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Abstract

Background: The aim of this study was to construct a nationwide stand age model by using National Forest
Inventory (NFI) data and nationwide airborne laser scanning (ALS) data. In plantation forestry, age is usually known.
While this is not the case in boreal managed forests, age is still seldom predicted in forest management inventories.
Measuring age accurately in situ is also very laborious. On the other hand, tree age is one of the accurately measured
sample tree attributes in NFI field data. Many countries also have a nationwide coverage of airborne laser scanning
(ALS) data. In this study, we merged these data sources and constructed a nationwide, area-based model for stand age.

Results: While constructing the model, we omitted old forests from the data, since the correlation between ALS
height metrics and stand age diminished at stands with age > 100 years. Additionally, the effect of growth conditions
was considerable, so we also utilized different geographical and NFI variables such as site fertility and soil type in the
modeling. The resultant nationwide model for the stand age of managed forests yielded a root mean square error
(RMSE) of about 14 years. The model could be improved further by additional forest structure variables, but such
information may not be available in practice.

Conclusions: The results showed that the prediction of stand age by ALS, geographical and NFI information was
challenging, but still possible with moderate success. This study is an example of the joint use of NFI and nationwide
ALS data and re-use of NFI data in research.
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Background
Stand age is a highly important attribute in even-aged
forestry. It is required in the characterization of the
development stage of a stand, as a predictor variable in
some growth and yield models, and in site indexing with
dominant height/age models (e.g. Eerikäinen et al. 2002;
Kneeshaw and Gauthier 2003; Racine et al. 2014). In
plantation forestry with short rotation times, stand age is
usually known exactly (Packalén et al. 2011). However,
in managed boreal forests, age is usually not known due
to the long rotation times, natural regeneration of minor

tree species, and inadequate content of historical stand
register data. In forest management inventories the esti-
mation of stand age is laborious, since visual assessments
are usually not accurate, and exact measurement requires
costly and slow boring of a tree or even several trees per
stand (Koivuniemi and Korhonen 2006). In addition, bor-
ing is usually not allowed without forest owner’s permis-
sion. Due to these difficulties in tree age measurement,
different approaches, methods and models that do not rely
on stand age information have been developed for forest
planning systems (Hynynen et al. 2002).
In some early references, tree age has been modelled

as a function of other forest attributes such as tree diam-
eter and site fertility (Korhonen 1987; Vähäsaari 1988).
In those studies, tree age estimates were needed in the
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modelling of taper curve and timber sortiments, respect-
ively. Kalliovirta and Tokola (2005) modelled the age of
individual sample trees based on height and maximum
crown diameter with root mean square error (RMSE) of
9.2%–12.8%. These models were intended for use with
high-resolution remotely sensed data. In later studies,
stand age has been modelled directly as a function of air-
borne laser scanning (ALS) information. Maltamo et al.
(2009b) included stand age as one of the predicted attri-
butes in species specific multivariate forest attribute pre-
diction by k-nearest neighbor (see Maltamo and
Packalen 2014) and obtained an RMSE of about 20 years.
Straub and Koch (2011) achieved a similar level of stand
age RMSE using regression analysis in a study concen-
trating on estimation of bioenergy potential. Racine et al.
(2014) studied different ALS based variables, including
site attributes (elevation, slope, aspect, solar radiation,
wetness index, catchment area, and flow path length) in
stand age prediction in research forest area in Canada,
obtaining an RMSE of about 10 years. Kinnunen (2018)
constructed a local ALS model for stand age including
also site fertility indices as predictor variables. The result-
ant RMSE was less than 10 years. Age has also been pre-
dicted based on a time series of remotely sensed data
(Vastaranta et al. 2015), optical remote sensing informa-
tion and inversed yield models (Frate et al. 2015) or indir-
ectly by predicting stand development stages (Falkowski
et al. 2009; Weber and Boss 2009; Kane et al. 2010).
Recently, remotely sensed data have been applied to

obtain nationwide predictions of forest attributes. For
example, Nilsson et al. (2017) utilized National Forest
Inventory (NFI) field data and ALS data collected sys-
tematically over the country by the Swedish National
Land Survey to obtain a nationwide forest attribute map
for Sweden. Astrup et al. (2019) constructed a similar
map product for Norway, employing photogrammetric
point clouds instead of ALS data. Other studies merged
data from several ALS inventory projects to construct
large area prediction models for forest attributes such as
volume, biomass and dominant height (Gopalakrishnan
et al. 2015; Kotivuori et al. 2016, 2018). Tree age is one
of the accurately measured sample tree attributes in NFI
field data, but it has not been included so far in large
scale ALS modelling studies.
The aim of this study was to construct a nationwide

stand age model by a joint use of NFI and ALS data. We
also utilize and analyze the use of different NFI and geo-
graphical variables in the prediction of stand age.

