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Abstract

canopy height estimates.

parameter using small-footprint FWL data.

Background: Forest canopy height is a key forest structure parameter. Precisely estimating forest canopy height is
vital to improve forest management and ecological modelling. Compared with discrete-return LiDAR (Light
Detection and Ranging), small-footprint full-waveform airborne LiDAR (FWL) techniques have the capability to
acquire precise forest structural information. This research mainly focused on the influence of voxel size on forest

Methods: A range of voxel sizes (from 10.0 m to 40.0 m interval of 2 m) were tested to obtain estimation accuracies
of forest canopy height with different voxel sizes. In this study, all the waveforms within a voxel size were
aggregated into a voxel-based LIDAR waveform, and a range of waveform metrics were calculated using the voxel-
based LiIDAR waveforms. Then, we established estimation model of forest canopy height using the voxel-based
waveform metrics through Random Forest (RF) regression method.

Results and conclusions: The results showed the voxel-based method could reliably estimate forest canopy height
using FWL data. In addition, the voxel sizes had an important influence on the estimation accuracies (R* ranged
from 0.625 to 0.832) of forest canopy height. However, the R? values did not monotonically increase or decrease
with the increase of voxel size in this study. The best estimation accuracy produced when the voxel size was 18 m
(R*=0.832, RMSE = 2.57 m, RMSE% = 20.6%). Compared with the lowest estimation accuracy, the R? value had a
significant improvement (33.1%) when using the optimal voxel size. Finally, through the optimal voxel size, we
produced the forest canopy height distribution map for this study area using RF regression model. Our findings
demonstrate that the optimal voxel size need to be determined for improving estimation accuracy of forest
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Background

Forest ecosystems are key carbon sinks and can affect the
climate change and global carbon cycle (Tsui et al. 2013;
Zhang et al. 2019). One of the important forest structure
parameters is forest canopy height, which is an essential in-
put parameter of ecosystems models and forest manage-
ment (Popescu and Zhao 2008; Wang et al. 2011). Forest
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canopy height is highly correlated with forest above-ground
biomass and can be used to quantify the terrestrial carbon
cycle (Balzter et al. 2007), and therefore, accurate estimates
of forest canopy height are critical to improve ecological
modelling and estimates of forest biomass, volume, and
productivity. Traditional field-measured methods can ob-
tain accurate tree heights; however, field measurements are
laborious and time-consuming with low efficiency. More-
over, field-based methods have difficulty in obtaining con-
tinuous tree height data over large areas. Remote sensing
techniques can periodically acquire spatial information of
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forest over large areas and are the only feasible approach to
estimate vegetation parameters at a series of spatial and
temporal scales (Garcia et al. 2010). Remote sensing data
are increasingly used to estimate vegetation parameters
(e.g., Chopping et al. 2011; Eisfelder et al. 2012; Barrachina
et al. 2015; Nie et al. 2017; Garcia et al. 2018). Nevertheless,
passive optical remote sensing data, such as multi- and
hyperspectral imageries cannot directly obtain vertical
structural information of vegetation and are susceptible to
weather and complex terrain conditions (Stojanova et al.
2010). In addition, the signal saturation problem of optical
remote sensing data easily occurs in dense vegetation areas
or high biomass level (Solberg et al. 2017). Although vege-
tation parameters can be estimated using optical remote
sensing data, the estimation precisions usually decline in
vegetated areas with high biomass or densely vegetated
areas (Duncanson et al. 2010).

LiDAR (Light Detection and Ranging) is an active re-
mote sensing, and LiDAR data have been widely used
for predicting vegetation structural parameters, such as
canopy height (Maguya et al. 2015; Alexander et al.
2018; Matasci et al. 2018; Mielcarek et al. 2018; Iverson
et al. 2019), leaf area index (Alonzo et al. 2015; Zheng
et al. 2017), and biomass (Frazer et al. 2011; Montagnoli
et al. 2015; Luo et al. 2017; Dalponte et al. 2018; Silva
et al. 2018). LiDAR data have a unique ability to predict
vegetation canopy height because LiDAR pulses can
penetrate the vegetation canopy (Lefsky et al. 2005).
LiDAR can be classified as discrete-return LiDAR (DRL)
and full-waveform LiDAR (FWL). DRL sensor can rec-
ord a few (usually less than 5 returns) returns per laser
pulse. A series of LIDAR metrics can be calculated using
DRL data, which are widely used to predict vegetation
structural parameter. However, DRL techniques possess
a dead zone about 2.0 or more meters (Rogers et al.
2015). In contrast, FWL systems are able to record all
signal returned by illuminated objects (Hermosilla et al.
2014a; Lai and Zheng 2015; Qin et al. 2015), and can
overcome the problem of dead zone in DRL systems
(Ballhorn et al. 2009). FWL sensors can acquire richer
information about ground objects and can precisely
characterize the vegetation vertical structure (Sumnall
et al. 2016). By processing and analysis of waveform
LiDAR data, additional information on forest structure
can be extracted, which is not available in discrete-return
LiDAR data (Rogers et al. 2015; Pablo et al. 2018).

