
this study because it corresponds to the accuracy

evaluation required by GCOS. The MRE of the LAI for
each combination of inversion model, Ωe algorithm and
sampling scheme was calculated using the litter collec-
tion LAI as the reference.

Results
Effect of sampling schemes on gap fraction (pe(θ))
estimation
Obvious differences were observed amongst the pe(θ)
from different predefined sampling schemes at the four
typical zenith angles, except at 90°, and the differences
seem to decrease with the zenith angle (Fig. 2). For ex-
ample, the maximum pe(θ) differences amongst the 13
predefined sampling schemes in the five plots ranged
from 0.29 to 0.44 for zenith angle 0°, 0.07–0.16 for 30°,
0.03–0.09 for 57° and 0– 6.81 × 10−4 for 90°. Note that
the pe(90) of all predefined sampling schemes in the five
plots, except for plots 4 and 5, were equal to 0 (Fig. 2);
pe(90) of all predefined sampling schemes, except for
SS8–SS9, were equal to 0 in plot 4 (Fig. 2d); and

Fig. 3 Canopy element clumping indices (Ωe) obtained using the four Ωe algorithms (i.e. CCW, CCS, LX_5 and CLX_15) with the 13 predefined
sampling schemes (SS1–SS13) at four zenith angles in plot 5 (a: 10°, b: 30°, c: 57° and d: 90°). Only plot 5 data are shown here as the other four
plots showed similar behaviours
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the pe(90) of all predefined sampling schemes ranged
from 3.07 × 10−5 to 7.12 × 10−4 in plot 5 (Fig. 2e).

Effect of sampling schemes on canopy element clumping
index (Ωe) estimation
Similarly to the gap fraction, obvious variations were
also found amongst the Ωe from the 13 predefined sam-
pling schemes, which were obtained using the same Ωe

algorithm at four typical zenith angles (i.e. 10°, 30°, 57°
and 90°) in plot 5. The variations also seem to decrease
with the zenith angle, except at 90° (Fig. 3). For example,
the ranges of maximum variations amongst the Ωe from
the 13 predefined sampling schemes for the four Ωe al-
gorithms were 17%–28% (0.07–0.16) for the zenith angle
of 0°, 9%–22% (0.07–0.13) for 30° and 5%–10% (0.05–
0.08) for 57° (Fig. 3). Variations were also observed at
90°, especially for algorithms LX_5 and CLX_15. The
ranges of variations amongst the Ωe from the 13 prede-
fined sampling schemes at 90° were 0%–0% (0–0), 0%–
1% (0–0.01), 0%–37% (0–0.27) and 0%–35% (0–0.26) for
CCW, CCS, LX_5 and CLX_15, respectively (Fig. 3d).
Figure 3 also shows that the Ωe estimated with CCW

was greater than that by CCS, which was obtained with
the same scheme and zenith angle, for all predefined
sampling schemes at the four zenith angles, except at
90°. In addition, the differences between the Ωe from
CCW and CCS under the same sampling scheme tended
to increase with the increasing sample size at almost all
zenith angles, except at 90°. For example, the differences
between the Ωe from CCW and CCS at 30° increased
from 0.02 (3%) for SS2 to 0.12 (15%) for SS3 and 0.15
(18%) for SS4. An example of the gap removal procedure
of the Ωe estimation for CCW and CCS was presented
(Fig. 4) to investigate the cause of the difference between
Ωe from CCW and CCS. For CCW, the gap fraction of

the largest gap size was small (8.62 × 10−4 for the gap
size of 132 in pixels in the Fig. 4a example) because the
length of the whole transect was large (153, 225 pixels)
(Fig. 4a).