Materials and methods
National Forest Inventory field data
We used field sample plot data from the 11th NFI of
Finland (2009–2013). Tree measurements were based on
truncated angle count sample plots, where the maximum

inclusion radius was 12.5m. We only used plots that were
fully located within one stand. Here the forest attributes
calculated from tree measurements on a plot mimic a
stand level. The stand age was estimated or each sample
plot based on age core measurements taken from sample
trees at breast height (VMI11 Maastotyöohje 2013). Every
seventh sampled tree was measured as a sample tree.
There are different definitions for stand age (Chirici et al.
2011) but since our tree measurements are based on angle
count samples, this automatically led to the use of a basal
area weighted stand age. Stand age is also commonly de-
fined as the mean age at breast height weighted by the
basal area (Sharma et al. 2011). Biological age could have
been obtained by adding site and species-specific correc-
tion factors, but in this study, we focused on the breast
height age. Some basic information concerning NFI plots
applied in the study are given in Table 1.
We also used some categorical NFI variables, such as

soil type, site fertility, land use, and forest structure,
which are defined at stand level. The soil type was either
mineral soil or peat land. Site fertility classes were esti-
mated based on forest floor vegetation (Cajander 1926).
The following classes were applied: Oxalis–Maianthe-
mum (site1), Oxalis–Myrtillus (site2), Myrtillus (site3),
Vaccinum (site4), Calluna (site5) and Cladina (including
rocky and sandy sites) (site6). Land use class included
productive and low productive forest lands. Forest struc-
ture was described by classes: natural stage, almost nat-
ural stage, or managed forest.

Airborne laser scanning data and selection of study areas
In Finland, ALS data are collected systematically for
digital terrain mapping and operational ALS-based forest
management inventories. The selection of the inventory
areas was based on the publicly available ALS data
acquisitions by the Finnish National Land Survey. The
acquisitions are made in both leaf-on and leaf-off condi-
tions, but we used only areas with leaf-on data. The data
have low pulse densities, typically 0.5–1.5 per m2, which
is sufficient for the application of area-based forest
inventories.
We selected randomly 1–2 inventory areas from each

forest vegetation zone (Fig. 1, Table 2). Finland is
divided into zones of vegetation based on similar soil,

Table 1 Characteristics of the 715 modeling plots

Mean Standard deviation Minimum Maximum

Degree days (C) 1058 173.9 707 1344

Elevation (m) 141 70.1 1 306

Basal area (m2·ha−1) 16.4 8.5 0 49

Mean height (m) 13.1 5.7 2 30.9

Mean diameter (cm) 14.9 7.7 0 41

Stand age (years) 44.7 21.6 10 100
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topographic and climate conditions (Kalliola 1973).
These data were available from the website of the
Finnish Environmental Institute (Forest vegetation
zones/© Finnish Environment Institute (SYKE) 2015).
Two ALS data acquisition areas were chosen from the
largest vegetation zones, and one from the others. The
southernmost and northernmost vegetation zones were
omitted from the analyses, because the structure of for-
ests deviated considerably from the rest of the country.
Thus altogether ten areas were chosen (Table 2, Fig. 1).

For each area, 100 NFI plots were selected from its
north-eastern part based on the sum of their Cartesian
coordinates. The plots were not selected randomly, be-
cause we wanted to avoid downloading and processing
unnecessarily large amounts of ALS data.
The ALS data sets were downloaded in laz-format from

a public database (National Land Survey of Finland 2018)
and processed using the LASTools software (Isenburg
2018). The lasclip tool was first employed to intersect the
ALS data within a 12.5-m radius around each NFI plot.