To take advantage of the information contained in
DRL data and improve the applications of LiDAR data,
previous researchers have created pseudo-waveform data
utilizing DRL data (e.g., Muss et al. 2011; Popescu et al.
2011; Zhou and Qiu 2015; Luo et al. 2019b). The
pseudo-waveforms are created by a voxel-based method.
In this method, the LiDAR point clouds are partitioned
along the vertical and horizontal directions to form the
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voxels (Pearse et al. 2019). The results indicated that the
pseudo-waveforms generated utilizing DRL data are very
similar to the authentic LiDAR waveforms. Moreover,
the estimation performances of vegetation parameter util-
izing pseudo-waveforms are comparable to or better than
discrete-return LiDAR data (Muss et al. 2011; Lindberg
et al. 2012). With recent development in LiDAR tech-
niques, increasing small-footprint FWL data can be avail-
able. There are two approaches to process full-waveform
airborne LiDAR data. One approach is extraction of
discrete returns from waveform LiDAR data using wave-
form decomposition method and produces denser point
clouds, and then a range of LiDAR statistical metrics are
calculated using discrete-return point clouds (Gao et al.
2015; Milenkovié et al. 2017; Sumnall et al. 2016). Another
one is a voxel-based approach. In this approach, all wave-
forms are converted into a three-dimensional voxel to
generate larger scale waveforms (Stelling and Richter
2016). Previous researchers have extracted a series of
waveform metrics from voxel-based waveform data and
successfully estimated vegetation parameters (Hermosilla
et al. 2014b; Li et al. 2016; Nie et al. 2017; Pablo et al.
2018). Hancock et al. (2017) used a voxel-based approach
for predicting canopy cover and the results showed that
the voxel-based waveforms can obtain more details on
understory vegetation and within-canopy structure. Cao
et al. (2014) estimated forest biomass utilizing waveform
LiDAR metrics and compared predictive power of bio-
mass utilizing DRL metrics and FWL metrics, and they
found that fusing DRL metrics and FWL metrics im-
proved prediction accuracy of forest biomass. Pablo et al.
(2018) predicted Mediterranean understory vegetation
height, cover and volume utilizing FWL and the results in-
dicated that FWL data can accurately estimate understory
vegetation parameters.

The scan angle of small-footprint FWL systems is usu-
ally off-nadir. Therefore, waveform data for the same pos-
ition have different paths, which can cause waveforms to
fail to precisely depict vertical structural information of
vegetation canopy (Hermosilla et al. 2014a). However, the
voxel-based approach can decrease the influence of off-
nadir scan angle. In addition, the voxel-based approach
can take full advantage of the information provided by
waveforms, which has potential for improving the predic-
tion precision of vegetation parameter. An increasing
number of researchers have used a voxel-based method to
process FWL data and estimated vegetation parameters.
Pang et al. (2011) studied the influence of footprint size of
spaceborne waveform LiDAR on the estimation accuracy
of canopy height. The results show that the footprint size
had a distinct influence on the estimation accuracy of can-
opy height. Similarly, the voxel sizes of FWL data have an
important influence on estimation accuracy of vegetation
parameters. As a consequence, it is of great significance to
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obtain the optimal voxel size for improving prediction
precision of vegetation parameter. Nevertheless, little re-
search has investigated the influence of voxel sizes on the
prediction precision of canopy height. The main objectives
of this study were to: (1) create voxel-based LiDAR wave-
forms with different voxel sizes; (2) estimate forest canopy
height using voxel-based LiDAR metrics; and (3) assess
the influence of voxel sizes on prediction precison of can-
opy height and determine the optimal voxel size.

