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Abstract

machines and four artificial neural networks.

endangered tree species

Background: The accurate estimation of soil nutrient content is particularly important in view of its impact on plant
growth and forest regeneration. In order to investigate soil nutrient content and quality for the natural regeneration of
Dacrydium pectinatum communities in China, designing advanced and accurate estimation methods is necessary.

Methods: This study uses machine learning techniques created a series of comprehensive and novel models from
which to evaluate soil nutrient content. Soil nutrient evaluation methods were built by using six support vector

Results: The generalized regression neural network model was the best artificial neural network evaluation model with
the smallest root mean square error (5.1), mean error (— 0.85), and mean square prediction error (29). The accuracy rate
of the combined k-nearest neighbors (k-NN) local support vector machines model (i.e. k-nearest neighbors -support
vector machine (KNNSVM)) for soil nutrient evaluation was high, comparing to the other five partial support vector
machines models investigated. The area under curve value of generalized regression neural network (0.6572) was the
highest, and the cross-validation result showed that the generalized regression neural network reached 92.5%.

Conclusions: Both the KNNSVM and generalized regression neural network models can be effectively used to evaluate
soil nutrient content and quality grades in conjunction with appropriate model variables. Developing a new feasible
evaluation method to assess soil nutrient quality for Dacrydium pectinatum, results from this study can be used as a
reference for the adaptive management of rare and endangered tree species. This study, however, found some
uncertainties in data acquisition and model simulations, which will be investigated in upcoming studies.
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Background

Under the conditions of a sharp reduction in global for-
est area, the speed of species becoming endangered is
accelerating and the degradation of forest functions has
become serious (Comizzoli and Holt 2014; Sousa-Silva
et al. 2014; Comizzoli 2015; Cao et al. 2017; Riccioli
et al. 2019). Rare and endangered tree species protection
must be strengthened and their growth should be
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promoted (Comizzoli 2015; Cao et al. 2017). Dacrydium
pectinatum de Laubenfels (D. pectinatum), belonging to
Dacrydium, genus of the Podocarpaceae family (Farjon
and Filer 2013), is a third-class national rare and endan-
gered plant species in the China Red Data Book classifi-
cation (Fu 1992). It is the only species of this genus that
exists in China (Ash 1986; Lian and Yu 2011; Farjon and
Filer 2013; Chen et al. 2014). Protection measures must
be taken into account for environments that rare and
endangered tree species subsist, and abundant soil nutri-
ent is the primary condition for plant subsistence.
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Soil nutrition plays a crucial role in the soil fertility
and environmental condition for plant growth and de-
velopment (Vacca et al. 2017; Camenzind et al. 2018;
Chagnon et al. 2018). In addition, many studies have
attempted to better quantify and exploit the importance
involved in soil nutritional conditions change (Grove
et al. 2017; Murphy et al. 2017; Bassaco et al. 2018). Al-
though marked advances have been made in understand-
ing the relationship between soil nutrition and plant
growth, researchers remain uncertain about the response
of each available soil nutrient as it is related to its con-
tent and quality grade, and it has strongly species-
specific and differ among congeners. Therefore, the ac-
curate estimation of soil nutrient quality is significant
importance to research on the growth of rare and en-
dangered tree species and forest regeneration.

Previous studies have reported several methods used to de-
termine this particular type of estimation accuracy (Zhao
et al. 2009). Studies have offered the detail of summaries on
the conception and applications, which was used to evaluate
soil nutrient quality (Karlen et al. 2001), and they have dis-
cussed how to assess soil nutrient quality using field and vis-
ible and near-infrared (VNIR) spectroscopy methods. It has
provided scientists with an effective method to apply to their
research (Gerloff and Krombholz 1966; Idowu et al. 2008).
Although this method can obtain accurate data in the field,
the major limitation of that is the large amount of sample
data and the time it takes to collect samples. In addition,
process-based and empirical models have been used to quan-
tify soil nutrient conditions. For example, multiple linear re-
gression (MLR) has been used to predict soil organic stocks
in spatial downscaling (Ebrahimi et al. 2017; Roudier et al.
2017). The MLR model provided a unique advantage in sim-
plicity and ease of use (Du 2016; Kawamura et al. 2017).
Each of these evaluation methods were suitable and provide
a unique advantage. However, they were also subject to ro-
bustness conditions (Zhao et al. 2009). In addition, these
methods would generate high degrees of error (Zhang et al.
2017). Therefore, determining the best method to evaluate
soil nutrition remains a significant challenge.

Currently, machine learning (ML) models have be-
come increasingly popular in agricultural industry and
forestry for classification and discrimination (Ghahra-
mani 2015; Shine et al. 2018). ML can improve predic-
tion accuracy (Shine et al. 2018). These include soil
microbial dynamic prediction using artificial neural net-
works (ANN), support vector regression (SVR), and
fuzzy inference systems (FIS) (Jha and Ahmad 2018),
plant discrimination using support vector machines
(SVM) (Akbarzadeh et al. 2018), and soil erosion and
nutrient density (Kim and Gilley 2008), soil parameter
modeling and classification (Jha and Ahmad 2018), and
weed-plant discrimination (Akbarzadeh et al. 2018). In
addition, carbon (C), nitrogen (N) and phosphorus (P)
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content (Li et al. 2017), as well as available N, available
P, and nitrate nitrogen (NO3-N) (Qi et al. 2018), have
already been predicted by ML models (Xu et al. 2015;
Moges et al. 2017). These ML models have been demon-
strated to have unique advantages in this particular re-
search field. These methods can achieve more accurate
estimation results compared to traditional statistical re-
gression methods (Zhao et al. 2009; Zhang et al. 2017).
They are powerful tools in coping with small samples,
nonlinear relationships without special mathematical
equations, and scientific research and practical application
hypotheses, especially in the field of high-dimensional pat-
tern recognition (Sun et al. 2016; Zhang et al. 2017), and
environments where nutrients are released from agricul-
tural fields (Kim and Gilley 2008; Zhao et al. 2009).

