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Abstract

Background: Modelling aboveground biomass (AGB) in forest and woodland ecosystems is critical for accurate
estimation of carbon stocks. However, scarcity of allometric models for predicting AGB remains an issue that has
not been adequately addressed in Africa. In particular, locally developed models for estimating AGB in the tropical
woodlands of Ghana have received little attention. In the absence of locally developed allometric models, Ghana
will continue to use Tier 1 biomass data through the application of pantropic models. Without local allometric
models it is not certain how Ghana would achieve Tier 2 and 3 levels under the United Nations programme for
reducing emissions from deforestation and forest degradation. The objective of this study is to develop a mixed-
species allometric model for use in estimating AGB for the tropical woodlands in Ghana. Destructive sampling was
carried out on 745 trees (as part of charcoal production) for the development of allometric equations. Diameter at
breast height (dbh, i.e. 1.3 m above ground level), total tree height (H) and wood density (ρ) were used as
predictors for the models. Seven models were compared and the best model selected based on model efficiency,
bias (%) and corrected Akaike Information Criterion. The best model was validated by comparing its results with
those of the pantropic model developed by Chave et al. (Glob Chang Biol 20:3177–3190, 2014) using equivalence
test and conventional paired t-test.

Results: The results revealed that the best model for estimating AGB in the tropical woodlands is AGB =
0.0580ρ((dbh)2H)0.999. The equivalence test showed that this model and the pantropic model developed by Chave
et al. (Glob Chang Biol 20:3177–3190, 2014) were equivalent within ±10% of their mean predictions (p-values <
0.0001 for one-tailed t-tests for both lower and upper bounds at 5% significant level), while the paired t-test
revealed that the mean (181.44 ± 18.25 kg) of the model predictions of the best model of this study was
significantly (n = 745, mean diff. = 16.50 ± 2.45 kg; S.E. = 1.25 kg; p < 0.001) greater than that (164.94 ± 15.82 kg) of
the pantropic model of Chave et al. (Glob Chang Biol 20:3177–3190, 2014).
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Conclusion: The model developed in this study fills a critical gap in estimating AGB in tropical woodlands in Ghana
and other West African countries with similar ecological conditions. Despite the equivalence with the pantropic
model it remains superior to the model of Chave et al. (Glob Chang Biol 20:3177–3190, 2014) for the estimation of
AGB in local tropical woodlands. It is a relevant tool for the attainment of Tier 2 and 3 levels for REDD+. The model
is recommended for use in the tropical woodlands in Ghana and other West African countries in place of the use
of pantropic models.

Keywords: Charcoal, Diameter at breast height, Tree height, Wood density, Savannah woodland
Introduction
Forest and woodland ecosystems are important carbon
stocks and their conservation is one of the sustainable
mitigation strategies for the increasing global warming
that confronts the world today (Löf et al. 2019). As at-
mospheric CO2 concentration and its effect on global
climate change continues to increase, modelling above-
ground biomass (AGB) of forest and woodland ecosys-
tems is needed to provide information on the global
carbon budgets (Litton and Kauffman 2008; Henry et al.
2011; Ekoungoulou et al. 2018).
Currently, there is an urgent need for reliable and ac-

curate biomass estimates from forests and woodlands,
especially in Africa, where inadequate biomass and car-
bon emission data exist (Jibrin and Abdulkadir 2015). It
has been observed that countries in sub-Saharan Africa
do not have sufficient biomass models to report national
carbon stocks and their variation under the Tier-2 and
Tier-3 approaches of Intergovernmental Panel on Cli-
mate Change (IPCC) (Henry et al. 2011). A tier repre-
sents a level of methodological complexity and accuracy
in the estimation of tree biomass. The Tier-1 method is
based on the use of generalized equation to estimate bio-
mass, while Tier-2 method is based on the use of
species-specific volume equations to convert the volume
of trees to biomass using wood density and default bio-
mass expansion factors (Henry et al. 2011). The Tier-3
method consists of application of species-specific bio-
mass equations to calculate the biomass of trees (ibid).
Thus, the Intergovernmental Panel on Climate Change
(IPCC) Tier-2 or Tier-3 approaches requires that na-
tional greenhouse gas estimates be based on country-
specific data or models (IPCC 2006).
Accurate biomass and carbon estimates in Africa can-

not be adequately realized without accurate allometric
models (Henry et al. 2011; Adu-Bredu and Birigazzi
2014). These models are fundamental tools for estimat-
ing biomass based on easily measurable variables of a
tree, in particular, diameter at breast height, total height
and wood density (Williams et al. 2008; Adu-Bredu and
Birigazzi 2014; Roxburgh et al. 2015). The development
of allometric models for Africa will significantly improve
the quality of biomass estimates under the UN-REDD+
programme (Henry et al. 2011; Adu-Bredu and Birigazzi
2014; Ekoungoulou et al. 2018). This will enable Africa
to gain meaningful financial benefits from carbon se-
questration, or CO2 emission reduction through man-
agement of terrestrial woody biomass (Henry et al. 2011;
Adu-Bredu and Birigazzi 2014). Furthermore, it will re-
duce uncertainty in the estimation of AGB carbon due
to spatial variability of AGB, which has been acknowl-
edged as the largest source of uncertainty in estimating
tree biomass (Henry et al. 2011; Chave et al. 2014; Adu-
Bredu and Birigazzi 2014).
Although allometric models for Africa exist (West

2004; Brown et al. 2005; West 2009; Henry et al. 2010;
Henry et al. 2011; Mbow et al. 2013; Addo-Fordjour and
Rahmad 2013), these are generally limited in their appli-
cations by the dbh range used for the model calibration,
uneven distribution of the dbh within the dbh range, the
type and number of tree species used in developing the
models, ecological zones, and the type and number of
explanatory variables used (Chave et al. 2005; Basuki
et al. 2009; Henry et al. 2011; Mbow et al. 2013; You-
khana et al. 2017; Weber et al. 2017). Due to lack of
local allometric models for some ecological zones, some
sub-Saharan African countries rely on pantropic models
such as the ones developed by Chave et al. (2014) for
the estimation of local AGB. Although such pantropic
models have a wide range of species from different eco-
logical zones with wide calibration ranges, they are still
not a panacea to the growing need for local allometric
models across the continent. In view of this, more efforts
are required to develop local allometric models for
assessing tree carbon stock of forests and woodlands to
enable a better understanding of the contribution of
local anthropogenic influence on atmospheric CO2 in
Africa (Bjarnadottir et al. 2007; Henry et al. 2011).
In Ghana, the need for more locally applicable allo-

metric models remains a national issue despite the ef-
forts of Adu-Bredu et al. (2008), Henry et al. (2010) and
Addo-Fordjour and Rahmad (2013) in the development
of allometric models. Adu-Bredu et al. (2008) developed
species-specific stem profile model for Tectona grandis
in the forest and savannah ecological zones of Ghana,
but it is for the estimation of stem volume, while Henry
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et al. (2010) and Addo-Fordjour and Rahmad (2013)
modelled above-ground biomass of mixed-species in the
forest ecological zones. Currently, there is no existing
local allometric model to estimate AGB in the savannah
woodlands of Ghana, where charcoal production greatly
influences the AGB of the woodlands. Therefore, any es-
timation of AGB in the savannah woodlands will require
the applications of pantropic models or local models
from other geographic areas. However, the existence of
important variations in wood density, volume and bio-
mass between and within ecological zones and tree spe-
cies make the application of local models from other
geographic areas and pantropic models a serious chal-
lenge as they lead to significant bias and error in esti-
mating AGB (Navar 2009; Henry et al. 2011). The lack
of local allometric models to estimate AGB and CO2

emissions in these ecosystems of the country is a major
setback to efforts aimed at determining accurate carbon
budgets for both national and global uses.
As part of its obligation to the United Nations Frame-

work Convention on Climate Change (UNFCCC), Ghana
submitted its Intended Nationally Determined Contribu-
tion (INDC) in 2015 (GH-INDC 2015), in which both
mitigation and adaptation measures were put forward.
Seven economic priority sectors were proposed, with
sustainable forest management, which serves as both
mitigation and adaptation measures, being one of them.
Ghana is developing Good Practice Guidance (GPG) for
estimating, measuring, monitoring and reporting on car-
bon stock changes and greenhouse gas emissions from
land use, land-use change and forestry (LULUCF) activ-
ities (IPCC 2003). Currently, it is not certain how Ghana
would be able to meet Tier 2 and 3 of IPCC require-
ments and develop GPG for monitoring, measuring and
reporting carbon stock without developing local allomet-
ric models for the savannah woodlands ecosystem. There
is the need to develop allometric models for accurate
carbon accounting within the savannah woodlands
where the use of trees for charcoal production is a pri-
mary livelihood activity (Aabeyir et al. 2016; Sedano
et al. 2016).
There is the need for effective accounting of the con-

tribution of woodlands to both national and global car-
bon budgets, and also in the estimation of AGB for
payments of ecosystem services provided by forest-based
climate change mitigation activities (Wunder 2005). Ac-
curate estimation of AGB will contribute to the achieve-
ment of Ghana’s commitments under the United
Nations Framework Convention on Climate Change
(UNFCCC) (Cienciala et al. 2006). However, pantropic
models are being widely used although significant bias in
their estimates has been reported by Henry et al. (2010),
Alvarez et al. (2012) and Lima et al. (2012) in Ghana,
Columbia and Brazil, respectively. This emphasizes the
need to test the validity of the pantropic models in spe-
cific environments. It is therefore hypothesised that lo-
cally developed mixed models are superior to pantropic
models in estimating AGB. The objectives of this study
are to (i) develop a local mixed-species allometric model
for use in estimating AGB in the savannah woodlands of
Ghana; and (ii) assess if there is a significant difference
between the estimates of the local model and the pan-
tropical model of Chave et al. (2014).
Materials and methods
Study area
The Kintampo Municipality of Ghana, lies between lati-
tudes 7°45′ N and 8°50′ N and longitudes 1°0′ W and
2°5′ W with a surface area of about 5108 km2 (Fig. 1). It
is located at the centre of Ghana and serves as a transit
point between the northern and southern parts of the
country. The municipality is part of the Forest-Savannah
transition zone of Ghana which is located between the
forest ecological zone in the south and the savannah
ecological zone in the north of the country (Codjoe and
Bilsborrow 2011). The area exhibits aspects of both
savannah and forest conditions, although it is more in-
clined to savannah conditions than forest ones since it
has lost most of its original forest cover due to an-
thropogenic activities (Afikorah-Danquah 1997; Codjoe
and Bilsborrow 2011). Common trees species adapted to
this environment are Daniellia oliveri, Burkea africana,
Khaya senegalensis, Parkia biglobosa, Terminalia macro-
ptera, Acacia sp., Pterocarpus erinaceus and Vitelaria
paradoxa. These trees have relatively more branches
than a typical tree in the forest zone of Ghana. One
major use of these trees (i.e. trunk, branches, and twig of
trees) is charcoal production (Blay et al. 2007; Quaye
and Stosch 2008; Iiyama et al. 2014).
Charcoal production is based on selective harvesting

of tree species and, in recent years, has become such an
important land use that its place in the carbon budget
cannot be ignored or categorized along with other land
uses. Charcoal producers normally prefer trees of hard
wood and large sizes depending on the experience and
tools available for harvesting the trees (Aabeyir et al.
2016).
Mean monthly temperature in the area ranges from

30 °C in March to 24 °C in August, with a mean annual
temperature between 26.5 °C and 27.2 °C. Relative hu-
midity varies from 90% to 95% in the rainy season and
75% to 80% in the dry season (Codjoe and Bilsborrow
2011). Mean annual rainfall is between 1400 and 1800
mm, and shows a bimodal pattern, with the major sea-
son occurring between May and August and a minor
season between September and October (Codjoe and
Bilsborrow 2011).