Materials and methods

Study area

This study area is located in Huailai County of Hebei
Province, North China, which is adjacent to Beijing, the
Capital of China. The study area and locations of field plots
are shown in Fig. 1. Huailai County is in the semi-arid re-
gion. The average precipitation and temperature are 396
mm-year ' and 9.6 °C, respectively. In our study area, the
average altitude is 540 m above sea level with flat terrain.
The trees are planted forest and are dominated by poplar
(Populus spp.), and the staple crops are corn and soybeans.

Field measurements
Field-measured data were collected from July 7th to
13th, 2014. Height (#) of each tree in a plot was
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measured. The center coordinates of all the plots were
determined using an RTK-GPS. A total of 34 square
plots (20 m x 20 m) were collected. Canopy height (H)
with a plot scale was calculated using Eq. 1. H was be-
tween 5.01 and 26.17 m with mean of 12.49 m (standard
deviation = 5.47 m).

H= Zz%lhi (1)

where 7 is the number of the tree in a plot; /; is the & of
the ith tree in a plot.

Full-waveform LiDAR data acquisition

Full-waveform airborne LiDAR data were collected on
July 27th, 2014 utilizing the Leica ALS70-HA LiDAR
sensor. The absolute flight height was 2800 m with scan
angle of £12°. The flight stripe side lap was 50% with an
average pulse density of 4.1 pulses-m™ % LiDAR data ac-
quisition parameters are shown in Table 1. In addition,
discrete-return LiDAR data were also provided by the
LiDAR vendor. Discrete-return point clouds were classi-
fied as ground and non-ground laser points through
Terrasolid software. And then, ground laser points were

-

115°4'2'0"E 115°4:1'0"E 115°4:5'0"E 115°4'8'0"E ll5°5?'0"E
. N
[
a{w E
g
S

40°22'0"N

F

° °
o= 2
N N
g =
4 S
] = 00
N 45 N
2 * Positions of the field samples | Q
Meters
0 1,150 2,300 4,600 6,900 9,200
T T T T T
115°42'0"E 115°44'0"E 115°46'0"E 115°48'0"E 115°50'0"E

g. 1 The study area and locations of field plots (black dots) in Huailai County of Hebei Province, China
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Table 1 LiDAR data acquisition parameters

Parameters Specification
Absolute flying height 2800 m
Flying speed 2ms !
Scan angle +12°
Wavelength 1064 nm
Beam divergence 0.15 mrad
Swath overlap 50%

interpolated into 0.5 m resolution DTM (Digital Terrain
Model).

LiDAR data processing

Pre-processing of full-waveform LiDAR data

Waveform data processing includes denoising, attenu-
ation correction, waveform heights normalization, and
so on. Figure 2 provides an overview of full-waveform
LiDAR data processing and forest canopy height estima-
tion. The main purposes of data pre-processing are to
remove the noise in waveform data and correct the
attenuation of waveform signal. To enhance the signal-
to-noise ratio (SNR) of waveform data and get the real
waveform signal, we removed the noise using a noise
threshold method. The threshold was determined using
the mean plus four standard deviations in our study
(Lefsky et al. 2007), and all the waveform signals below
the threshold were removed as the noise. And then, the
waveform data were smoothed using a Gaussian filter.
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Moreover, the heights of LiDAR waveforms were nor-
malized using the DTM. To reduce the effects of attenu-
ation produced by the upper canopy, all waveform
intensities were rectified utilizing an approach presented
by Richter et al. (2014).

Waveform voxelization

The voxel-based waveforms can reduce the spatial dis-
placement caused by the off-nadir scan angles (Pablo
et al. 2018) and can characterize the fine-scale vertical
structural information of vegetation canopy. In our
study, we voxelized the pre-processed waveform LiDAR
data using a series of voxel sizes. The horizontal sizes of
voxel were from 10.0 to 40.0 m interval of 2m and the
vertical size of voxel was set to a constant of 0.15m.
And then, all voxels were assigned the mean intensity of
all waveforms falling within a voxel space.