Significant achievements have been made by establish-
ing many advanced and complex algorithmic models.
However, these prevalent algorithms are only suitable
for a specific plant or communities, but not widely used
for other research objectives. In addition, studies on soil
nutrient content and quality classification of rare and
endangered tree species using ML algorithms are limited
(Deng et al. 2017; Moges et al. 2017; Sirsat et al. 2017).
A comparative analysis of ML modeling algorithms to
determine soil nutrient quality may reduce the difficulty
in conducting a quantitative assessment of soil nutrition
for the growth of D. pectinatum in China, but the appli-
cation of advanced methods and technology for plants
protection and regeneration as well as higher prediction
accuracy achievement is an arduous task and a consider-
able exploratory research endeavor. Therefore, attempt-
ing to evaluate soil nutrient content and quality of rare
and endangered tree species using ML models is an
innovation of this research field. It is also a challenge for
ML model application, soil nutrition assessment
methods, and tree species research objects.

The main objective of this study was to evaluate the
ability of ML algorithms to improve the diagnostic ac-
curacy of soil nutrient quality using soil nutrient data
collected from D. pectinatum, a vulnerable species in
China, formerly dominant in forests in Hainan but ex-
cessively logged for more than 20 years. The wood is
used in constructing building and ships. The specific
aims of the work presented in this study were to: (1) cal-
culate the accuracy of ML models for soil nutrient qual-
ity estimations and diagnosis, and (2) determine the
optimum ML model and assess model performance.

Methods

Soil nutrition sample preparation

Sample selection

As part of our on-going research effort, three study sites
were chosen (Chen et al. 2014) (Fig. 1): the Hainan
Bawangling National Nature Reserve (18°57'-19°11" N,
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Fig. 1 Location of the study area comprising of the Hainan Bawangling National Nature Reserve, the Jianfengling National Forest Park, and the
Diaoluoshan National Forest Park in China and the spatial distribution of the sample plots. The natural population of Dacrydium pectinatum is

109°03'-109°17" E), the Jianfengling National Nature
Reserve (18°24'-18°58" N, 108°39'-109°24" E), and the
Diaoluoshan National Nature Reserve (18°43'—18°58" N,
109°43'-110°03" E), which are the only areas in China
where D. pectinatum grows. The climate of these three
areas is tropical monsoon and tropical sea monsoon.
The average annual temperature is approximately
23.6°C, 19.7°C, and 24.4°C, respectively. The average
annual precipitation is approximately 1657, 1634, 2400
mm, respectively. The average annual relative humidity
of all three sites is above 88%; the forest coverage rate of
all three sites is greater than 98%; the altitude of all three
sites is approximately 1000—1500 m. These areas are ex-
tremely precious as well as being rare, original tropical
forests that are under the highest protection priority in
China (Lian and Yu 2011). Following a comprehensive
survey, a total of 150 experimental plots having
seedlings, saplings, and adult trees (Bawangling 72,
Jianfengling 38, and Diaoluoshan 40) were selected.
A representative typical seedling was used as a cen-
ter of each plot, with a size of 20 m x 20 m. The plot
must be a place where seedlings, saplings and adult
trees were concentrated. The number of trees per
plot was approximately 8 seedlings, 3 saplings and 1
or 0 adult trees.

Soil sample acquisition

Soil samples were obtained from the three sites in
March 2016. These samples were collected from the
center point (10 cm beside the center tree stem) and
four corners (east, south, west and north corner) point
of each plot. Quadrat of soil was 20 cm x 20 cm with a
depth of 20 cm in forest plot. Soil samples of 150 g were
obtained using a soil auger, for a total of 750 (150 x 5)
soil samples, putting them under dry, well-ventilated
conditions to allow them to dry naturally and storing
them. A wooden hammer was used to break up the
dried knots and remove foreign matter (such as plant
roots, small stones, glass fragments, etc.) roughly from
the soil before being sieved through a 200 mesh. Primary
soil samples were then ready, and they were then sent to
the laboratory for experimental chemical analysis (Pin-
gree and DeLuca 2018).

Soil nutrient, physical and chemical indicators extraction

Soil nutrient evaluation is essentially a pattern recogni-
tion problem, namely, comparing the actual results of
the soil nutrient evaluation index system with the corre-
sponding array of soil nutrient evaluation criterion
values, which correspond to the array of criterion values
closest to outputs array. The soil nutrient quality grade
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(output) is the recognition result of the ML model,
namely, the soil nutrient evaluation result of the corre-
sponding area. Soil nutrient evaluation cannot be limited to
individual nutrient factors. According to previous studies
(Wang et al. 2008; Were et al. 2015; Olego et al. 2016), the soil
nutrient grading criterion of the second national soil census of
China was used as the evaluation criterion (Table 1), using
SOM, total N, alkali-hydrolyzable N, available P, and rapidly
available K as evaluation indicators. Among the criterion,
grade I denotes that soil nutrients are extremely rich and
highly concentrated, and much of the content of each nutrient
index remains available for most plant growth conditions;
grade II denotes that soil nutrients are extremely rich and
highly concentrated, and the content of each nutrient index
can fully meet the growth needs of plants with a small amount
remaining; grade III denotes that the degree of richness and
concentration of soil nutrients are within a medium level of
availability, and the content of each nutrient index can exactly
meet the growth needs of plants (i.e. no surplus); grade IV de-
notes that soil nutrients are relatively poor and in short supply,
and the content of each nutrient index either can meet or not
fully satisfy the growth needs of plants; grade V denotes that
soil nutrients and supplies are poor, and the content of each
nutrient index cannot meet the growth needs of plants; grade
VI denotes that soil nutrient availability is extremely poor and
in very short supply, and plants are unable to grow under con-
ditions of this nutrient index content.