Effect of sampling schemes on PAIe and LAI estimation
Obvious differences were observed amongst the PAIe of
the 13 predefined sampling schemes, which were esti-
mated using the same inversion model in the five plots.
The strength of the sampling scheme’s impact on the
PAIe estimation varied with the inversion model (Fig. 5).
The widest range of differences (0%–43%) amongst the
PAIe of the 13 predefined sampling schemes was found
if Miller was used in the PAIe estimation. By contrast,
the range of differences amongst the PAIe of the 13 pre-
defined sampling schemes was narrowed to 0%–32% for
Beer and 0%–30% for LAI-2200.
Fig. 6 shows that the LAI estimation was also largely

affected by the sampling schemes. However, it is differ-
ent from the PAIe estimation since no large difference of
the impact on LAI estimation was found amongst the
three inversion models when the Ωe algorithm of CCW
was not used in the estimation. Specifically, the differ-
ences between the LAI obtained using the same inver-
sion model and Ωe algorithm amongst the four Ωe

algorithms, except CCW, under different predefined
sampling schemes ranged from 0% to 36.2% (0–0.88) for
Miller, 0%–35.1% (0–0.92) for LAI-2200 and 0%–37.6%
(0–0.9) for Beer. When the Ωe algorithm was CCW, the
differences between the LAI obtained using the same in-
version model under different predefined sampling
schemes became larger, which ranged from 0% to 46.8%
(0–0.79) for Miller, 0%–37.9% (0–0.69) for LAI-2200
and 0%–64.5% (0–0.75) for Beer.

Fig. 4 Measured, reduced and theoretical random accumulated gap size distributions obtained by (a) CCW and (b) CCS with SS4 at 57° in plot 5
(The results of only one DHP image of SS4 are shown here as the results of other DHP images are similar). The curves of the measured and
reduced accumulated gap size distributions in a were completely overlapped

Zou et al. Forest Ecosystems            (2020) 7:52 Page 9 of 18



Fig. 6 also shows that all the LAI estimates obtained using
the three inversion models and four Ωe algorithms with 14
sampling schemes in the five plots were systematically
smaller than the litter collection LAI. The underestimation

was especially obvious if CCW was adopted in the estima-
tion, and it was reduced if CCW was replaced by CCS in
the estimation (Fig. 6 and Table 2). For example, as shown
in Table 2, the MREs of LAI obtained using Beer with 13

Fig. 5 Effective plant area index (PAIe) obtained by three inversion models (i.e. Beer, LAI-2200 and Miller) with the predefined sampling schemes
(SS1-SS13) in the five plots. The PAIe estimates were obtained using Equations (A6), (A7) and (A8) by assuming the canopy element clumping
index at θ (Ωe(θ)), Ωe at 57°, Ωe of the ith annulus (Ωe _ i) and needle-to-shoot area ratio (γ) are equal to 1 (Additional file 1)
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Fig. 6 LAI obtained using the three inversion models and four canopy element clumping index (Ωe) algorithms with the 13 predefined sampling
schemes (SS1–SS13) and one simulated sampling scheme (SS14) against litter collection LAI measurements in the five plots
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predefined sampling schemes ranged from 47.2% to 59.7%
for CCW and reduced to 44.2%–53.0% for CCS. The smal-
lest MRE was 15.2%, which was obtained using the combin-
ation of Miller, CLX_15 and SS10.
As shown in Table 2, the MREs of the LAI ob-

tained using Miller and CLX_15 with the scheme
with the largest sample size (SS14) was larger than
those obtained using the same inversion model and
Ωe algorithm but with all predefined sampling
schemes with smaller sample sizes (SS1–SS13), except
for SS6 and SS7. The same tendency can be found

for the cases of two sampling scheme groups with the
same sampling scheme type but with different sam-
pling sizes, such as SS2–SS4 and SS10–SS11. For in-
stance, the MREs of the LAI obtained using Miller
and CLX_15 were 19.9% for SS2 with a sample size
of 9, 21.0% for SS3 with a sample size of 16 and
24.3% for SS4 with a sample size of 25 (Table 2).
Similarly, the MREs were 15.2% for SS10 with a sam-
ple size of 3 and increased to 20.0% for SS11 with a
sample sizes of 5 if Miller and CLX_15 were adopted
in the LAI estimation (Table 2).