Fig. 1 Kintampo Municipality in the context of Ghana and West Africa highlighting the study sites. The green circular points are the sites where
the trees where harvest for the production of charcoal
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Sampling
Data for the study were collected from October 2013 to
May 2015 in the Asantekwa, Attakura and Kunsu com-
munities of the Kintampo Municipality. In allometric
modelling, representation of tree population in terms of
species types, diameter at breast height (dbh) and wood
density are critical. This is usually achieved through
stratification of the study area into homogenous sections
and stratification of the tree sizes into dbh classes (Pear-
son et al. 2007). However, it is very challenging and ex-
pensive to harvest a representative sample of each tree
species under field conditions. One strategy is to harvest
all trees of the desired dbh range within a given small
area and repeat the harvest in other areas within the lar-
ger study area in order to increase the sample size (Pic-
ard et al. 2012). This has the advantage of providing
both a biomass estimate for the stand and individual ob-
servations for the construction of a model, although the
dbh size class distribution in the sample might not cor-
respond to the desired dbh class distribution (ibid).
In this study, an approach similar to Picard et al.

(2012) was adopted. Portions of woodlands acquired for
charcoal production were selected for the destructive
harvesting of trees. The study area was stratified into
three strata based on geographic location: north, east
and west with reference to the municipal capital. This
was done to increase the variability of the tree species
harvested for the modelling. One community was se-
lected from each stratum based on its role in charcoal
production. Asantekwa community was selected from
the western stratum, Attakura from the north and
Kunsu from the eastern stratum (Aabeyir et al. 2016).
Asantekwa and Kunsu were further stratified to increase
variability due to locations of production sites because
the majority of the charcoal producers were in these
communities. Asantekwa was stratified into three using



Table 1 Distribution of number of harvested trees within
diameter at breast height (dbh), total tree height (Ht) and wood
density (ρ) classes
dbh class (cm) N Height class (m) N Density class (g·cm−3) N

5–14.9 367 1.0–5.0 7 0.5–0.59 56

15–24.9 285 5.1–10.0 354 0.6–0.69 151

25–34.9 58 10.1–15.0 312 0.7–0.79 311

35–44.9 32 15.1–20.0 68 0.8–0.89 227

45–54.9 3 20.1–25.0 4 – –

Total 745 745 745

Aabeyir et al. Forest Ecosystems            (2020) 7:41 Page 5 of 23
the Kintampo-Asantekwa-New Longoro and Asantekwa-
Sabuli roads while Kunsu was stratified into two strata
based on the Kunsu-Urukwan roads. A total of 23 sites
were harvested, 10 in Asantekwa, 1 in Attakura and 12
in Kunsu.

Measurements on harvested trees
The dbh, height and coordinates of each tree, earmarked
for harvesting, were measured before being felled by the
charcoal producers. The dbh was measured at 1.30 m
above ground (Zianis and Mencuccini 2004) with a dbh
fibre tape while the height was measured with a Haga
Hypsometer. The trunk and large branches of the felled
trees were cut into smaller logs suitable for charcoal
production. The girths at both ends of the logs, as well
as their lengths were measured. In the case of curved
logs and branches, the length was measured along the
inner curve (Purser 1999). Disk samples were collected
from the base, middle and top of the trunk, and also
from large branches. The samples were taken in such
way to capture the variation of the wood density along
the trees since density is typically greater at the base of
the stem than at its top (Weber et al. 2017). The disk
samples were taken to the laboratory for wood density
determination. They were then cut into rectangular sam-
ples of 2 cm × 2 cm × 10 cm, from the periphery to the
pith to capture density variation within the tree. The
width, breadth and length of each rectangular sample
were re-measured with a vernier calliper to avoid errors
due to cutting. The measurements were used to com-
pute the volume of the rectangular samples. The samples
were then oven-dried to constant mass at 105 °C to en-
sure that all the bound water was removed from the
wood. The choice of the oven temperature was based on
recommendations of Williamson and Wiemann (2010)
that temperatures of 101 °C to 105 °C drives off bound
water in wood.
The small branches, twigs and leaves were grouped

separately and their fresh weight determined using a
hanging balance. Samples were taken from the small
branches, twigs and leaves and oven-dried at 60 °C to
constant mass of for dry to fresh mass ratio
determination.
The density (ρ) of each sample was thus calculated

from the volume and dry mass using Eq. 1:

ρi ¼
mi

vi
ð1Þ

where ρi is the density of species i, mi is the mass of
sample from species i, and vi is volume of the sample.

Data processing and analysis
The dry mass of the small branches, twigs and leaves
was computed from the total fresh mass and the sample
dry to fresh mass ratio of the respective organs. For the
trunk and large branches, each log was treated as a trun-
cated cone and the truncated cone formula (Eq. 2) used
for computing the volume (Mattson et al. 2007; Picard
et al. 2012; Akossou et al. 2013).

VL ¼ h
12π

G2 þ Gg þ g2
� � ð2Þ

where, VL is the volume of the log, L is the length, G
and g are the girths of the larger and smaller ends of the
log, respectively. Although there are several formulae for
estimating log volumes (Hubert, Newton, Smalian, trun-
cated cone formulae, etc.), the truncated cone formula
was chosen for estimating the log volume since it is less
influenced by length of the log compared to the others.
Soares et al. (2010) observed that length of logs influ-
enced the accuracy of estimated volume. A Microsoft
(MS) Excel Pivot Table was used to aggregate volumes
of logs according to individuals of various tree species.
The wood density (ρ) of each species was finally com-

puted as the average of the densities of all samples of
each tree species. The wood density was multiplied by
the volume to obtain dry mass of the log. The use of this
indirect method of estimating the mass of harvested
trees was based on field trials conducted in early Octo-
ber 2013 prior to the data collection. During the trial, it
was difficult, time consuming and labour intensive to
weigh large logs directly in the field, as observed by
Henry et al. (2011). The total mass of each tree was thus
computed as the sum of the mass of individual logs,
small branches, twigs and leaves.

Modelling process
Data description
The data used for the modelling comprises the diameter
at breast height (dbh, cm), total tree height (m) and
wood density (g·cm− 3) of 745 individuals of 31 tree spe-
cies (Tables 1 and 2) that were harvested for charcoal
production in 23 different sites in the study area. The
dbh of individual trees ranged from 5.0 to 48.2 cm, aver-
age total tree height from 6.6 to 18.6 m and wood



Table 2 Average diameter at breast height (dbh), total tree height (Ht) and wood density (ρ) of the harvested tree species

Tree species No. of
individuals

Average dbh
(cm)

Average total tree height
(m)

Average wood density
(g·cm−3)

Stdev of wood density
(g·cm−3)

Acacia sp. 45 20.21 12.50 0.69 0.046

Afzelia africana 12 20.98 11.81 0.70 0.052

Albizia coriaria 1 38.10 18.60 0.89 0.032

Anogeissus leiocarpus 80 12.48 10.50 0.77 0.087

Blighia sp. 3 14.47 9.50 0.54 0.040

Bridelia scleroneura 15 11.25 7.03 0.73 0.069

Burkea africana 78 15.22 10.04 0.85 0.051

Combretum collinum 19 20.62 11.13 0.70 0.027

Crossopteryx febrifuga 31 15.17 8.29 0.79 0.037

Daniellia oliveri 19 30.01 13.86 0.53 0.051

Detarium
microcarpum

50 13.04 8.02 0.64 0.086

Erythrophleum
ivorense

1 35.10 13.60 0.80 0.062

Ficus gnaphlocarpa 2 11.25 7.85 0.55 0.034

Gmelina arborea 18 12.91 7.99 0.52 0.049

Hymenocardia acida 13 11.03 8.18 0.68 0.045

Khaya senegalensis 4 29.08 15.10 0.68 0.025

Lannea velutina 3 21.67 9.93 0.55 0.038

Lonchocarpus
sericeus

9 11.47 11.32 0.69 0.066

Lophira lanceolata 41 14.49 10.58 0.87 0.083

Margaritaria
discoidea

11 18.08 9.24 0.73 0.016

Mitragyna inermis 2 6.25 6.60 0.64 0.062

Parinari cura tellifolia 21 15.46 8.01 0.63 0.053

Parkia biglobosa 6 35.33 14.78 0.55 0.030

Pericopsis laxiflora 19 13.93 9.63 0.84 0.045

Piliostigma thonningii 5 11.42 7.10 0.58 0.043

Pseudocedrela
kotschyi

5 20.32 9.92 0.73 0.028

Pterocarpus erinaceus 138 15.62 10.40 0.71 0.031

Tamarindus indica 2 27.80 14.35 0.87 0.033

Terminalia
macroptera

45 16.31 9.86 0.83 0.042

Uapaca guineensis 7 20.20 9.89 0.60 0.020

Vitellaria paradoxa 40 29.70 13.75 0.89 0.066

Total 745
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density from 0.52 to 0.89 g·cm− 3. The dbh of most of
the individual trees in the data were within the 5.0 to
14.9 cm and 15.0 to 24.9 cm dbh classes, the number of
trees being 367 and 285, respectively. Only three individ-
ual trees were within the uppermost dbh class of 45.0–
54.9 cm. The height of most of the trees were within 5.1
to 10.0 m and 10.1 to 15.0 m height classes (354 and 312
trees, respectively). Only four trees were in the 20.1 to
25.0 m height class. Most of the species harvested in the
study area (Table 2) have been cited by the charcoal pro-
ducers as suitable species for charcoal production.

Model formulation and fitting
The power-law function formed the basis of the allomet-
ric model, with diameter at breast height (dbh), total tree
height (H) and wood density (ρ), as predictors of



Table 4 Test of collinearity of predictors based on the Variance
Inflation Factors (VIF)

Predictor VIF

Diameter at breast height (dbh) 2.14

Height (H) 2.16

Wood density (ρ) 1.019

Note: VIF > 5 indicates collinearity of predictor with other predictors
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biomass (Chave et al. 2005; Chave et al. 2014; Sileshi
2014). This assertion was validated during data exploration
in MS Excel by fitting a power function to the data. The
use of only dbh alone as a predictor of AGB is widely ac-
knowledged compared to the inclusion ρ and H (Chave
et al. 2005; Chave et al. 2014). However, Chave et al. (2005)
and Chave et al. (2014) observed that H(dbh)2, ρ(dbh)2 and
ρ(dbh)2H are also suitable predictors of aboveground bio-
mass (AGB). In their experience, the inclusion of wood
density as a predictor improves the prediction of AGB, es-
pecially when a wide range of species is used.
Chave et al. (2004), Sileshi (2014) and Youkhana et al.