Voxel-based waveform metrics

To estimate forest canopy height, a series of waveform met-
rics were extracted utilizing voxel-based waveform LiDAR
data. Commonly used waveform metrics include the wave-
form distance (WD), height of median energy (HOME)
(Drake et al. 2002), HTRT (ratio of WD to HOME), vertical
distribution ratio (VDR), front slope angle (FS) (Ranson
et al. 2004), etc. See reference (Luo et al. 2019a) for more
waveform metrics and descriptions. To obtain accurate
waveform feature information, voxel-based waveforms were
decomposed using a Gaussian decomposition approach. In
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our research, the last Gaussian curve represents ground sig-
nal (Popescu et al. 2011).

Statistical analyses and modelling

In the research, Random Forest (RF) algorithm was used
to estimate forest canopy height. RF does not need any
assumption about data distribution and can solve com-
plex relationships between waveform metrics and canopy
height (Ahmed et al. 2015). RF algorithm has the ability

(2020) 7:31
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to overcome overfitting and improve prediction preci-

sion of forest canopy height (Pearse et al. 2019). In
addition, RF regression produces unbiased estimates and
does not need independent validation for estimation

model (Breiman 2001; Naidoo et al. 2012), and this is es-
pecially beneficial when no additional validation dataset
is available in a study. Therefore, RF regression has been
broadly applied for prediction of vegetation parameters
in previous studies (Gleason and Im 2012; Ramoelo

25

- - ~
o o o

Elevation (m)

(4

= - N N
o o o a

Elevation (m)

o

= = ) N
=) o o a

Elevation (m)

w

-t -t N N
o v o [

Elevation (m)

o

25 25 25
10m 12m 14m 16m
20 + 20 20
£ £ £
=2 15 = 15 E 15
S S S
© © ©
210 210 210
w w w
5 5 | 5}
. . . o s ; 0 i 0 : .
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150
Amplitude (DN) Amplitude (DN) Amplitude (DN) Amplitude (DN)
25 25 25
18m 20m 22m 24m
r 20 + 20 + 20
. £ 15 E 15 | £ 15
c c c
2 S S
© © ©
10 3 10 10
w w w
r 5 5 - 5
. . 0 0 . . 0
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Amplitude (DN) Amplitude (DN) Amplitude (DN) Amplitude (DN)
25 25
26m 28m 30m 32m
H 20 20 +
B B B
F =15 15 F =
S S S
© © ©
210 210 3
w w w
- 5 E 5 5
1 1 o 1 1 O 1 1 o 1 1
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Amplitude (DN) Amplitude (DN) Amplitude (DN) Amplitude (DN)
25 25 25
34m 36m 38m 40m
20 20 20
Eis Ess Es |
= = [
S S S
© © ©
210 3 10 3 10
w w ]
5 5 5t
" " o L L 0 " " 0 " n
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Amplitude (DN) Amplitude (DN) Amplitude (DN) Amplitude (DN)
Fig. 3 LiDAR waveforms derived from 16 different voxel sizes (from 10.0 to 40.0 m interval of 2 m)




Wang et al. Forest Ecosystems (2020) 7:31

et al. 2015; Luo et al. 2018; Zhao et al. 2018). In this
study, coefficient of determination (R?), residual (Eq. 2),
root mean squared error (RMSE) (Eq. 2), and relative
RMSE (RMSE%) (Eq. 4) were calculated to validate the
estimation accuracy of canopy height.

residual = y,-¥, (2)

die1 (J’i‘j’i)z

n

RMSE
RMSEY% = — 100% (4)

RMSE =

where y; and y; represent the observed and predicted
forest canopy height on the sample plot i, respectively; ¥
is the average value of observations and # is the total
number of plots.

Results

LiDAR waveform data with 16 different voxel sizes were
produced through aggregating all the waveforms in a
voxel. Figure 3 presents the LiDAR waveforms of 16
voxel sizes for the same field plot. The results show that
the voxel-based method could successfully produce new
LiDAR waveforms utilizing full-waveform LiDAR data.
In addition, there were some differences among LiDAR
waveforms for the different voxel sizes (Fig. 3), which
could cause the difference of prediction precision of
vegetation structure parameter. Figure 4 shows the
voxel-based waveform, five Gaussian curves derived

25
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Fig. 4 Voxel-based LiDAR waveform, fitted curve, five Gaussian
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using the Gaussian decomposition approach and their
center positions. The voxel-based waveform was decom-
posed into five Gaussian components (four canopy com-
ponents and one ground component) (Fig. 4). And then,
the voxel-based waveform metrics were calculated using
the parameters of Gaussian curves.