Table 2 Mean relative errors (MREs) (%) of the LAI obtained with all the combinations of inversion model, canopy element
clumping index (Ωe) algorithm and sampling scheme. For each combination of inversion model and Ωe algorithm, the four sampling
schemes with the smallest MREs shown in red and the largest shown in green
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Table 2 also shows that the performance of sampling
schemes in the LAI estimation changes with the inver-
sion models. For example, SS2 and SS10 outperformed
the other 11 predefined sampling schemes in the LAI es-
timation if the inversion model was LAI-2200 or Beer
due to the MREs of SS2 and SS10 were amongst the four
smallest MREs of the LAI obtained using the same in-
version model and Ωe algorithm but with the 13 prede-
fined sampling schemes (Table 2). Similarly, the MREs
of SS10 and SS11 were amongst the four smallest MREs
of the LAI obtained using the same inversion model and
Ωe algorithm with the 13 predefined sampling schemes
if Miller was used in the estimation (Table 2). Note that
most of the MREs of the LAI obtained with SS5, SS6,
SS7 and SS9 were greater than those obtained using the
same inversion model and Ωe algorithm but with the
other 9 predefined sampling schemes (Table 2).

Discussion
Are the Ωe and LAI estimates markedly affected by sampling
schemes?
Large differences were found amongst the Ωe (0%–37%)
obtained with the same Ωe algorithm under different
predefined sampling schemes (Figure 3) and amongst
the LAI (0%–64.5%) estimated with the same inversion
model and Ωe algorithm under different sampling
schemes in all the plots (Fig. 6). This finding indicates
that both the Ωe and LAI estimation are largely affected
by the sampling scheme.
The large differences for Ωe under different sampling

schemes could be explained by the obvious differences
for pe(θ) under different sampling schemes (Fig. 2) given
that all the Ωe algorithms directly or indirectly relied on
pe(θ) to calculate Ωe. The fact that the difference be-
tween Ωe of CCW and CCS increases with the sample
size for all the typical zenith angles, except at 90°, is pri-
marily attributed to the incapability of CCW to effect-
ively remove the large gaps (Fig. 4), which resulting from
the nonrandom distribution of the canopy element in
the gap removal procedure of the Ωe estimation (Chen
and Cihlar 1995b). This tendency indicated that the
transect processing scheme is an important issue for CC
in the Ωe estimation. With the increase of transect
length or sample size, the gap fraction of the same large
gaps would be smaller. The variations between the LAIs
obtained on the basis of the gap fraction estimates of the
whole transect with or without the large gap sizes would
tend to be smaller than the trigger condition of the gap
removal procedure of CCW (< 0.01) (Chen and Cihlar
1995b). Larger Ωe estimates would thus be obtained by
CCW because large gaps were not effectively removed
by the gap removal procedure in CCW (Fig. 4a). On the
contrary, large gaps of the transects could be effectively
distinguished and removed by CCS (Fig. 4b). Therefore,

the differences between the Ωe of CCW and CCS in-
crease with the sample size. Actually, many studies have
also reported that CCW offers larger Ωe estimates than
other Ωe algorithms, even though different PAI and
plant function types of forest plots were covered in these
studies (Pisek et al. 2011; Leblanc and Fournier 2014;
Woodgate 2015; Zou et al. 2018a, 2018b). CCS could
offer more accurate Ωe than CCW due to the MREs of
the LAI obtained using CCS were smaller than that
using CCW under the condition of the same inversion
model and sampling scheme (Table 2).
The obvious differences amongst the pe(θ) or Ωe from