(2017) observed that the choice of model form, in terms
of both predictors and model parameters, is important be-
cause it constitutes a significant source of error in biomass
estimation. In view of this, seven different forms of allo-
metric models were formulated based on different combi-

nations of the predictors [ðdbhÞ2b1 , ρðdbhÞ2b2 , ðρðdbhÞ2Þb3 ,
HðdbhÞ2b4 , ððdbhÞ2HÞb5 , ρððdbhÞ2HÞb6 , ðρðdbhÞ2HÞb7 ] in
order to observe and compare the effects of the different
model forms on AGB estimates and how the allometric
exponent influences the model form (Table 3). The seven
model forms were categorized into four (I, II, III and IV)
based on the combinations of the predictors. Category I
had dbh as the only predictor and formed the basis for the
other categories. Category II combined dbh and ρ, while
category III combined dbh and H as predictors. The last
category, IV had all the predictors (dbh, ρ, H).
Model parameterization
In Table 3, a1, a2, a3, a4, a5, a6, and a7 are allometric co-
efficients, whereas b1, b2, b3, b4, b5, b6, and b7 are the
allometric exponents. The three predictors were tested
for collinearity based on the Variance Inflation Factor
(VIF). Sileshi (2014) recommended that VIF of more
than 5 is an indication of significant collinearity between
predictors. The VIF of the predictors were all less than 5
(Table 4).
Table 3 Combination of predictors and model forms to be
calibrated

Category Predictors(s) Model label Model form

I dbh M1 a1[ðdbhÞ2b1 ]
II dbh, ρ M2 a2[ρðdbhÞ2b2 ]

M3 a3 ½ðρðdbhÞ2Þb3 ]
III dbh, H M4 a4[HðdbhÞ2b4 ]

M5 a5[ððdbhÞ2HÞb5 ]
IV dbh, H, ρ M6 a6[ρððdbhÞ2HÞb6 ]

M7 a7[ðρðdbhÞ2HÞb7 ]
Note: a1, a2, a3, a4, a5, a6, and a7 are allometric coefficients whereas b1, b2, b3,
b4, b5, b6, and b7 are the allometric exponents
The choice of an appropriate method, namely linear or
non-linear regression, for estimating model parameters
has been a subject of debate (Packard and Birchard
2008; Xiao et al. 2011; Mascaro et al. 2011; Packard
et al. 2011; Packard 2013; Mascaro et al. 2014). However,
Xiao et al. (2011), Lai et al. (2013) and Sileshi (2014) are
of the view that the choice between linear and non-
linear regression should be informed by the statistical
distribution of the error. They recommend that if the
statistical error is normally distributed and additive, then
non-linear regression is appropriate whereas, if the error
is lognormal and multiplicative, then linear regression is
appropriate.
However, Ketterings et al. (2001) argued that it makes

no difference whether the biomass of individual trees is
considered to vary by an amount with a mean of zero
(as applied to non-linear models) or varying around a
mean of one (as applied to linear models). What is most
important is the variance of deviations of the biomass.
They observed that either the standard deviation of bio-
mass is proportional to its mean, or the variance is pro-
portional to the square of the mean of the biomass.
Hence in this study, non-linear regression (Eq. 3) was
used, assuming the variance is proportional to the
square of the mean of the biomass as recommended by
Ketterings et al. (2001).

Bi ¼ μi þ εi with μi ¼ aDb
i and var εið Þ ¼ φμ2i ð3Þ

where Bi is mass of tree i, Di is diameter at breast-
height, μi is mean biomass of all trees with diameter Di,
a and b are the allometric coefficient and exponent, re-
spectively and φ is the dispersion parameter.
The scaling coefficient and exponents of Eq. 3 are re-

ported to vary with species, stand age, site quality, cli-
mate and stocking of stands (Zianis and Mencuccini
2004). The allometric constant is a normalization or pro-
portionality constant (Sileshi 2014). It is observed that
when b > 1, total AGB increases relatively faster than the
predictor, and allometry becomes positive (Bervian et al.
2006). The reverse occurs when b < 1 and the relation-
ship is said to be negative allometry. When b = 1, allom-
etry is said to be isometric, implying that AGB and
predictor(s) are proportional to each other. The scaling
exponent (b) influences AGB significantly and has been
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given prominence in literature (Zianis and Mencuccini
2004; Bervian et al. 2006; Sileshi 2014). Thus a theoret-
ical value of b = 8/3 has been referred to in literature and
has been the basis of comparison of empirical values of b.
However, Zianis and Mencuccini (2004) are of the view
that having a universal value for b does not allow for flexi-
bility in different datasets, implying that the ratio of the
specific growth rates of mass (B) and D for different tree
species growing in totally diverse environments should re-
main constant, contrary to the understanding of physio-
logical and ecological processes. The models were
parameterized using SAS 9.0 software PROC NLIN.

Model evaluation and comparison
A combination of graphical and statistical evaluation
methods was used to assess the goodness-of-fit of the
models since no single method is adequate enough (Hui
and Jackson 2007; Soares and Tomé 2007; Hevia et al.
2013; Tewari et al. 2014). Pineiro et al. (2008) observed
that for graphical evaluation of model performance, a
plot of observed versus predicted is preferred to pre-
dicted versus observed. In the case of the former, it is ex-
pected that for a perfect fit, the slope would be 1.0,
while the y-intercept would be 0, then dispersion in data
is due to random error. Deviations from values indicate
a bias (systematic error) in the predictions.
The statistical criteria used in this study were Model

Efficiency (MEF) (Eq. 4), model bias (Ē) (Eq. 5) and Cor-
rected Akaike Information Criterion (AICc) (Eq. 6). The
MEF quantifies the proportion of the total variance that
is explained by the model, accounting for the number of
parameters and observations (Soares and Tomé 2007;
Hevia et al. 2013). It provides a simple index of perform-
ance on a relative scale with 1.0 indicating a perfect fit,
0.0 showing a model performance not better than aver-
age, and negative values indicating very poor model per-
formance (Soares and Tomé 2007). The bias is a
measure of systematic deviation of model predictions
from observed data. Huang et al. (2003) recommended
that a bias (%) < ± 10% at 95% confidence level is
acceptable.

MEF ¼ 1−

n−1ð Þ
Xn
i¼1

yi−ŷð Þ2

n−kð Þ
Xn
i¼1

yi−yð Þ2
ð4Þ

E% ¼

Xn
i¼1

yi−ŷið Þ
Xn
i¼1

ŷi

x100 ð5Þ

where yi is the observed AGB, ŷi is predicted AGB, ȳ is
the mean of the observed AGB, n is the number of indi-
vidual trees and k is the number of parameters.
The Corrected Akaike Information Criterion (AICc)

(Eq. 6) was used to compare and select the best perform-
ing model among candidate models (Chave et al. 2005;
Fayolle et al. 2016). AICc is a measure of the trade-off
between model goodness-of-fit and the model complex-
ity (number of input parameters) (Chave et al. 2005;
Heikkinen et al. 2006; Migliavacca et al. 2012; Tang
et al. 2014). It measures the goodness-of-fit of models
and penalizes models with more input parameters, ac-
cording to the principle of parsimony (Burnham and
Anderson 2002). The candidate models were ranked
based on AICc. The model with the lowest AICc was
considered the most likely “true” model that fitted the
data well. In this comparison, if the difference between
the best model and each of the rest of the models is less
than 2, the two models are considered to be approxi-
mately equivalent (Migliavacca et al. 2012; Cai et al.
2013).

AICc ¼ n log RMSE2
� �þ 2k þ 2k k þ 1ð Þ

n−k−1
ð6Þ

where n is the number of data points (observations), k is
the number of model input parameters and RMSE is
root mean square error of the model (Eq. 7).

RMSE ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

yi−ŷið Þ2

n−2

vuuut
ð7Þ

Model validation
The models were validated by examining (1) the model
parameters and (2) testing the equivalence of the predic-
tions of the best model (model M6) with the predictions
of the pantropic model of Chave et al. (2014). In the val-
idation of the parameters, Sileshi (2015) strongly argued
that besides the analysis of variance of the parameters,
there is still the need to validate model parameters be-
cause all or some of the parameters could be non-
significant (i.e. estimate of parameter = 0) while the
ANOVA result is still significant, in which case the study
could contradict itself, earlier findings or theoretical pre-
dictions. The parameters were therefore validated based
on the recommendations of Sileshi (2014, 2015) that the
percent relative standard error (PRSE) (Eq. 8) should not
exceed 20% if the estimates of the parameters are accur-
ate and reliable. This was complemented by the recom-
mendations of Stellingwerf (1994) that for biomass
estimation, the 95% confidence interval (CI) should be
within ±20% of the estimated parameter.
The PRSE was computed as follows:
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PRSE ¼ SE
θjj ð8Þ

Where; | θ is point estimates of the parameter and SE is
the standard error of the estimate of the parameter.
The best model (M6) was validated using a two-one-

sided test (TOST) of equivalence in which the best
model was compared with pantropic model of Chave
et al. (2014) for equivalence. The pantropic model devel-
oped by Chave et al. (2014) was chosen because it is an
attractive option in areas where there are no locally de-
veloped allometric models and because many species of
varying dbh, heights and wood density were used in its
calibration. It is more appropriate in testing the validity
of methods, tools or datasets compared to the conven-
tional statistical tests that are designed to test statistical
point difference (Meyners 2012). Equivalence testing
provides empirical evidence of equivalence within a spe-
cified bound (Meyners 2012; Lakens 2017; Dixon et al.
2018). In this case, the equivalence region was set at ±
10% error (standardized difference between the two
measures) (Dixon et al. 2018) to ensure that close to
80% of statistical power is achieved with a sample of 745
trees based on the Power Analysis and Sample Size
(PASS) table generated by Walker and Nowacki (2010).
For an equivalence margin of 10% or less, there is no
significant practical difference between μM6/μC and μC/
μM6, i.e. 0.9 < μM6/μC < 1/0.9 and 1/1.1 < μM6/μC < 1.1 as
noted by Dixon et al. (2018). However, smaller equiva-
lent bounds of less than 10% would require very large
sample size for 80% statistical power, which is very ex-
pensive to achieve in the case of destructive sampling for
allometric modelling.
Thus, with an equivalence margin of ±10% the mean

of the predictions of the two models, this means that the
mean of model M6 and that of Chave et al. (2014) are
within ±10% of each other and the hypotheses of the
equivalent test are then stated as follows:

Ho : μM6 > 1� 0:1ð ÞμC
Ha : μM6≤ 1� 0:1ð ÞμC ð9aÞ

or

Ho : μM6 < 1þ 0:1ð ÞμC
Ha : μM6≥ 1þ 0:1ð ÞμC ð9bÞ

where μM6 is the mean of model M6 and μC is the mean
of the model developed by Chave et al. (2014).
With these two inequalities, there is the need to en-

sure that the equivalence bounds of ±10% are the same
for both μM6/μC and μC/μM6 since equivalence is a sym-
metric concept (Meyners 2012; Lakens 2017; Dixon
et al. 2018). This means if model M6 is equivalent to the
model of Chave et al. (2014), then it also means that
model of Chave et al. (2014) is equivalent to model M6.
As the equivalence bound is set at ±10%, this means
that 1/0.9 = 1.111, and 1/1.1 = 0.91 would enable the set-
ting of new upper and lower bounds that would be sym-
metric about the difference between the means of model
M6 and Chave et al. (2014) (on the ratio scale) (Meyners
2012). In that case, the test decision would not depend
on any of the two models (M6 or Model of Chave et al.
(2014)) as a reference (idem).
Therefore, the new symmetric equivalence bounds for

the two hypotheses were then stated as below for the ra-
tio scale:

0:9 < μM6=μC < 1=0:9 ð10aÞ
or

1=1:1 < μM6=μC < 1:1 ð10bÞ
These two equivalent bounds do not differ significantly

and can be considered as referring to the same interval.
Therefore, any of the two equations in Eqs. 10 could be
used to test the equivalence of the two models. In this
study, Eq. 10a was used.
It is important to test the one-sided null hypotheses

for the lower and upper bounds of each of Eq. 10a. To
avoid the problem of ratios, each one-sided hypothesis
should be stated as a linear combination of a normally
distributed random variable as in:

μM6 � 0:9μC < 0 ð11aÞ
and

μM6 � 1:1111μC < 0 ð11bÞ
These two one-sided hypotheses, μM6–0.9μC < 0 and

μM6–1.1111μC < 0 were then tested by computing DM6

and DC as below based on the assumption that random
variables YM6–0.9YC and YM6–1.111YC are normally dis-
tributed when the sample averages of YM6 and YC are
normally distributed:

DM6 ¼ YM6 � 0:9YC ð12aÞ
and

DC ¼ YM6 � 1:111YC ð12bÞ
where YM6 and Yc are the predictions of model M6 and
the model developed by Chave et al. (2014), respectively.
Two one-sample t-tests were then performed using

DM6 and DC values. The one-sided null hypothesis μM6–
0.9μC < 0 is rejected if the average of the DM6 values is
sufficiently greater than 0. The one-sided null hypothesis
μM6–1.1111μC < 0 is rejected if the average of the DC

values is sufficiently smaller than 0. If both null hypoth-
eses are rejected, then the alternative hypothesis of
equivalence is accepted.
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A paired t-test was also performed to compare the
predictions of the best model among the seven models
with the Chave et al. (2014) pantropic model (Eq. 13).