To obtain inputs of the models, soil samples were
chemically analyzed. We measured organic matter using
the potassium dichromate volumetric “heating” method
(Marcos et al. 2016), the semi-micro Kjeldahl method
for the determination of total N (Marcos et al. 2016),
and the Kang Hui dish method for alkali-hydrolyzable
hydrolysis N content (Marcos et al. 2016). Additionally,
we used the 0.5 mol-L™ " sodium bicarbonate extraction
molybdenum-antimony resistance colorimetric method
to determine available P (Marcos et al. 2016). We used
ammonium acetate in atomic absorption spectrometry
to determine the content of rapidly available K (Marcos
et al. 2016; Pingree and DeLuca 2018).

Table 1 Soil nutrient content evaluation criteria
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Model development and application

This study used soil nutrient grading criterion to measure
soil nutrient content and quality through ML modeling.
The 10 ML algorithms used in this study was shown in
Table 2. The following subsections provide a brief descrip-
tion and implementation details of these 10 methods.

The model consists of an input layer, an output layer,
and a hidden layer. The transfer function is a Sigmoid
type function that can implement arbitrary nonlinear
mapping between input and output, because the ReLU
unit would irreversibly die during training, resulting in
the loss of data diversification in this study. The col-
lected data were randomly divided into training samples
(70%), validation samples (15%) and test samples (15%).
Comparing the actual monitoring results of the soil nu-
trient evaluation index system with the corresponding
array of soil nutrient evaluation criterion values, the soil
nutrient level corresponding to the array of criterion
values closest to the array of monitored values is the rec-
ognition result of the artificial neural network model,
that is, the results of soil nutrient evaluation in the cor-
responding area (Fig. 2). In this study, N, organic matter
content, alkali-hydrolyzable N, available P, and rapidly
available K were used as inputs, and soil nutrient quality
grades were used as outputs.

Artificial neural network

ANN is an artificial intelligence technology that has
been developed in recent years to simulate biological
processes of the human brain (Guo et al. 2017). ANN
model analyzes the internal relationships and regular
patterns of two variables by providing a set of mutually
corresponding input and output data, and then forms a
complex nonlinear system function through these regu-
lar patterns (Zhao et al. 2009). Our study attempted to
get the outputs using a series of ANN models, applying
the pattern recognition function of the ANN model. The
BPNN algorithm adjusts weight and deviation values
along a negative gradient to attempt to minimize the
mean squared error (MSE) of the input and output

Grade I Il I v % Vi

State Extremely high High Medium Low Lower Extremely low
SOM (gkg™) > 40 30-40 20-30 10-20 6-10 <6

N (gkg™" > 20 15-20 10-15 07-10 05-0.7 <05

AHN (mg'kg’1) > 150 120-150 90-120 60-90 30-60 < 30

AP (mgkg™) > 40 20-40 10-20 5-10 3-5 <3

RAP (mgkg ™) > 200 150-200 100-150 50-100 30-50 < 30

p (g~kgq) > 1 0.8-1.0 0.6-0.8 04-0.6 0.2-04 0.0-02

K (g-kg’w) > 25 20-25 15-20 10-15 5-10 0-5

Note: SOM refer to soil organic matter; N refer to total nitrogen; AHN refer to alkali-hydrolysable nitrogen; AP refer to available phosphorus; RAP refer to rapidly

available potassium; P refer to phosphorus; K refer to potassium
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Table 2 The detail of abbreviations and full name of 10
methods

Abbreviations Full name

BPNN Back-propagation neural network

FPNN Field probing neural network

MLPNN Multilayer-propagation feed forward neural network
GRNN Generalized regression neural network

LMSVM Local mixture-based support vector machine
SVM-KNN k-NN and SVM integrated algorithm

KNNSVM k-nearest neighbors local support vector machine
LSVYM Localized support vector machine

PSVM Proximal support vector machine

FSVM Fast local kernel support vector machine

(Zhao et al. 2009). The benefit of the FPNN algorithm is
that its calculation is elemental, it has a simple network
structure, and its learning complexity is minimal. MLPNN
is the most time-saving method. GRNN has a strong non-
linear mapping capacity and requires a small sample size
(Myers et al. 2017). ANNs can predict and evaluate a net-
work more quickly and provide greater computational ad-
vantages as the advantages of a fast convergence rate, high
prediction accuracy, fewer adjustment parameters, and
not being easy to fall into local minima.

Partial support vector machine
SVMs are commonly used in classification and recognition
due to the small number of training samples required and
the high accuracy of results (Gunn 1998). However, the clas-
sification accuracy of SVM is also affected by issues such as
the selection and optimization of kernel functions, the estab-
lishment of multiple SVM models, and type selection and
soil nutrient characteristics (Shu 2015). In order to further
improve the classification effect of SVM, soil nutrients were
classified using multiple partial SVM methods (Brailovsky
et al. 1999), which combine k-nearest neighbors (k-NN) with
SVM. Partial SVM methods are divided into six categories.
Category I: The local mixture-based SVM (LMSVM)
can realize the locality of SVM by adding two multipliers
to the kernel function (Eq. 1).
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ZK(xi,x,) (|, wy|) (|x,,wr|) = nwK(x,,x,) (1)
r=1

where r=1, 2, 3,..., n; n, is the sample number that
the sample is concentrated to meet |x;,w,|<6,; and
K(x; %) is the prokaryotic function. In this research, # is
300.