different sampling schemes would further result in large
differences in PAIe or LAI (Figs. 5 and 6, respectively)
because pe(θ) and Ωe are the key parameters for PAIe or
LAI estimation (Equations A6–A8). The impact of the
sampling schemes on PAIe estimation was greater when
the inversion model was Miller rather than the other
two (i.e. LAI-2200 and Beer). An indication was that the
variations of PAIe obtained with different predefined
sampling schemes ranged from 0% to 43% for Miller but
only 0%–30% for LAI-2200 and 0%–32% for Beer (Fig. 5).
One reason was identified in relation to the large range
of variations for Miller. The pe(90) of all predefined sam-
pling schemes in the five plots, except in plots 4 and 5,
were equal to 0 (Fig. 2); the pe(90) of all predefined sam-
pling schemes, except for SS8 and SS9, were equal to 0
in plot 4 (Fig. 2); and the pe(90) of all predefined sam-
pling schemes ranged from 3.07 × 10−5 to 7.12 × 10−4 in
plot 5 (Fig. 2). For Miller, the small variations between
pe(θ) measurements with zenith angles close to 90°, es-
pecially for those between zero and non-zero measure-
ments, would result in obvious differences in PAIe
estimates. This outcome is attributed to the variations in
pe(θ) measurements being significantly enlarged by the
logarithm of pe(θ) in the PAIe estimation (Equation A6)
and the relatively large weight values (cos(θ) sin(θ)) at
zenith angles close to 90° (not equal to 90°) compared to
those at zenith angles close to zenith for Miller (Zou
et al. 2018b). Compared with Miller, LAI-2200 or Beer
can avoid the impact of zero or very small pe(θ) mea-
surements on the PAIe estimation owing to the small
zenith angle range covered by LAI-2200 (0°–74°) or Beer
(52°–62°) and the large zenith angle width of the annulus
of LAI-2200 (12°–14°) or Beer (10°) (Zou et al. 2018b).
Different from PAIe, the impact of sampling schemes

on LAI estimation was not greater for Miller than the
other two inversion models if CCW was not used in the
estimation (Fig. 6 and Table 2). The reason could be at-
tributed to the different zenith angle ranges covered by
the three inversion models and the tendency of the vari-
ations amongst the pe(θ) or Ωe of different sampling
schemes decreases with the zenith angle, except at 90°
(Figs. 2 and 3).
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Does increasing the sample size always improve LAI
estimation accuracy?
The MREs of the LAI obtained with SS14, which has the
largest sample size (i.e. 89), were not always smaller than
those of the LAI obtained using the same inversion
model and Ωe algorithm but with all predefined sam-
pling schemes with smaller sample sizes (i.e. from 3 to
25) (Table 2). The reason might be the overlap of can-
opy sampling of sample points in SS14 owing to the
large sample size and relatively sparse spatial distribution
of the sample points for SS14. The degree of overlap de-
pends on the distance between the sample points and
the canopy height, which is difficult to quantify because
of the irregular spatial distribution of the sample points
of SS14 in the heterogeneous forest plots. Furthermore,
the MREs of the LAI obtained with SS4 were not the
smallest amongst its sampling scheme group (i.e. SS2–
SS4) to estimate LAI using the same inversion model
and Ωe algorithm, even though it had the largest sample
size in the group. The same phenomenon was observed
for the group of SS10 and SS11. Therefore, the accuracy
of the LAI estimates obtained from DHP cannot always
be improved with increasing sample sizes. Caution is
needed if the LAI estimates obtained with the sampling
schemes having large sample sizes are treated as the esti-
mates with high accuracy or even as reference estimates.
Previous studies (e.g. Nackaerts et al. 2000; Majasalmi
et al. 2012; Calders et al. 2018) treated the PAIe or ef-
fective woody area index estimates from sampling
schemes with large sample sizes as highly accurate re-
sults or even as reference for validation which should
provide more specific analyses.

Which sampling scheme(s) is (are) more reliable to
estimate the LAI of forest plots?
The best sampling schemes for estimating the ESU LAI
of L. principis-rupprechtii forests varied with the differ-
ent inversion models used (Table 2). The two sampling
scheme groups of SS2, SS10 and SS10, SS11 are recom-
mended for use to estimate the ESU LAI of L. principis-
rupprechtii forests if LAI-2200 or Beer and Miller were
adopted in the estimation. A common characteristic of
SS2, SS10 and SS11 is their small sample sizes (i.e. 3–9).
This means that an accurate estimation of the ESU LAI
of L. principis-rupprechtii forest plots does not need
sampling schemes with large sample sizes, which are
very cost-effective for the long time series field measure-
ments of forest ESU LAI to validate LAI products.
Amongst the 13 predefined sampling schemes, SS5–

SS7 and SS9 are not recommended for use owing to
their relatively large MREs compared with the MREs
of the LAI obtained using the same inversion model
and Ωe algorithm, except for CCW, but with the
other nine predefined sampling schemes (Table 2).