Prediction precisions of forest canopy height with dif-
ferent voxel sizes are shown in Fig. 5. Figure 6 shows the
influences of voxel sizes (from 10.0 to 40.0 m interval of
2m) on prediction precisions of canopy height. In this
study, the voxel sizes from 16 to 38 m can be used as ap-
propriate voxel size to estimate forest canopy height,
and all R* values were greater than or equal to 0.768.
The highest R*> was 0.832 with RMSE=2.57m
(RMSE% = 20.6%), which was produced at the voxel size
of 18 m. The scatter plot of field-measured forest canopy
height against estimated height using the optimal voxel
size is presented in Fig. 7b. Orange area represents 95%
confidence interval and red solid line is fit line. Com-
pared with the R? values derived from the minimum
voxel size (10 m) (R? = 0.625, Fig. 7a) and the maximum
voxel size (40 m) (R? = 0.75, Fig. 7c), the R? value derived
from the optimal voxel size of 18 m improved by 33.1%
and 10.9%, respectively. In short, forest canopy height
could be reliably estimated by a voxel-based method
utilizing full-waveform data. In addition, voxel sizes had
important influences on prediction accuracy of canopy
height. Therefore, when predicting canopy height utiliz-
ing LIDAR waveform metrics, it is necessary to deter-
mine the optimal voxel size to improve estimation
accuracy. In this study, we also estimated canopy heights
using discrete-return metrics with the optimal voxel size.
Figure 8 shows the scatterplot of field-measured canopy
heights against estimated values. To highlight the advan-
tage of waveform data for estimating canopy height, we
compared the results derived from waveform metrics
with the results derived from discrete-return metrics.
The results show that waveform metrics can produce
better estimation accuracy than discrete-return metrics,
although the R* only improved by 3%. The map of
canopy height in the study area was produced using
waveform data based on the optimal voxel size of 18 m
(Fig. 9).

Discussion

This research demonstrated how to predict canopy
height utilizing a voxel-based approach from waveform
data. The voxel-based approach has previously been
applied to predict vegetation structure parameter. Our
results showed that the voxel-based method is an effect-
ive method to estimate vegetation parameters, which
could precisely estimate forest canopy height using full-
waveform LiDAR data. Similar findings were observed in
previous studies (Popescu and Zhao 2008; Allouis et al.
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2013; Pablo et al. 2018; Pearse et al. 2019). However,
little research has explored the effect of voxel sizes on the
estimation accuracy of vegetation parameter, especially for
waveform data. Our research primarily focused on explor-
ing the influence of voxel size on forest canopy height esti-
mates from waveform LiDAR. We used a series of voxel
sizes (from 10.0 to 40.0m interval of 2m) to produce
voxel-based waveform data. The results indicated that
voxel-based waveforms with different voxel sizes could be
reliably created utilizing mean value of all waveform inten-
sities falling in each voxel. Although 16 waveforms with dif-
ferent voxel sizes were generally similar (Fig. 3), there were
small differences among these waveforms. Therefore, wave-
form metrics extracted from voxel-based waveforms with
different voxel sizes also had some differences, which could
result in different estimation accuracies of canopy height.

In the research, waveform metrics were extracted from
voxel-based waveform to predict canopy height. In our
study, all 34 field-measured plots were used for modelling,
and there are no additional plots for separate validation.
Because RF regression algorithm can avoid the need for in-
dependent validation using out-of-bag method, we used RF
regression to successfully establish 16 estimation models
through voxel-based waveform metrics with different voxel
sizes. We found that voxel-based waveform metrics were
able to accurately estimate forest canopy height (the best
result was R?=0.832 with RMSE =2.57 m) (Fig. 7b).
Figure 10 shows residuals distribution of estimated
forest canopy height against field-measured height. In
general, residuals for canopy height estimates are rea-
sonable, although the canopy heights were underesti-
mated for the canopy heights greater than 17 m.
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The variations of R values with voxel sizes are shown
in Fig. 6, and the results showed that the voxel size had
an important effect on estimation accuracy. This finding
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Fig. 8 Scatterplot of field-measured forest canopy heights against
estimated values using discrete-return data. Orange area represents
95% confidence interval. Red solid line is fit line