Category II: The k-NN and SVM integrated algo-
rithm (SVM-KNN). Firstly, k-nearest neighbors are
searched for the unlabeled sample x', and then the
distance between the unlabeled sample and the k-
nearest neighbors is calculated to form a distance
matrix. The distance matrix is directly transformed
into a kernel matrix. Finally, the class label of the
unlabeled sample is determined by using DAGSVM
algorithm.

Category III: The k-NN local support vector ma-
chine (KNNSVM) algorithm calculates the distance
in kernel space and avoids the instability caused by
the nonlinear issue of the different classifications
(Shu 2015). The algorithm finds the k-NN for each
unlabeled sample in the training set. By using k-NN
to establish a SVM classifier, the class label of the
unlabeled samples can be obtained.

Category IV: The localized support vector machine
(LSVM), which establishes the similarity factor between un-
labeled samples and training samples, and adds penalties for
SVM constraints (Cheng et al. 2010). Optimization issues re-
lated to LSVM are as follows:

mm—HwH + cZa X +x)E;

(2)
styl(w x,+b)>1 &
&20,i=1,2,....N

where 8(x’ +x;) is the similarity factor; C is the

constant.
When the value of §(x" +x;) is [0, 1], then

’ _”‘x,_xiH2
1) ) = e 3
(o +) exp< - ®)

Original data Soil data

Predicted data
Machine

Soil sample data |

Soil nutrient criterion

Soil nutrient grade

learning models 3

Measured data T

Soil nutrient content

Fig. 2 Schematic of methodology flow calculation of machine learning algorithm
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Category V: Establishing SVM for each cluster center
by clustering the training samples, and then using these
SVMs to classify unlabeled samples, namely, PSVM
(Hao 2016), the clustering function is:

n
Z Zijy;

i=1

k n k
min 3> 2, Gl + R @
» ; i—1

=1 i= j=1

where y; is the class label of the i training sample,
and «; is the i row in the similarity matrix of the un-
labeled sample and the training sample. C; is the j clus-
ter center; R is a scaling parameter; and Z;; is an
element in the inverse of the cluster.

Category VI: The fast local kernel support vector ma-
chine (FSVM), which improves the method of solving
the cluster center point (Segata and Blanzieri 2010).

Model training and validation data

The basic structure of the ANN model in estimating
soil nutrient quality grades (Giovanis et al. 2017) was
shown in Fig. 3.

The input layer was the soil nutrient content by field
measurements, and the output layer was the soil nutrient
grades. In addition, given that the basic principle of
SVM (Li et al. 2014) was a quadratic algorithm to deter-
mine the best hyper plane, it was shown in Fig. 4, and all
samples were separated from the maximum interval
boundary (Cristianini and Shawe-Taylor 2000). The 10
above mentioned algorithms were used as the soil nutri-
ent evaluation models in this study.

The characteristics of soil nutrient quality were deter-
mined by soil nutrient content and the cross-fertilization
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characteristics between the nutrients themselves. The in-
put variables selection of ANN model was determined
by the soil nutrient grade criteria.

For the BPNN, we have determined the input variables
that were total N, organic matter content, alkali-
hydrolysable N, available P, and rapidly available K were
selected. The hierarchical structure establishment for
this model was that the number of nodes in the input
layer was 5. Taking soil nutrient quality grade as output
unit, that is, the number of nodes contained in the out-
put neuron unit was 1, the initial number of nodes in
the hidden layer was set to 11. The weight learning func-
tion uses the trainlm algorithm, using the non-linear
continuous derivable excitation function, and the node’s
transfer function is purelin. Specific model parameters
were shown in Table 3.

And then, BPNN was established with three-layer. The
BP network was trained by inputting all the data sets as
samples. In the training process, the above original data
are normalized by wusing Premnmx function in
MATLAB, so that the data set is between [- 1, 1].

For the FPNN, we selected the total N, organic matter
content, alkali-hydrolysable N, available P, and rapidly
available K as input variables. The training and calcula-
tion process of the model was that when P samples are
given, a total of P-1 elements are taken from the first
layer. Each element has # inputs (assuming that the in-
put of the sample is # dimension and the output is m di-
mension). The function of this layer element is to
transform the input of P samples into p vertices of or-
thogonal p—1 dimensional simplex in P-1 dimension
space. From the second layer to the third layer, take M
components. Through the second layer element, the p

Input layer

Soil nutrient content

Input layer

Fig. 3 A schematic structure of a neural network. Field measurements taken from soil nutrients (total nitrogen, organic matter content, alkali-
hydrolysable nitrogen, available phosphorus, and rapidly available potassium) were used as input values provided through the input layer. Five
evaluation indicators were used as dependent variables. Soil nutrient quality evaluation results are represented by an output node. Four layers of

a hidden layer were constructed

Hidden layer

Soil nutrients criterion

Output layer

»

Soil nutrient grade

Output layer
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Negative objects (y = —1)

" Positive objects (y = +1)

»

b is the intercept (bias)

Fig. 4 Sample points on the hyper plane (also referred to as support vectors). Obviously, if fix) =0, then x is the point on the hyper plane. It may
be required that for all points that satisfy f(x) < 0, the corresponding y is equal to y=—1, and f(x) > 0 corresponds to data points where y=1. wx
denotes the inner product of w and x in the classification function f(x) = wx + b. In the common sense, w is the normal vector (weight vector) and

J

vertices of the orthogonal p—1 dimensional simplex are
transformed into p x m dimension sample output vec-
tors, and then the neural network corresponding to the
associative memory of the sample set is obtained.