SS6 and SS7 are likewise not recommendable because
they have the largest MREs in their own sampling
scheme groups (with the same or similar sample sizes
but with different sampling scheme types). Specific-
ally, SS6 belongs to the group that made up SS2, SS6
and SS12 with a sample size of 9, whilst SS7 belongs
to the group of SS7, SS8 and SS13 with the same or
similar sample sizes ranging from 12 to 13. The large
MREs for SS5–SS7 may be caused by an undersam-
pling or oversampling of the four corners or centre
areas of the plots because the sampling points of
those sampling schemes are distributed along or near
the two perpendicular centre lines of the plots. The
poor performance of SS5–SS7 in this study is incon-
sistent with the conclusions of Majasalmi et al.
(2012), who concluded that cross sampling schemes
similar to SS5–SS7 in this study outperformed other
sampling schemes in the PAIe estimation of forest
plots. Three reasons can be responsible for the con-
flicting conclusions from the two studies. First, only
the impact of sampling schemes on the PAIe was in-
vestigated in Majasalmi et al. (2012), which should be
different from that on LAI given that Ωe is addition-
ally required for LAI estimation. Furthermore, Ωe was
largely affected by the sampling schemes (Fig. 3). Sec-
ond, different references were used to evaluate the ac-
curacy of retrievals from different sampling schemes
in the two studies. The PAIe estimates of sampling
scheme with the largest sample size were used as ref-
erence in Majasalmi et al. (2012), whereas litter col-
lection LAI measurements were used in the current
study. However, the results of this study showed that
LAI obtained from the sampling scheme with the lar-
gest sample size (SS14) is not the one with the high-
est accuracy (Fig. 6 and Table 2). Third, the sampling
schemes used in the two studies are not completely
the same, especially for the square and dispersed sam-
pling schemes.

Can accurate ESU LAI with estimation errors below 5% or
20% be obtained from DHP using the 13 predefined
sampling schemes?
LAI underestimation was observed for all the combina-
tions of inversion model, Ωe algorithm and sampling
scheme in the five plots (Fig. 6). This finding can be at-
tributed to two reasons. First, previous studies reported
that optical methods tend to underestimate the LAI of
forest plots when the LAI (not PAI) is large, especially
for a closed canopy with an LAI larger than approxi-
mately 5 or 6, due to the gap fraction saturation issue
for optical methods (Gower et al. 1999; Jonckheere et al.
2004). Evident LAI underestimation of optical methods
in coniferous forest plots with large LAI values was also
reported by Chen et al. (1997). They presented a large
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difference of 45% between the LAI of optical methods
and the allometric measurements in an old black spruce
plot with an LAI of 6.3. As one of the optical methods,
DHP underestimated LAI in plot 5 with an LAI of 6.69
obviously in this study (Fig. 6). Second, most shoots
whose petioles measure about 1–4 mm are located dir-
ectly on the surfaces of the branches and stems of L.
principis-rupprechtii forest plots. Therefore, the overlap
of shoots and woody components will make DHP unable
to sample canopies sufficiently, leading to Ωe overesti-
mation and further LAI underestimation. Moreover, be-
cause branches in the bottom level of plots 1 and 2 were
harvested by management activities, most shoots that
were detected by DHP sensor were located in the middle
and upper level of the canopies. Long-distance detection
reduces the effectiveness of canopy sampling and there-
fore, results in LAI underestimation.
Amongst all the combinations of inversion model, Ωe al-