Fig. 1 A map of the forest vegetation zones in Finland, and the locations of the ALS based forest inventory areas and NFI field plots employed in
this study
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Orthometric heights of the original ALS data sets were
normalized into above ground heights by employing the
lasground tool, which utilized an existing echo classifica-
tion available in the laz files. Finally, a set of ALS-based
canopy height distribution metrics was computed for each
plot. These included the mean, maximum, and standard
deviation of heights, height percentiles, canopy density
percentiles or “bincentiles”, and a canopy cover metric.
Each variable was computed separately using 1) single and
first-of many echoes, and 2) using single and last-of-many
echoes (Næsset 2002). A height threshold of 2.0 m was
used in the computation of the canopy cover metric, while
other metrics were computed without a height threshold.
The XY-coordinates and elevations of the plots, as well as
the scanner type, were also saved for further use in the
modelling.

Final modelling datasets and variables
The temporal differences between field and ALS data
acquisitions were corrected plot-by-plot by adding the
respective time difference to the stand age. Some silvi-
cultural actions had also been conducted between the
data collections, which could have considerable effects
on relationship between the stand age and ALS metrics.
In order to avoid such problems, all plots where the
difference between the field-based forest stock height
and the 90th canopy height percentile (p90) (see Table 3)
was smaller than − 5 m or greater than 7 m were re-
moved from the data.
Furthermore, we observed that there was no correl-

ation between ALS metrics and stand age in old stands.
Since most of the forests in Finland are managed with
rotation ages < 100 years, plots with stand age > 100 years
are mainly found at conservation areas in the northern
part of the country. The reason for reduced correlation
between ALS metrics and stand age in old-growth for-
ests is obvious: tree age will increase linearly also when
its height growth has already ceased. The greatest stand
age values in our original data were > 300 years. Thus,

we decided to restrict our analysis to managed forests
where the greatest stand age at breast height was 100
years. We also removed the youngest (stand age below
10 years) seedling stand sample plots. After these modifi-
cations our data consisted of 715 plots (Table 1). A ma-
jority of the plots (91.6%) were located at productive
forest land, and at mineral soils (69%). Correspondingly,
the proportions of site fertility classes were 3.4%, 17.8%,

Table 2 Summary of the airborne laser scanning data available at each site

Area Year Scanner Point density (m−2) Height accuracy (m) Flight altitude (m)

Ähtäri 2013 Optech ALTM GEMINI 0.7 0.15 1730

Heinävesi 2017 Riegl LM-7800 1.5 0.15 1870

Juva 2016 Leica ALS 60 0.88 0.15 2400

Kemiö 2017 Leica ALS 60 0.7 0.15 2000

Kuhmo 2014 Leica ALS 60 1.33 0.15 2150

Kyrönmaa 2016 Leica ALS 80 HP 1.55 0.15 2000

Orimattila 2016 Leica ALS 60 0.5 0.15 2500

Sodankylä 2015 Optech ALTM_Gemini 0.7 0.15 1890

Suomussalmi 2017 Riegl LM-7800 1.5 0.15 1700

Ylitornio 2015 Optech ALTM_Gemini 0.8 0.15 1600

Table 3 Candidate predictor variable. The ALS height
distribution variables are supplemented with a prefix f or l,
which means that the variable was computed from first or last
echoes, respectively

Type Variable Abbreviation

ALS-A height percentiles p05, p10, …, p90, p95

canopy density percentiles b05, b10, …, b90, b95

canopy cover cov

mean height
maximum height
standard deviation
of heights

avg
max
stdev

scanner type Leica60, Leica80, Optech, Riegl

ALS-B inventory area Ähtäri, Heinävesi, Juva, Kemiö,
Kuhmo, Kyrönmaa, Orimattila,
Sodankylä, Suomussalmi

Geographic major region other, Lapland

latitude

longitude

elevation

degree days dd

slope

NFI-A site fertility class site1, … site5

land use class productive, low

soil type mineral, peat

NFI-B forest structure natural, almost natural,
managed

mean diameter meanD
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39.2%, 30.1%, 8.3% and 1.4% for Oxalis–Maianthemum,
Oxalis–Myrtillus, Myrtillus, Vaccinum, Calluna and
Cladina types, respectively.
All candidate predictor variables are presented in