For the MLPNN, let K be given an input set K = {x,
%2 .., XM (k is the point set of n-dimensional Euclidean
space), let K be divided into s subsets K=&t %2 ..,
K" K= ™V xR This paper presents a
three-layer network N, which satisfies: the output of
points belonging to K’ is “y” after passing through this
network, where yi:(O, .., 1, 0, ..., 0) (ie. the vector

Table 3 The architecture of BPNN and model parameter
selection for weight learning function and node transfer
function

Model parameter Parameter quantity

Training function Tranilm
Learning function Learndm
Performance function MSE
Hidden layer transfer function Tansig
Output layer transfer function Purelin
Number of neural elements nodes in input layer 5
Number of nodes in output layer neural units 1
Learning rate 04
Momentum coefficient 0.8
[teration times < 50,000
Network convergence error <005
Inertia factor 0.5
Training target error 0.001
Initial weight [0+0.5]
Learning coefficient 0.05

whose first component is 1 and the rest component is
0).i=12,..,s.

The main idea of this algorithm is to find a field C',
which covers only the points in K* but not those in K2,
then delete the points covered by C' and find another
field C* for the remaining points. It covers only the
points in K> but not those in K', and then deleted the
points covered by C? so that the points covered by C*
are intersected and covered until all the points in K* (or
K?) are deleted. The specific steps are 1) Mapping the
points of K* and K> onto the spherical surface §” (S” is
n +1 dimensional space, the center is at the origin, the
radius is equal to the # dimensional sphere of R, and the
radius R > Max | Xij |) is still recorded as K, K% 2) Find
the initial point and cover it from that point. Calculate
the center of all samples and find the nearest sample
point a. 3) Determine the radius of the covering area C"
centered on a. Find the nearest dissimilar point b, whose
distance is denoted d as d;, and then find the farthest
similar point ¢ whose distance is less than d, whose dis-
tance is denoted as d,, then the radius of coverage area
r=d, +d»/2. 4) Focus on domain C'. 5) Repeat steps 3)
and 4) until the number of samples covered is not more
than that before the center of gravity. 6) Repeat steps 3)
to 5) until the number of samples covered is not more
than the number of samples covered in the previous
one. A local maximum field C* covering K* points is ob-
tained. The subset of K' covered is marked as K*. 7)
Find a different point to start covering. Its category is
K* Let T<KYK"Y, K'<K? K*<T. 8) Repeat steps 3) to
6) until only the last category is left. 9) Processing the
last class of points to get the last coverage.

For the GRNN, we selected the total N, organic matter
content, alkali-hydrolysable N, available P, and rapidly
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available K as input variables. In the current study, an it-
erative process using quad cross-validation is utilized to
determine the optimal smoothing factor according to
our experience and other applied research results, and
this factor ranges from 0.01 to 1 (Dou and Yang 2017).
The probability density function used in GRNN is the
normal distribution. The function is

STSNC; k(x, xx)
Z k(xa xk)

where SNC is soil nutrient content, x is the input that is
the total N, organic matter content, alkali-hydrolysable
N, available P, and rapidly available K, SNC; is the activation
weight for the pattern layer neuron at &, k(x, x;) = e %/,
dy = (x — x)(x — x) ", where d is the squared Euclidean
distance between the training samples x; and the input x.
The steps for the calculations in this study include 1) cal-
culating distances d,, d,, ..., di (1.04, 0.86, 1.74, 0.74,

1.07); 2) calculating weights using the activation function
—di /202,
€ H

SNC = (5)

3) summing w’s, W=wj + ... + wi and the numer-
ator was flx) w=wSNC; + ... + Wi SNC; and 4) calculat-
ing the predicted output SNC(w/W).

The BPNN, FPNN, MLPNN, and GRNN algorithms
(Cheng 2005) were used to establish the soil nutrient
evaluation model for comparison. In this study, four ANN
algorithms were used to estimate soil nutrient content and
quality. In order to resolve the over-fit caused by hyper-
parameters during adjustment and the calculation of
model accuracy, the hyper-parameters must be minimized
by adopting a hierarchical nested cross validation method.
All models were trained more than 1000 times each time.
The training-set, validation-set, and testing-set for each
time were different for each model.

Soil field measurement data were used to calibrate and
validate the model. Soil nutrition reference data were
randomly divided in to a calibration set and a validation
set. After experimenting with several time calculations,
it was determined that we obtained the best result when
70%, 15%, and 15% of the dataset were used as a train-
ing, validation, and test set, respectively. This was in
agreement with a similar previous study (Li et al. 2014).
The calibration set is used to train ANN models and val-
idation sets by validating ANN model performance.
Cross-validation is used to test the models.

For the KNNSVM, SVM-KNN, FSVM, PSVM, LSVM,
and LMSVM, the algorithm steps are 1) According to a
certain principle, the samples in the training set are di-
vided into k classes and K centers are found. 2) Cluster-
ing each training sample using K-means, generating n
sample centers instead of the original training samples,
and constructing a support vector machine for each cen-
ter. 3) Find a center closest to x for each test sample. 4)
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Use the support vector machine corresponding to the
center to name x. 5) Outputs the results. For the SVM
models, 30%, 25%, 35%, 20%, 30%, and 20% of the data
were selected randomly as a testing set, and 70%, 75%,
65%, 80%, 70%, and 80% of the data were chosen as the
training set, respectively. The selected training and testing
samples were feature extracted and normalized, and they
formed an eigenvector matrix of the entered training data.
Each model was calculated 1000 times under different
conditions to provide for more accurate predictions.