AGB ¼ 0:0673 ρ dbhð Þ2H� �0:976
; AIC ¼ 3130;DF ¼ 4002ð Þ

ð13Þ
In this comparison, the null hypothesis being tested is

that the mean difference between the estimates of se-
lected local model and that of Chave et al. (2014) is zero
at 95% confidence level, with the alternative being that
the mean difference is not zero as stated below:

Ho : μd ¼ 0

Ha : μd≠0

Results
Model parameters
The ANOVA for the models revealed that the parame-
ters of each model were significantly different from zero
(P < 0.001) at the 95% confidence level (Table 5). This
indicates that the estimated parameters were within the
95% confidence interval. The allometric coefficients for
models M1, M2 and M3 were both larger and less pre-
cise relative to the rest. Also, estimates of allometric ex-
ponents for models M1, M2 and M3 were large, but
precise, compared to the rest. The trend shows that the
models without tree height as predictor (M1, M2 and
M3) had larger allometric exponents than those with
total tree height (M4, M5, M6 and M7) as a predictor.
All the CIs were within the reference CIs except the CI
of the allometric coefficient of model M1.

Model Evaluation
Models efficiency
The variability in AGB as explained by the MEF values
ranged from 91% to 97% (Table 6). Model M1 explained
91% of the variability in AGB while models M6 and M7
explained 97% of the variability. The biases ranged from
Table 5 Estimates of model parameters with their standard errors (S
recommended confidence intervals by Stellingwerf (1994). The ±20%
of estimated parameter

Model Para. Est. 95% CI ±20% of e

M1 a1 0.161 0.121–0.201* 0.129–0.19

M2 a2 0.202 0.166–0.238 0.162–0.24

M3 a3 0.227 0.190–0.264 0.182–0.27

M4 a4 0.05 0.039–0.062 0.04–0.060

M5 a5 0.059 0.044–0.073 0.047–0.07

M6 a6 0.058 0.049–0.067 0.046–0.07

M7 a7 0.053 0.045–0.061 0.042–0.06

Note: Para. is parameter and est. is estimate, *95% confidence interval is outside re
− 0.07% for M5 to 1.66% for M7. The AICc values for
the models also ranged from a minimum of 2538.78 for
M7 to 2854.67 for M4. The MEF within each model cat-
egory of models were the same, however that of bias and
AICc varied within the model categories although the
variation was small. Model M7 had the least AICc and
the difference between the least AICc value and each of
the models revealed that the models with wood density
(M2, M3, M6 and M7) were better model than those
without wood density (M1, M4 and M5).

Effects of model predictors on model bias
The model biases were evaluated against each of the pre-
dictors to observe the effect of classes of each predictor
on the model biases. The effect of wood density class on
the bias of models M2, M3, M6 and M7 was assessed
(Fig. 2). The relationship between wood density classes
and model bias revealed that wood density class 0.5–
0.59 g·cm− 3 influenced the magnitude of model bias
more than the other classes. Furthermore, the mean bias
of the same density class had the widest CI for all the
four models (M2, M3, M6 and M7). The theoretical bias,
0, is within the CI of all the wood density classes except
the reference model which had the reference bias out-
side the CI of wood density classes 0.60–0.69, 0.70–0.79,
0.80–0.89 g·cm− 3.
All the models were biased toward dbh class 45.0–

54.9 cm with M5 exhibiting the largest (95%) margin of
error (Fig. 3). Based on the 95% CI, model M6 is more
precise relative to the other models for all dbh classes.
The dbh class 45.0–54.9 cm contributed the largest bias
in all the model biases relative to the other dbh classes.
Similar trend of the effect of the dbh classes on model
bias is observed with the reference model (Chave et al.
2014). However, the effect of dbh class 45.0–54.9 cm on
model bias is minimal in M6 compared to the other
models, including the reference model. The high influ-
ence of dbh class 45.0–54.9 cm on model bias could be
attributed to the relatively low number of trees (3) in
this dbh class (see Table 1). Model M6 is relatively more
.E.) and 95% confidence interval (CI) together with
of the estimated parameters are used as reference CI for those

st. Para. Est. 95% CI ±20% of est.

3 b1 1.193 1.158–1.228 0.954–2.147

2 b2 1.205 1.180–1.231 0.964–2.169

2 b3 1.196 1.172–1.220 0.957–2.153

b4 0.974 0.941–1.007 0.779–1753

1 b5 0.966 0.940–0.992 0.773–1.739

0 b6 0.999 0.983–1.015 0.799–1.798

4 b7 1.009 0.992–1.025 0.807–1.816

commended confidence interval



Table 6 Statistical goodness-of-fit measures (MEF, Bias, AICc and ΔAICc) for the models

Category Label Model MEF Bias (%) AICc ΔAICc

I M1 AGB = 0.1612((dbh)2)1.1928 0.91 −0.58 2852.65 313.87

II M2 AGB = 0.2017ρ((dbh)2)1.205 0.96 −0.83 2699.51 160.73

M3 AGB = 0.2268((dbh)2ρ)1.196 0.96 −0.83 2698.45 159.67

III M4 AGB = 0.0503 H((dbh)2) 0.974 0.93 1.04 2854.67 315.89

M5 AGB = 0.0585((dbh)2H) 0.966 0.93 −0.07 2852.86 314.08

IV M6 AGB = 0.0580ρ((dbh)2H)0.999 0.97 0.90 2539.23 0.45

M7 AGB = 0.0530((dbh)2Hρ)1.009 0.97 1.66 2538.78 0

Fig. 2 Influence of wood density classes on model bias. The models that have wood density as a predictor are M2, M3, M6 and M7. Chave et al.
(2014) model serves as a reference model. The theoretical bias is zero and density classes with mean bias close to zero had positive influence on
the bias of the model
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Fig. 3 Influence of dbh classes on model accuracy and precision. The model of Chave et al. (2014) is included here as a reference model. The
influence of the dbh classes on the model bias of the various models (M1–M7) are compared with the reference model (Chave et al. 2014)
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accurate and precise than the other models since the
mean bias for all the dbh classes are virtually equal to
the theoretical value of zero and the 95% CI are rela-
tively narrow.
The relationship between model bias and tree total

height class revealed that height class 20.1–25.0 m influ-
enced the magnitude of the bias and its deviation from
zero (Fig. 4). The same total tree height class had more
effect on the bias of models without wood density as a
predictor (M4 & M5) compared to those that had wood
density (M6 & M7, including the reference model).

Evaluation of goodness-of-fit plots
Linear regression of observed AGB versus predicted
AGB revealed that M6 had the narrowest prediction
interval (PI) and the fewest points outside the PI
Fig. 4 Relationship between total tree height and model bias. A perfect m
to be close to zero
compared to the rest (Fig. 5). From the plots, it is
apparent that the models with wood density as
predictor (M3 and M6) had narrow prediction
bands relative to those without wood density as a
predictor.
The plot of the residuals verses the predicted AGB

(Fig. 6), revealed that M1, M2, M3, M4 and M5 exhibits
increasing residuals with increasing predicted AGB (het-
eroscedasticity of residuals) while M6 and M7 together
with the reference model, Chave et al. (2014) model,
showed general constant trend of residuals with in-
creasing predicted AGB. Furthermore, the first five
models produced larger residuals (between ±6 and ± 8
kg·tree− 1) than the last two which produced residuals
within ±4 kg·tree− 1.
odel has a mean zero bias. The precision of the mean bias is expected



Fig. 5 Graphical illustration of the relationship between observed and predicted AGB showing the line of regression and the 95% prediction
interval (PI)
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Fig. 6 Relationship between predicted AGB and standardized residuals for the seven models. Chave et al. (2014) model is added as reference
model. The plots are used to assess the nature of the residuals and the magnitude of the residuals from zero, the perfect residual
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Table 8 Results of test of reliability of model parameters a and
b using the percent relative standard error (PRSE)

Label Model PRSE values (%)

Constant (a) Exponent (b)

M1 AGB = 0.1612((dbh)2)1.193 12.66 1.51

M2 AGB = 0.2017ρ((dbh)2)1.205 9.17 1.08

M3 AGB = 0.2268((dbh)2ρ)1.196 8.38 1.03

M4 AGB = 0.0503H((dbh)2)0.974 11.73 1.72

M5 AGB = 0.0585((dbh)2H)0.966 12.99 1.38
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Model comparison
AICc values of the models showed significant differences
only across model categories (I, II, III & IV). The best
performing model in terms of AICc is M7 and compari-
son of the AICc value of M7 with the rest showed differ-
ences in AICc values of greater than the recommended
value of 2 for M1, M2, M3, M4 and M5. However, the
difference in the AICc values (0.45) for M6 and M7 is
much less than the recommended value and are said to
be similar.
M6 AGB = 0.0580ρ((dbh)2H)0.999 8.22 0.84

M7 AGB = 0.0530(ρ(dbh)2H)1.009 7.93 0.82
Model validation
Parameters
Comparison of the 95% CI and the recommended inter-
vals revealed that the CIs of both the allometric con-
stants (ai) and the allometric exponents (bi) were within
±20% of the estimated parameters except the confidence
interval of the allometric constant of model M1, which
has its lower and upper bounds [0.121–0.201] outside
the ±20% of the estimate [0.129–0.193] (Table 7). This
suggests that the parameter a1 of model M1 is not ac-
curately estimated and would not be reliable with 95%
CI. However, the rest of the allometric constants and ex-
ponents of the models were accurately estimated and are
therefore reliable.
The Percent Relative Standard Error (PRSE) for the

allometric constants varied from 7.93% to 12.99%
whereas that for the allometric exponents ranged from
0.82% to 1.72% (Table 8). These PRSE values are less
than 20% suggesting that the estimates of the parameters
of the models are reliable in estimating AGB.
Test of Equivalence between best model (M6) and Chave
et al. (2014) pantropic model
The TOST results revealed that there is no sufficient
evidence in support of the null hypotheses for both the
upper and the lower bounds at 10% confidence interval
(Table 9). Therefore, the two null hypotheses are
rejected in favour of the alternative hypotheses. It there-
fore concluded that model M6 and the pantropic model
Table 7 Comparison of 95% confidence intervals of the estimated (
by Stellingwerf (1994)

Model Para. Est. 95% CI ±20% of e

M1 a1 0.161 0.121–0.201a 0.129–0.19

M2 a2 0.202 0.166–0.238 0.162–0.24

M3 a3 0.227 0.190–0.264 0.182–0.27

M4 a4 0.05 0.039–0.062 0.04–0.060

M5 a5 0.059 0.044–0.073 0.047–0.07

M6 a6 0.058 0.049–0.067 0.046–0.07

M7 a7 0.053 0.045–0.061 0.042–0.06
a95% confidence interval is outside recommended confidence interval
of Chave et al. (2014) are equivalent in terms of their
predictions.