gorithm and sampling scheme, the LAI with the two smal-
lest MREs (i.e. 10.7% and 13.5%) were obtained using the
combinations of Miller and SS10 with the two Ωe algo-
rithms of CLX_15 and LX_5, respectively (Table 2). The
two MREs of our study are close to those of Leblanc and
Fournier (2014), who reported a minimum MRE of 11%
for the PAI obtained from DHP if the appropriate inver-
sion model and Ωe algorithm were adopted in the PAI es-
timation of the simulated forest scenes. It was expected
that one of the two MREs of this study would be slightly
larger than those of the simulation study. Two reasons
were identified in relation to the relatively large MRE of
this study. First, compared with the simulation study, the
field LAI measurements of DHP usually include two more
LAI estimation error sources (i.e. observation conditions
and DHP image classification). Second, the estimates ob-
tained from the simulation study are PAI, not the LAI of
this study. The conversion from PAI into LAI would
introduce additional estimation errors from the α
measurements.
Table 2 shows that the ESU LAI estimates obtained by

our study did not match the maximum LAI estimation
error threshold of 5% set by GCOS. The reason for this
is that the MREs of the LAI obtained using all the com-
binations of inversion model, Ωe algorithm and sampling
scheme are larger than 5% (Table 2). The LAI differ-
ences between litter collection LAI measurements and
those obtained by DHP with all the possible combina-
tions of inversion models, Ωe algorithms and sampling
schemes are also larger than 5% in the five L. principis-
rupprechtii plots, except in plot 4 (Fig. 6). However, ESU
LAI estimates with the MREs below 20% could be ob-
tained if appropriate combinations of inversion model,
Ωe algorithm and sampling scheme were adopted in the
LAI estimation of L. principis-rupprechtii forest plots
(Table 2). Specifically, ESU LAI estimates with relatively

small MREs (ranging from 10.7% to 20.0%) can be ob-
tained for all plots, except plot 5, using Miller and CLX_
15 with SS1-SS13, with the exception of the four sam-
pling schemes of SS5–SS7 and SS9. The LAI differences
between litter collection LAI measurements and those
obtained from DHP using Miller and CLX_15 with SS10
or SS11 are lower than 20% in the five plots, except plot
5 (Fig. 6). This result indicates that ESU LAI estimates
with the maximum LAI estimation errors below 20%,
which is required by GCOS, can be obtained from DHP
if the appropriate inversion model, Ωe algorithm and
sampling scheme were adopted. This conclusion is at
least effective for L. principis-rupprechtii forest plots, ex-
cept for those with extremely large LAI values (e.g. 6.69
for plot 5), because wide canopy structure characteristics
were covered by the five plots in this study (Table 1).

Conclusions
The impact of sampling schemes on the ESU LAI esti-
mation from DHP in the five L. principis-rupprechtii for-
ests was evaluated in this study. Results showed obvious
differences amongst the pe(θ), Ωe, PAIe and LAI from
different sampling schemes. The differences in impact of
the sampling schemes on LAI estimation were not obvi-
ous amongst the three inversion models (i.e. Miller, LAI-
2200 and Beer) if the Ωe algorithm of CCW was not
adopted in the estimation. The accuracy of the ESU LAI
estimates was not always improved by increasing the
sample sizes. The two sampling scheme groups of SS2,
SS10 and SS10, SS11 (with sample sizes ranging from 3
to 9) outperformed other predefined sampling schemes
to obtain the ESU LAI of L. principis-rupprechtii forests
if Beer or LAI-2200 and Miller were adopted in the esti-
mation, respectively. SS5–SS7 and SS9 are not recom-
mended for use owing to their relatively large MREs.
Moreover, ESU LAI estimates with maximum LAI esti-
mation errors below 20%, which is required by GCOS,
could be achieved by DHP if the appropriate inversion
model, Ωe algorithm and sampling scheme were adopted
in the LAI estimation of L. principis-rupprechtii forests,
except for those with extremely large LAI values. How-
ever, DHP is still not qualified for obtaining ESU LAI es-
timates of L. principis-rupprechtii forests with maximum
LAI estimation errors below 5%, regardless of which
combination of inversion model, Ωe algorithm and sam-
pling scheme is adopted in the estimation.
Future work can include efforts to investigate the im-

pact of sampling schemes on the ESU LAI estimation of
forests from other indirect LAI measurement methods
(e.g. terrestrial laser scanner and LAI-2200). Since the
differences between the canopy structures of different
plant functional types, caution is needed if the conclu-
sion of this study is applied to forests with tree species
other than the L. principis-rupprechtii covered in this
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study. Therefore, forest plots with different plant func-
tional types can also be included to consolidate the con-
clusions of this study. Furthermore, the complicated
issue of canopy sampling overlap between different sam-
ple points is worth analysing in the future.