Soil nutrient quality was determined though a soil nu-
trient assessment and described in grades. The outputs,
namely, extremely high, high, medium high, low, poor,
extremely poor, were respectively recorded as a range in-
stead of a fixed value. The prediction performance of the
model was evaluated according to the calculated mean
error (ME), the mean square prediction error (MSPE),
and the root-mean-squared error (RMSE) (the square
root of the MSPE) (Bibby and Toutenburg 1977; Shine
et al. 2018). In addition, MATLAB software (version 8.2,
The MathWorks, Inc., Natick, MA, USA) and its tool-
boxes were utilized to analyze the data in this study.

Results

Model performance

The soil nutrient content of the experimental sites was
estimated by four ANN algorithms. The RMSE, ME and
MSPE indices were used in order to evaluate the effi-
ciency of the four models. RMSE, ME, and MSPE with
smaller values indicated higher model efficiency. The re-
sult was shown in Table 4.

The GRNN model was best at evaluating the ANN
models with a RMSE of 5.1 (Table 4). The MSPE of the
GRNN model was 29, and the ME was - 0.85. According
to the averages of the RMSE, MSPE, and ME in the
table, the GRNN model was determined to be the best
ANN model to estimate soil nutrient content.

The improved six partial SVM models were used to
classify the training and testing samples for the selected
outputs. The six partial SVM models were used to clas-
sify soil nutrient elements in the training set samples
with an accuracy rate greater than 90%. Soil nutrient
grade was tested on the samples (Table 5). Among the
six SVM models, the KNNSVM model had the highest
accuracy rate (93.6%), followed by the SVM-KNN model
(91.9%), the FSVM model (89.9%), the PSVM model
(88.9%), the LSVM model (86.8%), and the LMSVM
model (85.4%). The results showed that the improved
partial SVM models were suitable in improving the ac-
curacy of soil nutrient evaluation.

As shown in Fig. 5, the average prediction accuracy of
all four ANN models was greater than 88%. The GRNN
model yielded the highest accuracy value (92.5%) among
the four models. The accuracy of the MLPNN model
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Table 4 Artificial neural network calculation results

Algorithm Training set Testing set RMSE MSPE ME

BPNN 210 45 56 31 -0.59
FPNN 210 45 6.8 42 -0.53
MLPNN 210 45 72 55 -0.51
GRNN 210 45 5.1 29 -0.85

Note: BPNN is the back-propagation neural network; FPNN is the field probing
neural network; MLPNN is the multilayer-propagation feed forward neural
network; GRNN is the generalized regression neural network; MSPE is the
mean square prediction error; RMSE is the root-mean-squared error; ME is the
mean error

(88.5%) was relatively low. The results also showed that
the GRNN model was slightly more stable than the
others, while the stability of the BPNN model was
ranked second and the FPNN model was ranked third.

The receiver operating characteristic (ROC) curve was
used to evaluate the performance of the modeling classi-
fier (Guo et al. 2017). Figure 6 shows the ROC curves
for the four models, which illustrates the performance of
a classification model under all classification thresholds
and depicts two parameters: the false positive rate (FPR)
represented by the x-axis, and the true positive rate
(TPR) represented by the y-axis. The area under the
curve (AUC) represents classification performance,
which is the ability of the target model to correctly clas-
sify the different outputs. The AUC value (0.6572) of the
GRNN model was the highest of the four models,
followed by the BPNN model with an AUC value of
0.6486, and the FPNN model with an AUC value of
0.6475. The AUC value of the MLPNN model was the
lowest at 0.6459.
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Fig. 5 Evaluation results of the different models. BPNN is the back-
propagation neural network; FPNN is the field probing neural
network; GRNN is the generalized regression neural network; MLPNN
is the multilayer-propagation feed forward neural network

I
BPNN

After a comprehensive evaluation, this study deter-
mined that there were six soil nutrient grades. Moreover,
210 training samples were used to train the neural net-
work. The training step number was 1000, and the four
ANN models were cross-validated. The results are
shown in Table 6.

Four models were verified by a mixed matrix (Table 6).
The sum of diagonal prediction values of each sub-table
in the table of each model was the prediction accuracy of
the cross-validation. All models had good prediction ac-
curacy, namely, greater than 87%. The prediction accuracy
of the GRNN model reached 92.5%, but showed no

Table 5 Accuracy of the sample training set and testing set of the six models

Soil nutrient grade KNNSVM (%) LSVM (%) LMSVM (%) SVM-k-NN (%) FSVM (%) PSVM (%)

Training set ratio | 96.9 96.5 804 92.8 81.7 88.2
Il 97.5 95.8 90.7 934 80.8 89.7
Il 96.1 929 932 92.8 983 94.8
v 98.5 858 98.9 980 98.7 924
vV 96.0 88.3 80.1 933 97.6 95.2
\YI 96.6 91.1 988 91.7 9.3 93.8
Average 96.6 91.7 904 93.7 92.9 924

Testing set ratio I 97.0 83.6 87.5 81.1 91.1 924
I 90.0 874 90.7 86.5 92.7 90.7
M1l 95.5 913 886 98.2 91.7 933
v 86.8 829 804 97.7 87.5 89.1
\% 94.4 87.3 81.3 90.2 88.6 904
Vi 98.1 885 84.1 97.7 89.7 80.6
Average 93.6 86.8 854 91.9 89.9 88.9