Test of difference in model predictions between M6 and
Chave et al. (2014) pantropic model
A comparison of model M6 with the pantropic model
developed by Chave et al. (2014) [AGB =
0.0673(ρ(dbh)2H)0.976] based on a paired t-test (n = 745,
mean diff. = 16.50 ± 2.45 kg; S.E. = 1.25 kg; p < 0.001) re-
vealed significant evidence (p < 0.001) that the difference
in means of their estimates (16.50 kg) is significantly dif-
ferent from 0 (p < 0.001) at the 95% confidence level
(Table 10). Therefore, the null hypothesis that the mean
difference between the two models is zero is rejected in
favour of the alternative hypothesis.
The analysis provided sufficient evidence to reject the

null hypothesis that the observed AGB and model pre-
dictions for the pantropic model is zero, implying that
there is significant difference between the means of the
observed and the predictions in the case of the pantropic
model.
Plots of observed AGB against predictions AGB re-

vealed deviations of the slope and intercepts of the 1:1
line from 1 and from zero (0), respectively for both
model 6 and that of Chave et al. (2014). However, both
models were similar as indicated by the values of coeffi-
cient of determination (R2) (Fig. 5). The slight departure
est.) parameters (para) with recommended confidence intervals

st. Para. Est. 95% CI ±20% of est.

3 b1 1.193 1.158–1.228 0.954–2.147

2 b2 1.205 1.180–1.231 0.964–2.169

2 b3 1.196 1.172–1.220 0.957–2.153

b4 0.974 0.941–1.007 0.779–1753

1 b5 0.966 0.940–0.992 0.773–1.739

0 b6 0.999 0.983–1.015 0.799–1.798

4 b7 1.009 0.992–1.025 0.807–1.816



Table 9 Results of the two one-sided t-tests of euivalence between model M6 and Chave et al. (2014) pantropic model

One-sample t-test for Upper-tailed test One-sample t-test for Lower-tailed test

Difference 1.6427 Difference −36.6614

t (Observed value) 4.7222 t (Observed value) −16.0874

t (Critical value) 1.6469 t (Critical value) −1.6469

DF 744 DF 744

p-value (one-tailed) < 0.0001 p-value (one-tailed) < 0.0001

alpha 0.05 alpha 0.05
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of the slope and the intercept of model M6 from 1 and 0
is an indication of the presence of minor prediction er-
rors. A comparison of the plots also showed that while
model M6 under-predicted by 2.506 kg, Chave et al.
(2014) over-predicted by 4.049 kg (see equations in the
plots) within 95% prediction interval (PI). Also, 98.5% of
the standardized residuals of both models fall within ±3
with six standardised residuals (1.5%) outside ±3 range
(Fig. 5).

Discussion
Model parameters and accuracy
The accuracy of the estimated parameters has significant
effects on the predictive power of the models particularly
model M6 which has been selected as the best model
among the seven models. The accuracy of estimated pa-
rameters constitutes a source of error in the application
of the model and are therefore key factors that deter-
mine whether model is applicable or not. It is important
to examine the model parameters critically. Comparison
of the 95% CI and the recommended intervals revealed
that the CIs of both the allometric constants (ai) and ex-
ponents (bi) for all the models except the CI of param-
eter a1 of M1 were within ±20% of the estimated
parameters as recommended by Stellingwerf (1994). This
suggests that the parameter a1 of model M1 was not ac-
curately estimated and would not be reliable with 95%
CI.
Comparison of the scaling exponents with literature

also indicates that the observed scaling exponents (ran-
ging from 1.00 to 1.21) are somewhat lower than those
reported by Sileshi (2014), which ranged from 1.64 to
3.83. The differences in the scaling exponents could be
attributed to differences in sample size since large uncer-
tainty is associated with estimates of the exponent with
small samples. In this study, the sample size is 745 while
Table 10 Results of statistical comparison model 6 with Chave et al

Model N Mean + 95% CI* (kg)

Current Model (M6) 745 181.44 ± 18.25

Chave et al. (2014) 745 164.94 ± 15.82

Difference 745 16.50 ± 2.45

*95% CI = S.E.*1.96
the sample size of the studies cited by Sileshi (2014)
ranged from 12 to 264.
Furthermore, when the allometric exponents of M1

(which is of the generic form), 2.386 (2 × 1.193) was
compared with the empirical allometric exponent
(2.3679) as stated by Zianis and Mencuccini (2004) for
the generic relationship between AGB and dbh [M =
a(dbh)b], it shows close similarity between the two
values. However, when the allometric constant of M6
was compared with Ebuy et al. (2011), it is apparent that
the allometric constant of M6 (0.058) is relatively less
than that of the Ebuy et al. model (1.603) while the allo-
metric exponent of M6 (0.999) is relatively larger than
that of Ebuy et al. model (0.657). Considering the effects
of sample size on model parameters, it is more likely
and credible that the coefficients of M6 are more accur-
ate and reliable than those of the model of Ebuy et al.
(2011). This is because the model of Ebuy et al. was cali-
brated using a very small sample of 12 trees while M6 was
calibrated using a large sample of 745 trees. This assertion
is consistent with Sileshi (2014), who criticized the allo-
metric exponent of the Ebuy et al. (2011) model as being
very small compared to the theoretical value of 2.67 while
the intercept was excessively large.
The scaling exponents have significant practical impli-

cations for the estimation total AGB. In this study, it is
observed that models M1, M2, M3 and M7 have scaling
exponents greater than 1.0, implying that the total AGB
predicted by such models increases relatively faster than
the predictors as observed by Bervian et al. (2006). Simi-
larly, models M4, M5 and M6 have allometric exponents
of less than 1, which means that these models will pre-
dict total AGB that is presumed to accumulate relatively
slower than the growth in the predictors of the AGB.
Therefore, models M1, M2, M3 and M7 are likely to
over-predict the mean AGB marginally while M4, M5
. model using the Paired t-test

StDev (kg) S.E. (kg) p-value

254.08 9.31

220.31 8.07

34.10 1.25 < 0.001
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and M6 will under-predict it marginally. The explana-
tions of over-prediction and under-prediction of these
models are generally consistent with observations of
Feldpausch et al. (2012) and the regression parameters
of the relationship between observed and predicted AGB
(Figs. 2 and 5). Feldpausch et al. (2012) observed that
allometric models without H usually over-estimate AGB.
For instance, among the category of models that are
likely to over-predict, models M1, M2 and M3, are with-
out H as a predictor. However, the deviation of M7 from
the observation of Feldpausch et al. (2012) could be at-
tributed to fact that it exhibited the largest bias among
the seven models.
Furthermore, the relationship between the observed

and predicted AGB (Figs. 2 and 5) as an evaluation of
model predictions also revealed marginal deviations of
slope and intercepts from the theoretical values of 1 and
0 (1:1 line) respectively for a perfect model (see Pineiro
et al. 2008). These marginal deviations are expected
under empirical conditions where measurements of vari-
ables are subject to random errors. Thus, the prediction
accuracy and reliability of the models should not be sub-
jected to the judgement of Sileshi (2014) that deviations
of slope from 1 and intercept from 0 are an indication of
significant prediction errors. This is because marginal er-
rors in estimates of empirical parameters are unavoid-
able. The same trend of over- and under-predictions
among the seven models are also revealed by the linear
relationships between observed and predicted AGB.
The validation of the model M6 using the equivalent

test and the paired t-test revealed different conclusions.
While the conclusion of the equivalent test suggests that
model M6 and model of Chave et al. (2014) are equiva-
lent within 10% of their mean predictions, the paired t-
test suggests that the mean of the predictions of Chave
et al. (2014) is significantly greater than that of M6. The
difference in the outcomes of the two tests can be attrib-
uted to the nature of each of the two tests and the sam-
ple size as argued by Dixon et al. (2018) that the nature
of the difference test (t-test) is such that it is more likely
to find statistically significant difference with large sam-
ple data. In this study, a sample size of 745 is large
enough to support the argument of Dixon et al. (2018).
The study agrees with the results of the equivalence test
that the predictions of the two models are equivalent.
However, the evidence of equivalence between the two
models must be placed within the practical ecological
relevance and be emphasized that the fact of equivalence
of the two models does not mean that one cannot be su-
perior to the other in times of practical local needs and
applications. Certainly, the question of Tier 2 and 3 of
IPCC requirements and develop of GPG for carbon
stock reporting suggest that accurate local allometric
models cannot be substituted for pantropic allometric
models. For instance, if the accuracies for reporting car-
bon stock for IPCC requires smaller accuracies than ±
10% of the means of the predictions of the two models,
the assumption of equivalence would not be appropriate
and the M6 will be superior to the pantropic model.
Also, the pantropic model of Chave et al. (2014) may
not provide the required accurate estimate of AGB at
the local level and similar ecological areas for purposes
of the REDD+ programme and IPCC carbon stock
reporting at the local level. This is consistent with the
view of Nam et al. (2016) that regional and pan-tropical
models could lead to erroneous biomass estimates at the
local level.