Nomenclature
An: half of the total needle area in a shoot;
Ap(0°, 0°): projection area of shoot sample measured by

projecting the shoot at zenith angle 0° and azimuth angle
0°;
Ap(45°, 0°): projection area of shoot sample measured

by projecting the shoot at zenith angle 45° and azimuth
angle 0°;
Ap(90°, 0°): projection area of shoot sample measured

by projecting the shoot at zenith angle 90° and azimuth
angle 0°;
Beer: Beer inversion model (Equation A7);
CC: gap-size analysis algorithm;
CLX: combination of gap-size and finite-length aver-

aging algorithms;
CLX_15: combination of gap-size and finite-length

averaging algorithms with a segment size of 15°;
CCS: gap-size analysis algorithm for deriving Ωe of

forest canopies by averaging the Ωe of all DHP images of
sampling schemes;
CCW: gap-size analysis algorithm for estimating the

Ωe of forest canopies based on the gap size distributions
merged from the gap size distributions of all DHP im-
ages of sampling schemes;
DBH: diameter at breast height;
DHP: Digital Hemispherical Photography;
Fm(0, θ): measured total canopy element gap fraction at θ;
Fmr(0, θ): total canopy element gap fraction after re-

moving the large gaps resulting from the nonrandom
distribution of the canopy element at θ;
GCOS: Global Climate Observing System;
Ge: canopy element projection coefficient;
Ge(θ): canopy element projection coefficient at θ;
Ge _ i: canopy element projection coefficient of the ith

annulus;
LAI: leaf area index;
LAI-2200: LAI-2200 inversion model (Equation A8);

�ln ½peðθÞ� : mean logarithmic canopy element gap
fraction for all segments at θ;
LX: finite-length averaging algorithm;
LX_5: finite-length averaging algorithm with a segment

size of 5°;
MRE: mean relative error;
Miller: Miller theorem (Equation A6);
pe(θ): canopy element gap fraction at θ;
�peðθÞ : mean canopy element gap fraction of all segments

at θ;

pe _ i: canopy element gap fraction of the ith annulus;
pe _ k(θ): canopy element gap fraction of segment k at θ;
PAIe: effective plant area index;
PAI: plant area index;
PAIBeer: plant area index estimated based on the Beer

inversion model;
PAILAI − 2200: plant area index estimated based on the

modified Miller theorem of LAI-2200 instrument;
PAIMiller: plant area index estimated based on the

Miller theorem;
Wi: weight of the ith annulus of DHP images in the

Leaf Area Index or Plant Area Index estimation;
θ: zenith angle;
θi: centre zenith angle of the ith annulus;
α: woody-to-total area ratio;
γe: effective needle-to-shoot area ratio;
γ: needle-to-shoot area ratio;
n: number of segments;
Ωe: canopy element clumping index;
Ωe(θ): canopy element clumping index at θ;
Ωe _ CC(θ): canopy element clumping index estimated

using the gap-size analysis algorithm at θ;
Ωe _ CC _ k(θ): Ωe of segment k at θ estimated using CC;
Ωe _ LX(θ): canopy element clumping index estimated

using the finite-length averaging algorithm at θ;
Ωe _ CLX(θ): canopy element clumping index estimated

using the combination of gap-size and finite-length aver-
aging algorithm at θ;
Ωe _ i: Ωe of the ith annulus calculated by averaging

Ωe(θ) with the zenith angles covered by the ith annulus.
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