Table 3. In addition to ALS height distribution variables
(ALS-A), we also included geographic variables and
NFI variables as candidate predictors in the model-
ling. Geographic, ALS-A and some of the NFI vari-
ables (NFI-A in Table 3) would typically be available
in a practical modelling case. Scan area ID (ALS-B) is
applicable only for the considered inventory areas.
Some of the NFI variables (NFI-B in Table 3) are
only defined for the NFI field plots and they cannot
be assumed to known practical applications databases.
Their role in the current study is exploratory, i.e. they
are used to describe the relationship between age and
stand structure.
The ALS-A variables include the area based canopy

height distribution metrics described in the previous sec-
tion, and a categorical variable describing ALS sensor
manufacturer. Geographic variables included plot lati-
tude and longitude, elevation and slope computed from
ALS-based digital terrain models, and the number of de-
gree days that is a simplified description of climate (ob-
tained in raster format from the Natural Resources
Institute of Finland). Another geographic variable was
the major region, which was obtained by separating the
province of Lapland (Sodankylä and Ylitornio) from the
other parts of the country (the rest of the inventory
areas). The NFI-A variables included soil type, site fertil-
ity, and land use class. The NFI-B variables included
mean diameter of the NFI plot and a categorical forest
structure variable.

Statistical analysis
The nationwide stand age model was constructed using
linear regression analysis with the NFI based age as the
dependent variable. We constructed two separate models
for stand age. First model included the ALS-A metrics,
geographic variables, and the NFI-A variables. The sec-
ond model included also the ALS-B and NFI-B variables.
The role of the second model was to test a scenario
where more factors affecting stand age prediction are
known. Various interactions between ALS metrics and
class level information were also tested in both models.
All categorical variables were included as dummy vari-
ables. Different modifications (natural logarithm, square
root, inverse, second power) of both independent and
dependent variables were also tested.
Linear regression models were constructed using the

lm function in R (R Core Team 2015). Due to the het-
eroscedasticity we experimented with transformations to
dependent variable. The independent variables were se-
lected by means of the stepwise function (step) which

applies the AIC statistic to include or exclude non-
significant predictors from the models. Both inclusion
and exclusion of the independent variables in the candi-
date models were allowed. The independent variables
had to be statistically significant (p < 0.05) to be selected
for the model.
Accuracy assessment was performed through a cross

validation procedure in which either each plot (leave-
one-plot-out cross validation) or all plots within an in-
ventory area (leave-one-inventory area-out cross valid-
ation) were excluded from the training data, and their
values were predicted with a model refitted with the
remaining plots. The residuals of the models were also
analyzed to evaluate the heteroscedasticity.
The accuracy of the cross validated predictions was

evaluated in terms of root mean squared error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 t−t̂

� �2

n

s

ð1Þ

where n is the number of plots, t is the observed stand
age for plot i, and t̂ is the predicted stand age for plot i.
Subsequently, the RMSE% was calculated by dividing the
RMSE by the predicted mean of the stand age.

Results
The relationship between ALS metrics and stand age
was not very strong in the whole data (Fig. 2). It can be
seen from Fig. 2 that the relationships are clearly differ-
ent at mineral soils and peat lands. Thus categorical site
variables are required in any realistic stand age model.
Due to the heteroscedasticity the response variable

was a logarithmic transformation of stand age in both
models. The first model included altogether five ALS
metrics, dummy variables for scanner manufacturer
Leica and mineral soils, as well as interactions between
ALS metric l_max and large geographical area other,
mineral soil, and low productivity forests (Table 4). Add-
itionally, there were interactions between ALS variable
l_avg and site fertility classes. The residual standard
error of the model was 0.29 (14 years when back-
transformed). The R2 value was 0.71.
The logarithmic residuals of the first model (Table 4)

are presented in Fig. 3. It can be seen that the residuals
appear homogeneous, although the model overestimated
the age of some younger stands. On the other hand,
back-transformed stand age estimates (Fig. 4) showed
that there were rather large variations in the estimates
for greater stand ages. The plot level cross-validated
RMSE of the first model was 32.9% and inventory area
level cross-validated RMSE was 33.9%. Thus, the in-
crease in RMSE% was modest, since the relative RMSE
of the original model was 31.5%.
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The second model included also the estimated forest
structure classification and mean diameter as candidate
predictors (Table 5). There were two ALS metrics and
altogether 12 interactions between ALS metrics and geo-
graphic or NFI variables, including two inventory areas,
land use class low productive forests, latitude, and field-
measured mean diameter. Categorical variables for min-
eral soils and almost natural forest structure were also
included. Compared to the first model, the residual
standard error decreased to 0.24 (12.2 years when back-
transformed), and the R2 increased to 0.80. The residuals
of the model showed a slightly better fit than the first
model. Corresponding cross-validation showed 28.7%
RMSE for plot level and 31.2% RMSE for inventory area
level, while the original RMSE was 27.9%. (Figs. 5 and 6).