Model forms
The observations of the different model forms indicate
that the model form influenced the model efficiency, bias
and AICc values. For instance, model M1 which has dbh
as the only effect variable explained 91.4% of the variability
in AGB. This is expected and confirms why dbh is widely
used as predictor of AGB (Baker et al. 2004; Chave et al.
2005; Henry et al. 2011; Chave et al. 2014). However, the
model efficiency of 91.4% is lower than 95% as reported
by Gibbs et al. (2007) in tropical forest. The difference can
be attributed to the ecological conditions and the age of
the trees since these conditions have impact on the overall
amount of AGB (Picard et al. 2012). The dbh therefore
plays a significant role in tree allometry and has always
been the first variable in relating tree attributes to total
above ground biomass of trees.
The inclusion of wood density to dbh (category II

models i.e. M2 and M3) increased the amount of pre-
dictability in AGB from 92.8% to 95.7%. This is a signifi-
cant increase in the model efficiency and is in line with
general view that wood density is an important predictor
of AGB, especially for mixed species (Baker et al. 2004;
Djomo et al. 2010; Chave et al. 2014; Dutcă 2019). Dutcă
(2019) reported that wood density actually accounts for
differences in tree species multispecies allometric
models. It is therefore not surprising that Baker et al.
(2004) observed that wood density alone explained
25.1% of the variation in AGB in the Tropics. The sig-
nificant role of wood density as a predictor of AGB
could also be attributed to the nature of the tree canopy
in the study area; whether the tree canopy is open or
closed. The canopy in the forest-savannah transition
zone is an open type and the trees usually tend to have
many branches, which add to the AGB of the trunk thus
accounting for the total AGB relatively better than pro-
portion accounted for by the dbh. This explanation is
consistent with the view of Picard et al. (2012) that trees
in open woodlands have more branches than those in
dense stands even if the trees have equal height, dbh and
are of the same age. This also suggests that despite the
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significance of dbh in AGB estimation, it is not sufficient
in explaining the variability in AGB of mixed species as
noted by Henry et al. (2011) and Dutcă (2019).
The inclusion of height to dbh (in the case of models

M4 & M5) increased the MEF marginally from 91.4% to
92.8%. This is contrary to expectations as Feldpausch
et al. (2012) emphasized the relevance of height in esti-
mating tree biomass. The marginal increase in MEF
could be attributed partly to difficulty encountered in
the field in precisely measuring tree height with the
Haga Hypsometer, especially when other tree crowns
obstruct the tip of a tree.
The inclusion of both wood density and tree height to

dbh improved the MEF significantly from 91.4% to
97.4% as in M6 & M7. Thus, in terms of MEF, model
M6 and M7 accounted for the variability in AGB rela-
tively better than the other models. The margin increase
in the MEF as a result of the inclusion of total tree
height affirms the observation of Chave et al. (2005) that
the order of importance of predictors of AGB is dbh,
wood density and tree height. This is further buttressed
by Nam et al. (2016) who reported that in the case of
multi-species, a model combines dbh, wood density and
tree total height as predictors gives good estimate of site
or plot level AGB.
Examination of the model bias (%) shows that all the

models are acceptable based on the criterion of Huang
et al. (2003) that bias percent of less than 10% is good.
Despite the revelation that the best models in terms of
model bias have height as one of their predictors, the
general trend in the observed bias does not follow the
observation by Chave et al. (2005) and Feldpausch et al.
(2012) that the inclusion of height in estimating destruc-
tively sampled biomass reduced errors significantly. The
difference in observations could be attributed to the
methods of measuring the height of trees in the field
since height measurement is easily prone to errors.
Comparing the seven models, the best performing

model in terms of AICc is M7 since it has the least of
the AICc values. Comparing AICc value of M7 with the
AICc values of the rest of the models shows that the dif-
ferences are greater than the recommended difference of
2, except M6 indicating that these models are signifi-
cantly different from M7, based on the observation of
Migliavacca et al. (2012). The difference in AICc values
between M7 and M6 is less than 2 suggesting that the
two models are similar. However, the performance of
models M6 and M7 in terms bias shows that M6 is bet-
ter than M7 for estimating AGB of the woodlands of
savannah-forest transition zone.
The models in categories III and IV have indeed dem-

onstrated the relevance of choosing an appropriate
model form as pointed out by Chave et al. (2004), Nam
et al. (2016) and Youkhana et al. (2017). Thus two
different model forms, with the same predictors and dif-
ferent effect variables can produce different estimates of
AGB as a result of the effect of the allometric exponent
on the different predictors. Considering category IV, the
results therefore revealed that the two model forms
ρ((dbh)2H)b and (ρ(dbh)2H)b performed similarly in
terms of MEF and AICc with ρ((dbh)2H)b out-
performing (ρ(dbh)2H)b in terms of model bias.
The relationship between standardized residuals and

predicted AGB showed that models M1, M2, M3, M4
and M5 exhibited some level of heteroscedasticity, while
M6, M7 and the reference model exhibited homoscedas-
ticity of residuals (Fig. 6). It is apparent from the cat-
egory of the models exhibiting heteroscedasticity, that
the heteroscedasticity being exhibited by these models
can be attributed to inappropriate model forms in terms
of model exponents and sufficiency of predictors but not
necessarily due serious variation in the dbh of the trees
used in the models. This is consistent with the explan-
ation of Knaub Jr. (2018) that nonessential heteroscedas-
ticity is not due to the different sizes of members of a
population in a sample. In terms of the size of the resid-
uals, the models that have the smallest range of residuals
(±4) are M6 and M7 together with the reference model.
However, the ±4 range is larger than the ±2 range recom-
mended by Sileshi (2014) who indicated that residual
values exceeding ±2 represent outliers that can cause a
model to exhibit serious heteroscedasticity. That notwith-
standing, the best model is till reliable and applicable.

Attributes of tree species
While the species used in developing the models vary in
terms of wood density, the individuals of each of these
species also varied in terms of diameter at breast height,
total tree height and even within tree wood density de-
pending on the conditions of growth (see Picard et al.
2012). These variations would have effects on the accur-
acy of models and should reflect in the seven different
models developed in this study. That notwithstanding,
Dutcă (2019) argued that more of the differences among
species in multi-species allometric models is captured by
wood density. In this study, 31 different tree species
were used to develop the models. However, 70% of the
745 individual trees harvested belong to eight different
tree species (Acacia sp., Anogeissus leiocarpus, Burkea
africana, Detarium microcarpum, Lophira lanceolata,
Pterocarpus erinaceus, Terminalia macroptera and Vitel-
laria paradoxa).

Diameter at breast height (dbh)
About 87% of the trees used in developing the models
were within the dbh classes 5–14.9 cm and 15–24.9 cm.
The number of species that constitutes these individual
trees are 30 out of the 31 species. Only 13% of trees fell
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within the rest of the three dbh classes (25–34.9, 35–
44.9 and 45–54.9 cm). It is therefore not surprising that
all the models were biased toward dbh class 45.0–54.9
cm with M5 exhibiting the largest margin of error. The
relatively large biases exhibited by this dbh class is at-
tributed to the relatively few (3 trees) but large trees in
this dbh class compared to the number of trees in each
of the other classes. Despite their effect on the model
bias, these trees could not be considered as outliers be-
cause they constituted a significant part of the trees in
the study area and contained large proportion of the bio-
mass of the vegetation as also observed by (Feldpausch
et al. 2012). That notwithstanding, model M6 proves su-
perior in relation to model accuracy and precision
among the seven models for all dbh classes. It showed
lower bias within the 45.0–54.9 cm dbh class compared
to the rest of the models. Similarly, model M6 is still
relatively better when compared with the pantropic
model of Chave et al. (2014). However, the application
of model M6 in estimating the biomass of trees beyond
the upper bound of the 45.0–54.9 cm dbh class might
lead to the introduction of serious bias into the esti-
mated biomass (see Roxburgh et al. 2015).

Wood density
The wood density of harvested trees varied within trees
as observed from the standard deviations. The standard
deviations ranged from 0.016 g·cm− 3, for Margaritaria
discoidea, to 0.087 g·cm− 3 for Anogeissus leiocarpus. The
observed variation within the wood density in the har-
vested tree species is not surprising as Woodcock and
Shier (2002), Knapic et al. (2008) and Lehnebach et al.
(2019) observed a decreasing trend of wood density from
pith to the cambium of the oak tree. Variation is attrib-
utable to growth conditions, age and succession of the
tree. Pioneers and early successional species exhibit in-
creasing wood density from the pith to the bark, while
late successional species exhibit decreasing wood density
from pith to bark (Woodcock and Shier 2002).
About 72% of the individual trees used to develop the

models were from 16 of the 31 species and were of dens-
ities ranging from 0.7 to 0.89 g·cm− 3. These species are
Afzelia africana, Albizia coriaria, Anogeissus leiocarpus,
Bridelia scleroneura, Burkea africana, Combretum colli-
num, Crossopteryx febrifuga, Erythrophleum ivorense,
Lophira lanceolata, Margaritaria discoidea, Pericopsis
laxiflora, Pseudocedrela kotschyi, Pterocarpus erinaceus,
Tamarindus indica, Terminalia macroptera and Vitel-
laria paradoxa. Wood density is an important predictor
in multispecies allometric models since it accounts for
the differences in the species (Dutcă 2019). Available
wood densities for three Combretum species observed in
Niger, Bukina Faso and Mali which ranged from 0.666
g·cm− 3 to 0.758 g·cm− 3 (Nygard and Elfving 2000; Sotelo
Montes et al. 2012; Weber et al. 2017). This revealed
that the observed wood density for Combretum collinum
(0.70 g·cm− 3) in this study is within the range of existing
wood densities for Combretum species in similar geo-
graphic areas. Additionally, the wood density of 0.63
g·cm− 3 for Parinari cura tellifolia is consistent with the
range of density values for Parinari spp. reported in Ket-
terings et al. (2001).
The relationship between wood density classes and

model bias revealed that the extreme wood density clas-
ses (0.5–0.59 and 0.8–0.89 g·cm− 3) influenced model
precision and accuracy negatively more than the inter-
mediate classes with model M3 being more accurate and
precise compared to model M6. These two wood density
classes contain trees across all the dbh classes compared
to the intermediate classes that do not contain trees in
the dbh class with the largest trees. Although tree size
(dbh) is not explicitly stated as one of the factors that in-
fluence variation of wood density (see Woodcock and
Shier 2002), it can be inferred from the growth condi-
tions of the trees and could be contributed to the large
bias in these density classes. Additionally, low density
class (0.5–0.59 g·cm− 3) contained the least number of
trees (8%) which could have also influenced the bias nega-
tively. That notwithstanding, the evidence of variation in
wood densities within trees and between species certainly
has influence on the performance of multispecies models.

Total tree height
About 90% of the trees harvested for the modelling fell
within two height classes 5.1–10.0 and 10.1–15.0 m.
Knowledge of dbh and total tree height is fundamental
to the development and application of allometric models
(Sharma and Parton 2007). The relationship between
bias and height classes revealed that height class 20.1–
25.0 m influenced the precision of both models nega-
tively. Comparatively, model M6 is more accurate and
precise relative to model M5.

Conclusions and recommendations
This study developed and compared seven models for
assessing AGB of mixed trees species used for charcoal
production in the savannah woodlands of Ghana. The
best model among the seven models based on a com-
parison of model efficiency (MEF), bias (%), AICc is
AGB = 0.0580ρ((dbh)2H)0.999. Diameter at breast height
and wood density were the main predictors that signifi-
cantly influenced variability in AGB. The model parame-
ters were evaluated and found to be accurate and
reliable. The best model and that of Chave et al. (2014)
were compared and found to be equivalent within ±10%
of the means of their predictions. Despite the equiva-
lence between the two models, the best allometric model
in this study is considered to be a better tool for
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estimating AGB in the savannah woodlands of Ghana,
compared to the Chave et al. (2014) pantropic models.
The allometric model of this study is therefore a relevant
local allometric tool which fills a critical gap in the esti-
mation of AGB for the tropical woodlands of Ghana. It
is therefore recommended for use in the REDD+ process
of estimating relevant emission levels for Ghana to facili-
tate effective accounting of the contribution of charcoal
production to both national and global carbon budgets.
It is further recommended that similar research be con-
ducted in other parts of West Africa (e.g. the Sahelian
ecozones) and in other regions in Africa for a compre-
hensive and better understanding of variation in AGB in
the West African sub-region and in Africa as a whole.