Note: KNNSVM is the k-nearest neighbors local support vector machine; LSVM is the localized support vector machine; LMSVM is the local mixture-based support
vector machine; SVM-KNN is the k-NN and SVM integrated algorithm; FSVM is the fast local kernel support vector machine; PSVM is the proximal support vector

" ou

machine. |, II, Ill, IV, V, and VI indicate that the soil nutrient quality grade is “extremely high”, “medium high”, “low”, “poor”, and “extremely poor”, respectively
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Fig. 6 Box-whisker plot of accuracy. GRNN is the generalized
regression neural networks; FPNN is the field probing neural
network; MLPNN is the multilayer-propagation feed forward neural
network; BPNN is the back-propagation neural network. AUC is the
area under the curve. The AUC represents classification performance,
which is the ability of the target model to correctly classify the
different outputs

significant difference. The accuracy of the four ANN
models was 92.5%, 92.0%, 89.5%, and 88.5% for the BPNN,
FPNN, GRNN, and MLPNN models, respectively. The
four models had the highest percentages of false positives,
namely, 3.8%, 3.9%, 4.2%, and 3.5% for the BPNN, FPNN,
GRNN, and MLPNN models and false negatives, namely,
3.9%, 3.6%, 3.7%, and 4.1% for the BPNN, FPNN, GRNN,
and MLPNN models, respectively. Overall, the GRNN
model had the highest soil nutrient assessment accuracy.

Evaluation accuracy rate of the different models

The accuracy of the output of KNNSVM model was
higher than other five partial SVM models (Fig. 7),
while the accuracy of the LMSVM model was the
lowest among the six SVM models. In addition, the
evaluation accuracy of the outputs of the various
models also differed. The KNNSVM model had the
highest assessment accuracy in soil grade VI (95.1%),
V (94.3%), II (93.2%), 1 (92.0%), III (90.0%), and IV
(88.2%). The PSVM model had the highest assessment
accuracy in grade VI (91.6%), V (89.4%), IV (88.3%),
II (86.0%), III (85.6%), and I (85.1%). The LSVM
model had the highest assessment accuracy in grade
V (89.5%), IV (88.7%), VI (87.7%), II (86.4%), III
(85.8%), and I (84.1%). The LMSVM model had the
highest assessment accuracy in grade VI (87.1%), V
(86.2%), IV (85.5%), III (84.4%), II (83.7%), and I
(83.1%). The SVM-KNN model had the highest
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Table 6 Confusion matrix from cross-validation of the four
artificial neural network model results

Grade  Measured grade (%)
| Il M1l Y \% Vi

Predicted grade | 154 05 1.0 1.7 1.0 08
Il 1.2 155 20 12 0.5 0.5
Ml 0.8 0.7 15.1 20 04 1.1
IV 09 1.1 1.7 157 08 0.6
\% 1.2 1.3 09 03 152 05
Y 03 04 06 05 038 156

Accuracy 92.5

Predicted grade | 157 13 1.5 06 08 16
Il 04 155 12 0.7 09 03
Il 03 2.1 152 09 13 04
v 0.3 1.5 1.8 153 04 0.8
\% 0.7 0.8 12 0.8 154 05
Vi 05 0.7 0.7 06 04 14.9

Accuracy 920

Predicted grade | 157 08 1.1 0.7 09 0.5
Il 1.7 148 07 0.5 0.6 14
Il 0.6 0.7 144 06 1.8 1.1
vV 03 0.6 03 155 12 1.6
% 038 1.7 02 09 147 14
Vi 0.9 1.5 05 04 0.6 144

Accuracy 89.5

Predicted grade | 147 06 1.2 09 1.1 0.7
Il 14 144 05 0.7 0.8 1.6
Ml 0.7 0.9 150 07 13 1.0
% 0.8 0.8 06 149 16 14
\% 0.5 1.3 03 0.6 15.2 1.3
Vi 0.7 1.7 04 09 0.7 14.3

Accuracy 88.5

Note: |, II, lll, IV, V, and VI indicate that the soil nutrient quality grade is

“extremely high”, “medium high”, “low”, “poor”, and “extremely poor”,
respectively. Four models are back propagation neural network (BPNN), field
probing neural networks (FPNN), muhilayer perceptron neural networks
(MLPNN), and general regression neural network (GRNN)

assessment accuracy in grade V (93.3%), VI (92.8%),
IV (92.6%), 11 (92.4%), III (88.5%), and I (88.3%). The
FSVM model had the highest assessment accuracy in
grade V (92.7%), VI (92.1%), IV (88.2%), III (87.5%), 11
(85.8%), and I (85.6%).

Discussion

This study determined the best model to predict and
evaluate soil nutrition by investigating the adaptability
and validity of a variety of ML techniques with data from
areas where a rare and endangered tree species, D. pecti-
natum. The four ANN and six SVM models, namely, the
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Fig. 7 Assessment accuracy of the six models. a KNNSVM is the k-nearest neighbor local support vector machine; b SYM-KNN is the k-NN and
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BPNN, FPNN, MLPNN, GRNN, KNNSVM, LSVM,
LMSVM, SVM-KNN, FSVM, and PSVM models, were
used to get the outputs. This study used RMSE, MSPE,
and ME to determine prediction performance efficiency
of the models. In addition, in order to obtain accurate
outputs, soil nutrient grading criteria based on previous
studies were used as the estimation criteria. This study
also used cross-validation to obtain a high prediction ac-
curacy of the ANN models. Following this, the evalu-
ation accuracy rate and ROC of the SVM models were
used to establish the main nutrient content to determine
the best models for an accurate understanding of soil
nutrient quality information.