Discussion
Stand age is rarely predicted by remote sensing. In
boreal forests comprehensive field data acquisitions of
accurate stand age are time consuming and expensive.
However, the use of NFI sample plot data offers possibil-
ities for such studies for large areas. Accurate forest
stock description is a crucial demand for NFIs, and this
kind of information can be used with wall-to-wall ALS
data to obtain large area predictions.

Fig. 2 The relationship between ALS height and stand age in minerals soils and peat lands

Table 4 Independent variables of the first stand age model.
Sqrt refers to square root

Estimate Standard error t-value P-value

Intercept 2.331 0.133 17.570 < 2e–16

f_p90 0.058 0.008 7.741 3.45e–14

f_b05 0.030 0.005 5.566 3.71e–08

f_b10 −0.023 0.005 −4.253 2.40e–05

l_avg 0.426 0.066 6.483 1.70e–10

sqrt (l_max) 0.226 0.047 4.763 2.32e–06

Leica60 −0.193 0.025 −7.719 4.07e–14

mineral −1.244 0.141 −8.803 < 2e–16

sqrt (l_max × other) −0.129 0.008 −16.353 < 2e–16

sqrt (l_max_ ×mineral) 0.240 0.037 6.550 1.12e–10

sqrt (l_max_ × low) 0.115 0.018 6.430 2.36e–10

l_avg × site1 −0.412 0.066 −6.247 7.29e–10

l_avg × site2 −0.431 0.065 −6.633 6.59e–11

l_avg × site3 −0.404 0.065 −6.230 8.04e–10

l_avg × site4 −0.361 0.065 −5.546 4.15e–08

l_avg × site5 −0.321 0.069 −4.643 4.11e–06
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Our aim was to construct a nationwide stand age
model based on a fusion of NFI plots and ALS metrics.
However, when constructing the model, we noticed that
old forests could not be included in the model, since the
correlation between ALS height metrics and stand age
diminished after a threshold age. Thus we restricted our

model to managed stands where the stand age at breast
height was at maximum 100 years. Additionally, the NFI
data consisted of a comprehensive selection of forests,
including e.g. mineral soils and peat lands where growth
conditions are very different, and similar sized tree
stocks can have large age variations. Also the rather low

Fig. 3 Residuals of the first stand age model (Table 4)

Fig. 4 Back transformed prediction of the first stand age model (Table 4)
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number of age measurements in a NFI plot may increase
the uncertainty of age prediction. This resulted in diffi-
culties when predicting stand age with ALS metrics, be-
cause ALS data and geographic variables alone cannot
describe this variation. Therefore, we included several
NFI variables into the variable selection.
The resultant model (Table 4) included ALS height

percentiles describing the height of top layers of the can-
opy, and density metrics computed for the bottom layers
of the canopy (i.e. the fraction of echoes above the
crown base height). The categorical variable separating
peatlands and mineral soils was significant in the model,
and was also included as an interaction term with ALS
metrics. Additionally, interactions of ALS metrics and
site fertility classes were significant predictors. Also large
scale geographical areas, low productivity forests and
one laser scanner manufacturer were significant categor-
ical predictors. Information on mineral soils and site fer-
tility also behaved logically in the model, although the
interpretation of a multiplicative model is not unam-
biguous. In applications it can be expected that all this
information is available. For example, site fertility has
been comprehensively assessed in stand management
during previous decades (Koivuniemi and Korhonen
2006), while the soil type and land use information can
be found from thematic maps.