Acknowledgements
We acknowledge the support of the Federal Ministry of Education and
Research (BMBF) of Germany, which fully and solely funded the study
through the West African Science Service Centre for Climate Change and
Adapted Land use (WASCAL) under its Doctorate Research Programme on
Climate Change & Land use (DRP CCLU) at the Kwame Nkrumah University
of Science and Technology, Kumasi. We are thankful to Kwame Nkrumah
University of Science and Technology for offering the lead author the
opportunity to be part of WACAL DRP CCLU. We are also grateful to the
University for Development Studies, Tamale – Ghana, for granting the lead
author study leave to enable him conduct this study without any conflict of
interest. We thank the Faculty ITC, University of Twente, Enschede – The
Netherlands, for allowing us to use their facilities during the writing of this
manuscript. We appreciate the support of the Kintampo Municipal Assembly,
as well as all those who assisted in one way or the other during the data
collection and reviewing the manuscript. I also appreciate the invaluable Mr.
Franklyn Dono of Atomic Energy Commission, Accra.

Authors’ contributions
This paper is extracted from PhD thesis of Raymond Aabeyir. Raymond
Aabeyir collected the data, analysed, and drafted the manuscript under the
supervision of Stephen Adu-Bredu, Wilson Agyei Agyare, and Michael J. C.
Weir. The Co-authors also reviewed the manuscript. The author(s) read and
approved the final manuscript.

Authors’ information
Authors’ information is provided under the authors’ affiliation.

Funding
Federal Ministry of Education and Research (BMBF) of Germany, funded the
PhD programme of the lead author through the West African Science
Service Centre for Climate Change and Adapted Land use (WASCAL).

Availability of data and materials
The data is available for use for non-commercial purposes. It will be willingly
provided upon request through raypacka2012@gmail.com.

Ethics approval and consent to participate
The authors have complied with ethical standards during the data collection
process. Permission for the fieldwork was sought from the Kintampo District
Forest Office, traditional authorities and the Kintampo Municipal Assembly.

Consent for publication
Apart from the literature cited and duly acknowledged, the data used in this
manuscript were collected by the lead author under the supervision of the
co-authors.

Competing interests
The lead author obtained study leave from his employer, University for
Development Studies. The funding institution, Federal Ministry of Education
and Research (BMBF) of Germany, has been duly acknowledged.
Author details
1Department of Environment and Resource Studies, UDS-Wa Campus, Wa,
Ghana. 2WASCAL Graduate Research Programme on Climate Change and
Land Use, KNUST, Kumasi, Ghana. 3Biodiversity Conservation and Ecosystem
Division, CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana.
4Department of Agricultural and Biosystems Engineering, KNUST, Kumasi,
Ghana. 5Department of Natural Resources, Faculty of Geoinformation Science
and Earth Observation (ITC), University of Twente, Enschede, the Netherlands.

Received: 17 November 2019 Accepted: 5 June 2020
References
Aabeyir R, Adu-Bredu S, Agyare WA, Weir MJC (2016) Empirical evidence of the

impact of commercial charcoal production on woodland in the Forest-
Savannah transition zone, Ghana. Energy Sustain Dev 33:84–95

Addo-Fordjour P, Rahmad ZB (2013) Mixed species allometric models for
estimating above-ground liana biomass in tropical primary and secondary
forests, Ghana. ISRN Forestry 2013:153587

Adu-Bredu S, Bi AFT, Bouillet JP, Me MK, Kyei SY, Saint-Andre L (2008) An explicit
stem profile model for forked and un-forked teak (Tectona grandis) trees in
West Africa. Forest Ecol Manag 255:2189–2203

Adu-Bredu S, Birigazzi L (2014) Proceedings of the regional technical workshop
on tree volume and biomass allometric equations in West Africa. UN-REDD
programme MRV report 21, Kumasi, Ghana. Forestry Research Institute of
Ghana, Food & Agriculture Organiszation of the United Nations, Rome, Italy

Afikorah-Danquah S (1997) Local resource management in the forest-savanna
transition zone: the case of Wenchi District, Ghana. IDS Bull 28(4):36–46

Akossou AYJ, Arzouma S, Attakpa EY, Fonton NH, Kokou K (2013) Scaling of teak
(Tectona grandis) logs by the xylometer technique: accuracy of volume
equations and influence of the log length. Diversity 5:99–113

Alvarez E, Duque A, Saldarriaga J, Cabrera K, de las Salas G, del Valle I, Lema A,
Moreno F, Orrego S, Rodríguez L (2012) Tree above-ground biomass
allometries for carbon stocks estimation in the natural forests of Colombia.
Forest Ecol Manag 267:297–308

Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ,
Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino
S, Pitman NCA, Silva JNM, Martinez RS (2004) Variation in wood density
determines spatial patterns in Amazonian forest biomass. Glob Chang Biol
10:545–562

Basuki TM, van Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for
estimating the above-ground biomass in tropical lowland Dipterocarp forests.
Forest Ecol Manag 257:1684–1694

Bervian G, Fontoura NF, Haimovici M (2006) Statistical model of variable
allometric growth: otolith growth in Micropogonias furnieri (Actinopterygii,
Sciaenidae). J Fish Biol 68:196–208

Bjarnadottir B, Sigurdsson Bjarni D, Lindroth A (2007) Estimate of annual carbon
balance of a young Siberian larch (Larix sibirica) plantation in Iceland. Tellus B
59(5):891–899

Blay D, Damnyag L, Twum-Ampofo K, Dwomoh F (2007) Charcoal production as
sustainable source of livelihood in Afram Plains and Kintampo North Districts
in Ghana. AFORNET 19(3):199–204

Brown JH, Geoffrey West B, Enquist BJ (2005) Yes, West, Brown and Enquist’s
model of allometric scaling is both mathematically correct and biologically
relevant. Funct Ecol 19:735–738

Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a
practical information-theoretic approach, 5th edn. Springer-Verlag, New York

Cai S, Kang X, Zhang L (2013) Allometric models for aboveground biomass of ten
tree species in northeast China. Ann For Res 56(1):105–122

Chave J, Andalo C, Brown S, Chambers MA, Chambers JQ, Eamus D, Fölster H,
Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riera
B, Yamakura T (2005) Tree allometry and improved estimation of carbon
stocks and balance in tropical forests. Oecologia 145:87–99

Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error
propagation and scaling for tropical forest biomass estimates. Phil Trans R
Soc Lond. B 359:409–420

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC,
Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-Yrizar A,
Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A,
Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG,

mailto:raypacka2012@gmail.com


Aabeyir et al. Forest Ecosystems            (2020) 7:41 Page 22 of 23
Vieilledent G (2014) Improved allometric models to estimate the
aboveground biomass of tropical trees. Glob Chang Biol 20(10):3177–3190

Cienciala E, Černý M, Tatarinov F, Apltauer J, Exnerová Z (2006) Biomass functions
applicable to Scots pine. Trees 20:483–495

Codjoe SNA, Bilsborrow RE (2011) Are migrants exceptional resource degraders?
A study of agricultural households in Ghana. GeoJournal 77:681–694

Dixon PM, Saint-Maurice PF, Kim Y, Hibbing P, Bai Y, Welk GJ (2018) A primer on
the use of equivalence testing for evaluating measurement agreement. Med
Sci Sports Exerc 50(4):837–845

Djomo NA, Ibrahima A, Saborowski J, Gravenhorst G (2010) Allometric equations
for biomass estimations in Cameroon and pan moist tropical equations
including biomass data from Africa. Forest Ecol Manag 260:1873–1885

Dutcă I (2019) The variation driven by differences between species and between
sites in allometric biomass models. Forests 10(11):976

Ebuy J, Lokombe J-P, Ponette Q, Sonwa DJ, Picard N (2011) Allometric equation
for predicting aboveground biomass of three tree species. J Trop For Sci
23(2):125–132

Ekoungoulou R, Nzala D, Liu XD, Niu SK (2018) Tree biomass estimation in central
African forests using allometric models. Open J Ecol 8:209–237

Fayolle A, Panzou GJL, Drouet T, Swaine MD, Bauwens S, Vleminckx J, Biwole A,
Lejeune P, Doucet J-L (2016) Taller trees, denser stands and greater biomass
in semi-deciduous than in evergreen lowland central African forests. Forest
Ecol Manag 374:42–50

Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Mendoza MA, Lopez-
Gonzalez G, Banin L, Salim AK, Affum-Baffoe K, Alexiades M, Almeida S,
Amaral I, Andrade A, Aragao LEOC, Murakami AA, Arets EJMM, Arroyo L,
Aymard GAC, Baker TR, Banki OS, Berry NJ, Cardozo N, Chave J, Comiskey JA,
Alvarez E, de Oliveira A, Di Fiore A, Djagbletey G, Domingues TF, Erwin TL,
Fearnside PM, Franca MB, Freitas MA, Higuchi N, Honorio EC, Iida Y, Jimenez
E, Kassim AR, Killeen TJ, Laurance WF, Lovett JC, Malhi Y, Marimon BS,
Marimon-Junior BH, Lenza E, Marshall AR, Mendoza C, Metcalfe DJ, Mitchard
ETA, Neill DA, Nelson BW, Nilus R, Nogueira EM, Parada A, Peh KS-H, Cruz PA,
Penuela MC, Pitman NCA, Prieto A, Quesada CA, Ramırez F, Ramırez-Angulo
H, Reitsma JM, Rudas A, Saiz G, Salomao RP, Schwarz M, Silva N, Silva-Espejo
JE, Silveira M, Sonke B, Stropp J, Taedoumg HE, Tan S, ter Steege H, Terborgh
J, Torello-Raventos M, van der Heijden GMF, Vasquez R, Vilanova E, Vos VA,
White L, Willcock S, Woell H, Phillips OL (2012) Tree height integrated into
pantropical forest biomass estimates. Biogeosciences 9:3381–3403

Gh-INDC (2015) Ghana’s intended nationally determined contribution (INDC) and
accompanying explanatory note. https://www4.unfccc.int/sites/ndcstaging/
PublishedDocuments/Ghana%20First/GH_INDC_2392015.pdf. Accessed 15
Jan 2020

Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical
forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023

Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006)
Methods and uncertainties in bioclimatic envelope modelling under climate
change. Prog Phys Geogr 30(6):751–777

Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M,
Saint-André L (2010) Wood density, phytomass variations within and among
trees, and allometric equations in a tropical rainforest of Africa. Forest Ecol
Manag 260:1375–1388

Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-André L
(2011) Estimating tree biomass of sub-Saharan African forests: a review of
available allometric equations. Silva Fennica 45(3B):477–569

Hevia A, Vilcko F, Alvarez-Gonzalez JG (2013) Dynamic stand growth model for
Norway spruce forests based on long-term experiments in Germany.
Recursos Rurais 9:45–54

Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating
growth and yield models. In: Amaro A, Reed D, Soares P (eds) Modelling
forest systems, Workshop on the interface between reality, modelling and
the parameter estimation processes, Sesimbra, Portugal, 2–5 June 2002, pp
271–292

Hui D, Jackson RB (2007) Uncertainty in allometric exponent estimation: a
case study in scaling metabolic rate with body mass. J Theor Biol 249:
168–177

Iiyama M, Neufeldt H, Dobie P, Njenga M, Ndegwa G, Jamnadass R (2014) The
potential of agroforestry in the provision of sustainable woodfuel in sub-
Saharan Africa. Curr Opin Environ Sustain 6:138–147

IPCC (2003) Good practice guidance for land use, land-use change and forestry.
Institute for Global Environmental Strategies (IGES), Hayama, Japan, ISBN 4-
88788-003-0
IPCC (Intergovernmental Panel on Climate Change) (2006) 2006 IPCC guidelines
for national greenhouse gas inventories. IGES, Japan