Calculation results from our soil nutrient evaluation
investigation indicated that most of the ML techniques
investigated were adequate in determining outputs. The

GRNN and KNNSVM models yielded the highest overall
evaluation accuracy rates of four ANN and six SVM
models. According to the evaluation accuracy, the
KNNSVM model is better than the GRNN model. Nu-
merous studies have shown that SVM models can
achieve good results in a variety of agricultural tasks
(Camps-Valls et al. 2003; Karimi et al. 2006; Rumpf et al.
2010). In this study, the SVM models also exhibited
good performance in determining outputs. Because the
k-NN in the kernel line space was found directly in the
KNNSVM model, the nonlinear phenomenon of a dis-
tance measure in many problems was avoided. After
that, the relationship between neighbor and unlabeled
samples was closer, and the classification accuracy im-
proved overall. An SVM model was used for each cluster
center through which clustering training samples were
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established in the PSVM model, and then the unlabeled
samples were classified using these SVMs. A balance be-
tween positive and negative samples was achieved by
clustering. Part of the training samples were involved in
the construction of the classifier, which was selected in
the LMSVM model using the constraints of the relevant
conditions, with locality. The FSVM took less time to
obtain a clustering center than PSVM model, but the ac-
curacy of the PSVM model was higher than LSVM
model. For the LSVM model, the improvement in accur-
acy was not obvious with an increase in k value, and it
was occasionally unstable. The training samples involved
in building the SVMs were determined by SVM-KNN
model, leading into the <-NN model (Shu 2015). As a re-
sult, the KNNSVM model combines the features of k-
NN and SVM, having the advantage of high prediction
accuracy. In this study, we determined that the
KNNSVM model was the best model in estimating soil
nutrition. However, performance of SVM models rely on
input data to extract support vectors. The number of
support vectors in the SVM models also increases with
an increase in training sample numbers. When the num-
ber of training samples is large, the support vector be-
comes more complex.

The 10 models investigated in this study have their re-
spective advantages and disadvantages. There are several
reasons why we determined that the KNNSVM model is
the best model among the 10 ML models investigated.
The LMSVM model screens the training samples that
participate in SVM classifier learning through an oper-
ator. It selects part of the training samples to participate
in classifier construction, applying the constraints of
relevant conditions. Thus, the learned SVM classifier has
limitations. The SVM-KNN model resolves the defi-
ciency of the LMSVM model by introducing the k-NN
algorithm to determine the training samples involved in
building the SVM. The KNNSVM algorithm calculates
the distance between the samples in the nuclear feature
space and looks for the neighbors of unlabeled samples,
which avoids the instability caused by nonlinear prob-
lems among different distributions. The k<-NN algorithm
used in the LSVM model is essentially a weighting algo-
rithm, having the disadvantage in the large amount of
calculation required. The clustering achieved by the
PSVM algorithm achieves a balance between positive
and negative samples, a local SVM around the local clus-
ter can be trained by its clustering. The number of clas-
sifiers is small, and the classification accuracy is not very
high. The FSVM algorithm is proposed based on the
KNNSVM algorithm. The FSVM model is superior to
the PSVM model when using methods to resolve cluster
center points. Given that it employs a strategy that re-
duces the number of local SVMs rather than directly re-
solving unlabeled samples for the k-NN training SVM
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centered on it, the local SVM is established with the k-
NN of its nearest C-center. Thus, when unmarked sam-
ples are classified, the classification accuracy is worse
than the KNNSVM model, but the amount of calcula-
tion is correspondingly lower. Evaluation accuracy of the
selected data by the GRNN model was higher compared
to the original data. The GRNN model should be used
when the prediction of highly accurate results are re-
quired while avoiding the situation where back-
propagation predicts the same database, lengthy algo-
rithms, and instable network forecast results. In this
study, 10 different computer algorithms were used to as-
sess the soil nutrient content in the selected study areas.
Among these, the number of samples used in the partial
determination of k-NN gradually decreased with an in-
crease in k values, while that of LSVM constantly in-
creased. This showed that the uncertainty in unlabeled
sample categories increases with an increase in the num-
ber of selected neighbors. The higher the k value, the
more partial a SVM must be established (Gunn 1998;
Rumpf et al. 2010; Shu 2015; Hao 2016).

It should be noted that it has many limitations in this
study. For example, model simulation samples were not
sufficiently large enough. Because the species is endan-
gered, making specimen quantity is inadequate to meet
the requirements of sampling. Moreover, uncertainty de-
rives from factors related to field data acquisition, where
environmental factors surrounding the soil are a signifi-
cant factor in themselves, such as how soil temperature,
humidity, sunlight, precipitation, as well as other climatic
factors, affect the formation and availability of soil nutri-
ents. Therefore, the next step in our investigation will be
to increase the number of samples and add climate change
factors in our investigation of soil nutrient quality.

Conclusions

The result of this study shows that ML models are well
suited for soil nutrient evaluation. The KNNSVM model
can be used effectively to soil nutrient evaluation by
using appropriate model variables, and the GRNN model
is also a good choice albeit less suitable than the former
model due to its low RMSE values. Therefore, the
KNNSVM model can be used to determine outputs
among the 10 ML models investigated. We have deter-
mined that our model has significant potential in getting
outputs, and it can be considered as an alternative tool
in determining the soil nutrient condition of rare and
endangered tree species on regional or global scales.
These models can be applied to many applications, such
as providing support decision information to forest man-
agers or conducting conservation strategies for large-
scale rare and endangered tree in natural forest. The
proposed method can improve the accuracy domain of
the current multiple linear regression model in this
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study. Invisible data from proven high-precision machine
learning models may improve the usefulness and accur-
acy of decision-making to provide information to sup-
port agricultural stakeholders.
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