is consistent with that of Zheng et al. (2017), who per-
formed a sensitivity analysis of voxel sizes (0.1-26 m) on
directional gap fraction, and the results showed that
voxel size is a key factor in estimating the directional
gap fraction using LiDAR data. Similar results also were
reported by Cifuentes et al. (2014), who found that voxel
size has noticeable effect on estimation result of gap
fraction. In the research, the prediction accuracy of can-
opy height did not increase or decrease monotonously
with an increase of voxel size. When the voxel size was
less than 16 m, the estimation accuracy was relatively
low. This is because the voxel size is too small to effect-
ively characterize true forest canopy height. Therefore,
voxel size should be appropriately increased to produce
reliable estimation results. When the voxel size was
greater than or equal to 16 m, the estimation accuracy
was not significantly different. Therefore, the larger the
voxel size was used, the more stable and precise estima-
tion accuracy was produced. This is due to the fact that
larger voxel size contains more waveforms, which can
more effectively characterize the vertical structure of
vegetation. Similar findings were reported by Crespo-
Peremarch and Ruiz (2018), and they found that the
voxel size should be appropriately increased to keep reli-
able biomass estimation accuracy, especially using low
pulse density LiDAR data.

This study showed that voxel sizes from 16 to 38 m
could be identified as appropriate voxel sizes to estimate
forest canopy height, and all R* values were greater than
or equal to 0.768. Nevertheless, there was an optimal
voxel size of 18 m, which produced the best estimation
result (Fig. 7b). We found that the optimal voxel size
was not consistent with field-measured plot size. This is
because the voxel size of 18 m could better describe the
characteristics of forest canopy height in the study area.
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Kim et al. (2016) found that prediction accuracy of forest
biomass could improve by 27.8% using the voxel size of
30m x 30m than using the voxel size of 20m x 20 m.
Almeida et al. (2019) studied the influences of voxel sizes
(1, 2, 5, 10, 25, 50 and 100 m) on leaf area profile esti-
mates, and the results showed that appropriate voxel size

could provide reliable estimates of leaf area profile. Com-
pared with the lowest R* value (0.625, produced at the
voxel size of 10 m), the R* value derived from the optimal
voxel size improved by 33.1% in this study. Therefore, our
results further demonstrate that the appropriate voxel size
can improve estimates of vegetation parameters.
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Fig. 10 Residuals distribution of estimated forest canopy heights based on the optimal voxel size (18 m x 18 m) against field-measured canopy heights
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There are two reasons why the optimal voxel size
should be considered while predicting vegetation struc-
ture parameter from waveform LiDAR. The first reason
is that the optimal voxel size is able to improve predic-
tion precision of vegetation structure parameter. The
second is that the optimal voxel size can be used as the
guidance for the choice of plot size in field measure-
ments, which helps to improve the efficiency of forest
survey. As a consequence, the optimal voxel size should
be applied for improving prediction precision of vegeta-
tion structure parameter. However, the optimal voxel
size may be different for the different research objectives
and study areas. Therefore, the optimal voxel size should
be determined based on specific vegetation type, estima-
tion parameter, waveform density, terrain, etc. To con-
clude, the method developed in our study has potential
to improve prediction precision of vegetation structure
parameter from waveform data.

Conclusions

In this study, forest canopy heights were predicted from
small-footprint full-waveform airborne LiDAR through
the voxel-based approach. The results show that the
voxel-based method can reliably estimate canopy height
from waveform LiDAR (the highest accuracy was R*=
0.832 with RMSE = 2.57 m). The influence of voxel sizes
on prediction precision of canopy height was carried out.
This research demonstrates that the voxel sizes have an
important influence on prediction precision of canopy
height, and the highest prediction precision was produced
when using the voxel size of 18 m. As a consequence, ap-
propriate voxel size can effectively improve estimates of
forest parameters, and the optimal voxel size should be
determined to obtain the most accurate estimation accur-
acy of vegetation parameters. Further studies are needed
to conduct the effect of voxel sizes on the estimation
accuracy of other vegetation types and structural parame-
ters. In addition, in our study the vertical size of voxel was
set to a constant of 0.15 m. However, the vertical size of
voxel has an influence on prediction precision of vegeta-
tion structure parameters. Therefore, different vertical
sizes of voxel should be also considered when using a
voxel-based approach for predicting vegetation structure
parameters.
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