Jibrin A, Abdulkadir A (2015) Allometric models for biomass estimation in
savanna woodland area, Niger State, Nigeria. WASET Int J Environ Chem Ecol
Geological Geophysical Eng 9(4):283–291

Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing
uncertainty in the use of allometric biomass equations for predicting above-
ground tree biomass in mixed secondary forests. Forest Ecol Manag 146:
199–209

Knapic S, Louzada JL, Leal S, Pereira H (2008) Within-tree and between-tree
variation of wood density components in cork oak trees in two sites in
Portugal. Forestry 81(4):465–473

Knaub Jr. JR (2018) Nonessential heteroscedasticity. https://www.researchgate.
net/profile/James_Knaub/publication/324706010_Nonessential_
Heteroscedasticity/links/5ae4a267aca272ba50803568/Nonessential-
Heteroscedasticity.pdf. Accessed 15 Jan 2020

Lai J, Yang B, Lin D, Kerkhoff AJ, Ma K (2013) The allometry of coarse root
biomass: log-transformed linear regression or nonlinear regression? PLoS
One 8(10):e77007

Lakens D (2017) Equivalence tests: a practical primer for t tests, correlations, and
Meta-analyses. Soc Psychol Personal Sci 8(4):355–362

Lehnebach R, Bossu J, Va S, Morel H, Amusant N, Nicolini E, Beauchêne J (2019)
Wood density variations of legume trees in French Guiana along the shade
tolerance continuum: heartwood effects on radial patterns and gradients.
Forests 10(2):80. https://doi.org/10.3390/f10020080

Lima AJN, Suwa R, de Mello Ribeiro GHP, Kajimoto T, dos Santos J, da Silva RP,
Sampaio de Souza CA, De Barros PC, Noguchi H, Ishizuka M, Higuchi N
(2012) Allometric models for estimating above- and below-ground biomass
in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro,
Brazil. Forest Ecol Manag 277:163–172

Litton CM, Kauffman JB (2008) Allometric models for predicting aboveground
biomass in two widespread woody plants in Hawaii. Biotropica 40(3):313–320

Löf M, Madsen P, Metslaid M, Witzell J, Jacobs DF (2019) Restoring forests:
regeneration and ecosystem function for the future. New Forest 50:139–151.
https://doi.org/10.1007/s11056-019-09713-0

Mascaro J, Litton CM, Hughes RF, Uowolo A, Schnitzer SA (2011) Minimizing bias
in biomass allometry: model selection and log-transformation of data.
Biotropica 43(6):649–653

Mascaro J, Litton CM, Hughes RF, Uowolo A, Schnitzer SA (2014) Is logarithmic
transformation necessary in allometry? Ten, one-hundred, one-thousand-
times yes. Biol J Linn Soc 111:230–233

Mattson S, Bergsten U, Mörling T (2007) Pinus contorta growth in boreal Sweden
as affected by combined lupin treatment and soil scarification. Silva Fenn
41(4):649–659

Mbow C, Verstraete MM, Sambou B, Diaw AT, Neufeldt H (2013) Allometric
models for aboveground biomass in dry savanna trees of the Sudan and
Sudan–Guinean ecosystems of Southern Senegal. J For Res 19:340–347

Meyners M (2012) Equivalence tests – a review. Food Qual Prefer 26:231–245
Migliavacca M, Sonnentag O, Keenan TF, Cescatti A, O’Keefe J, Richardson AD

(2012) On the uncertainty of phenological responses to climate change, and
implications for a terrestrial biosphere model. Biogeosciences 9:2063–2083

Nam VT, van Kuijk M, Anten NPR (2016) Allometric equations for aboveground
and belowground biomass estimations in an evergreen forest in Vietnam.
PLoS One 11(6):e0156827

Navar J (2009) Allometric equations for tree species and carbon stocks for forests
of northwestern Mexico. Forest Ecology and Management 257:427–434

Nygard R, Elfving B (2000) Stem basic density and bark proportion of 45 woody
species in young savanna coppice forests in Burkina Faso. Ann For Sci 57:
143–153

Packard GC (2013) Is logarithmic transformation necessary in allometry? Biol J
Linn Soc 109:476–486

Packard GC, Birchard GF (2008) Traditional allometric analysis fails to provide a valid
predictive model for mammalian metabolic rates. J Exp Biol 211:3581–3587

Packard GC, Birchard GF, Boardman TJ (2011) Fitting statistical models in bivariate
allometry. Biol Rev 86:549–563

Pearson TRH, Brown SL, Birdsey RA (2007) Measurement guidelines for the
sequestration of forest carbon. Gen. Tech. Rep. NRS-18. U.S. Department of
Agriculture, Forest Service, Northern Research Station, Newtown Square, p 42

Picard N, Saint-André L, Henry M (2012) Manual for building tree volume and
biomass allometric equations: from field measurement to prediction, Food
and Agricultural Organization of the United Nations, Rome, and Centre de

https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ghana%20First/GH_INDC_2392015.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ghana%20First/GH_INDC_2392015.pdf
https://www.researchgate.net/profile/James_Knaub/publication/324706010_Nonessential_Heteroscedasticity/links/5ae4a267aca272ba50803568/Nonessential-Heteroscedasticity.pdf
https://www.researchgate.net/profile/James_Knaub/publication/324706010_Nonessential_Heteroscedasticity/links/5ae4a267aca272ba50803568/Nonessential-Heteroscedasticity.pdf
https://www.researchgate.net/profile/James_Knaub/publication/324706010_Nonessential_Heteroscedasticity/links/5ae4a267aca272ba50803568/Nonessential-Heteroscedasticity.pdf
https://www.researchgate.net/profile/James_Knaub/publication/324706010_Nonessential_Heteroscedasticity/links/5ae4a267aca272ba50803568/Nonessential-Heteroscedasticity.pdf
https://doi.org/10.3390/f10020080
https://doi.org/10.1007/s11056-019-09713-0


Aabeyir et al. Forest Ecosystems            (2020) 7:41 Page 23 of 23
Coopération Internationale en Recherche Agronomique pour le
Développement, Montpellier, p 215

Pineiro G, Perelman S, Guerschman JP, Paruelo JM (2008) How to evaluate
models: observed vs. predicted or predicted vs. observed? Ecol Model 216:
316–322

Purser P (1999) Timber measurement manual: standard procedures for the
measurement of round timber for sale purposes in Ireland. Purser Tarleton
Russell Ltd

Quaye W, Stosch L (2008) A study of fuel consumption of three types of
household charcoal stoves in Ghana. Ghana Jnl Agric Sci 41:85–93

Roxburgh SH, Paul KI, Clifford D, England JR, Raison RJ (2015) Guidelines for
constructing allometric models for the prediction of woody biomass: how
many individuals to harvest? Ecosphere 6(3):1–27

Sedano F, Silva JA, Machoco R, Meque CH, Sitoe A, Ribeiro N, Anderson K, Ombe
ZA, Baule S, Tucker CJ (2016) The impact of charcoal production on forest
degradation: a case study in Tete, Mozambique. Environ Res Lett 11:094020

Sharma M, Parton J (2007) Height–diameter equations for boreal tree species in
Ontario using a mixed-effects modeling approach. Forest Ecol Manag 249:
187–198

Sileshi GW (2014) A critical review of forest biomass estimation models, common
mistakes and corrective measures. Forest Ecol Manag 329:237–254

Sileshi GW (2015) The fallacy of retification and misinterpretation of the allometry
exponent. https://doi.org/10.13140/RG.2.1.2636.9768

Soares CPB, da Silva GF, Martins FB (2010) Influence of section lengths on
volume determination in Eucalyptus trees. Cerne 16(2):155–162

Soares P, Tomé M (2007) Model evaluation: from model components to
sustainable forest management indicators. Cuad Soc Esp Cienc For 23:27–34

Sotelo Montes C, Weber JC, Silva DA, Andrade C, Muñiz GIB, Garcia RA,
Kalinganire A (2012) Effects of region, soil, land use and terrain type on
fuelwood properties of five tree/shrub species in the Sahelian and Sudanian
ecozones of Mali. Ann For Sci 69:747–756

Stellingwerf DA (1994) Forest inventory and remote sensing. International
Training Centre for Aerial Survey (ITC), Enschede, Overijssel

Tang J, Luyssaert S, Richardson AD, Kutsch W, Janssens IA (2014) Steeper declines
in forest photosynthesis than respiration explain age-driven decreases in
forest growth. PNAS 111(24):8856–8860

Tewari VP, Álvarez-gonzález JG, García O (2014) Developing a dynamic growth
model for teak plantations in India. Forest Ecosyst 1:9

Walker E, Nowacki AS (2010) Understanding equivalence and noninferiority
testing. J Gen Intern Med 26(2):192–196

Weber JC, Montes CS, Abasse T, Sanquetta CR, Silva DA, Mayer S, Muñiz GIB,
Garcia RA (2017) Variation in growth, wood density and carbon
concentration in five tree and shrub species in Niger. New Forest. https://doi.
org/10.1007/s11056-017-9603-7

West PW (2004) Tree and forest measurement. Springer-Verlag, Berlin, Heidelberg
West PW (2009) Tree and forest measurement, 2nd edn. Springer-Verlag, Berlin,

Heidelberg
Williams M, Ryan CM, Rees RM, Sarnbane E, Femando J, Grace J (2008) Carbon

sequestration and biodiversity of re-growing miombo woodlands in
Mozambique. Forest Ecol Manag 254:145–155

Williamson GB, Wiemann MC (2010) Measuring wood specific gravity correctly.
Ame J Bot 97(3):519–524

Woodcock DW, Shier AD (2002) Wood specific gravity and its radial variations:
the many ways to make a tree. Trees 16:437–443

Wunder S (2005) Payments for environmental services: some nuts and bolts.
CIFOR, Indonesia

Xiao X, White E, Hooten M, Durham S (2011) On the use of log-transformation vs.
nonlinear regression for analyzing biological power laws. Ecology 92(10):
1887–1894

Youkhana AH, Ogoshi RM, Kiniry JR, Meki MN, Nakahata MH, Crow SE (2017)
Allometric models for predicting aboveground biomass and carbon stock of
tropical perennial C4 grasses in Hawaii. Front Plant Sci 8:650

Zianis D, Mencuccini M (2004) On simplifying allometric analyses of forest
biomass. Forest Ecol Manag 187:311–332

https://doi.org/10.13140/RG.2.1.2636.9768
https://doi.org/10.1007/s11056-017-9603-7
https://doi.org/10.1007/s11056-017-9603-7

	Abstract
	Background
	Results
	Conclusion

	Introduction
	Materials and methods
	Study area
	Sampling
	Measurements on harvested trees
	Data processing and analysis
	Modelling process
	Data description
	Model formulation and fitting
	Model parameterization
	Model evaluation and comparison
	Model validation


	Results
	Model parameters
	Model Evaluation
	Models efficiency
	Effects of model predictors on model bias
	Evaluation of goodness-of-fit plots

	Model comparison
	Model validation
	Parameters
	Test of Equivalence between best model (M6) and Chave et�al. (2014) pantropic model
	Test of difference in model predictions between M6 and Chave et�al. (2014) pantropic model


	Discussion
	Model parameters and accuracy
	Model forms
	Attributes of tree species
	Diameter at breast height (dbh)
	Wood density
	Total tree height

	Conclusions and recommendations
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