Table 5 Independent variables of the second stand age model

Estimate Standard error t-value P-value

Intercept 2.444 0.076 32.091 < 2e–16

f_b05 0.008 0.001 9.898 < 2e–16

l_b20 0.004 0.001 4.456 9.70e–06

mineral −0.977 0.109 −8.937 < 2e–16

sqrt (l_max × north) 0.306 0.044 6.963 7.68e–12

sqrt (l_max × mineral) 0.170 0.028 6.124 1.52e–09

sqrt (l_max × low) 0.303 0.019 16.228 < 2e–16

l_max × site1 −0.018 0.003 −6.218 8.67e–10

l_max × site2 −0.019 0.002 −11.508 < 2e–16

l_max × site3 −0.009 0.001 −6.400 2.85e–10

f_b95 × Lapland −0.012 0.002 −7.083 3.45e–12

l_avg × lat 1.37e–08 1.10e–09 12.460 < 2e–16

f_b05 × other −0.006 0.001 −7.843 1.65e–14

l_b70 ×meanD 0.0007 2.94e–05 22.907 < 2e–16

almost natural 0.222 0.038 5.787 1.08e–08

sqrt (l_max × Juva) −0.035 0.007 −4.836 1.63e–06

f_b05 × Kuhmo −0.004 0.001 −5.334 1.30e–07

Fig. 5 Residuals of the second stand age model (Table 5)
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We had also other types of information available.
However, variables describing elevation, slope, degree
days or geographical coordinates were not statistically
significant in the model. While there were several geo-
graphic variables available, only the large scale geograph-
ical region was included in the model. Also only one
categorical variable related to the laser scanner was in-
cluded in the model. This agrees with previous studies
that have indicated that data from different laser scan-
ners can be combined in the models (Kotivuori et al.
2018). Regarding location information, the results from
previous large-scale studies vary. For instance, Maltamo
et al. (2016) used elevation, latitude and degree days in
their biomass prediction study in Norway, where the
geographic variations, for example in elevation, are con-
siderably larger.
The observed RMSE of about 14 years is in between

of those obtained in earlier studies with considerably
smaller study areas (Maltamo et al. 2009b; Racine et al.
2014). Direct comparison with earlier studies is prob-
lematic since those studies have applied only remotely
sensed predictor variables. In addition, Maltamo et al.
(2009b) had stand age as one of the independent vari-
ables in a multivariate forest attribute model, but did
not pay any specific attention to it when selecting pre-
dictor variables. On the other hand, Racine et al. (2004)
presented a thorough analysis of the effects of different
ALS based variables on age prediction, but the study
was conducted on a rather small area. The same is true
also for the study of Kinnunen (2018), while the current

study aimed to construct a large-scale age prediction
model.
The residuals plots of our model were satisfactory but

not perfect for young and old observations. Our second
model (Table 5) demonstrated that an inclusion of
mean diameter improved both RMSEs and residual
plots. This means that the tree diameter distribution
contains additional age information (RMSE% improved
13%) that is lacking from the ALS metrics. This can
also be seen from the inaccuracies observed in ALS
based diameter prediction studies (Maltamo et al.
2009a, 2009b; Sumnall et al. 2016). Similar to age, the
tree diameter also increases after the tree height growth
has ceased.
Our study indicated that stand age can be predicted

with ALS metrics with moderate success. At least the ac-
curacy was better than in a previous study in Finland
(Maltamo et al. 2009b). The relationship between age and
ALS metrics is not as strong as in the case of volume or
biomass (e.g. Næsset 2002; Lim et al. 2003). Particularly
the effect of growth conditions on stand age - ALS height
relationship is considerable. Our approach was similar to
studies concerning ALS-based estimation of volume and
biomass: a total amount of the attribute is predicted by
variables describing the height and density of the forest
canopy. In the case of age, the use of multitemporal lidar
data might improve the predictions, since it would allow
the use of metrics describing height changes. This would
also lead to the use of age predictions in site indexing
(Noordermeer et al. 2018).

Fig. 6 Back transformed prediction of the second stand age model (Table 5)
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Conclusion
Prediction of stand age by ALS and class level field in-
formation is challenging but still possible with moderate
success. Especially the role of information describing
growth conditions of the forest stock is important. Here
the national level model for age of the managed forests
led to an RMSE of about 14 years. The usability of such
age predictions varies according to applications. It may
be inadequate for site indexing, but enough for growth
and yield prediction. This study is an example of the
joint use of NFI and National Land Survey ALS data and
especially of re-use of NFI data in research.
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