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Abstract

Background: Net primary productivity (NPP) in forests plays an important role in the global carbon cycle. However,
it is not well known about the increase rate of China’s forest NPP, and there are different opinions about the key
factors controlling the variability of forest NPP.

Methods: This paper established a statistics-based multiple regression model to estimate forest NPP, using the
observed NPP, meteorological and remote sensing data in five major forest ecosystems. The fluctuation values of
NPP and environment variables were extracted to identify the key variables influencing the variation of forest NPP
by correlation analysis.

Results: The long-term trends and annual fluctuations of forest NPP between 2000 and 2018 were examined.
The results showed a significant increase in forest NPP for all five forest ecosystems, with an average rise of
5.2 gC·m− 2·year− 1 over China. Over 90% of the forest area had an increasing NPP range of 0–161 gC·m− 2·year− 1.
Forest NPP had an interannual fluctuation of 50–269 gC·m− 2·year− 1 for the five major forest ecosystems. The
evergreen broadleaf forest had the largest fluctuation. The variability in forest NPP was caused mainly by variations
in precipitation, then by temperature fluctuations.

Conclusions: All five forest ecosystems in China exhibited a significant increasing NPP along with annual
fluctuations evidently during 2000–2018. The variations in China’s forest NPP were controlled mainly by changes in
precipitation.
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Background
Vegetation net primary productivity (NPP), as a biomass
increment, plays an important role in the global carbon
cycle. It contributes to understanding the contribution
of NPP to the carbon exchanges that take place between
the biosphere and atmosphere. Vegetation NPP indicates
the atmospheric carbon fixed by plants except for the
carbon released by respiration. Global vegetation NPP
has increased due to climate change over the last few de-
cades (Nemani et al. 2003; Chen et al. 2019). A

significant increase in NPP was observed for grasslands
and shrublands after the 1980s across China (Piao et al.
2001; Liu et al. 2017; Liang et al. 2015; Xu and Wang
2016; Wang et al. 2017). However, some research has
found declines in global NPP over the past decade be-
cause of drought (Zhao and Running 2010; Medlyn
2011).
There are various process models for the estimation of

vegetation NPP. The Carnegie-Ames-Stanford Approach
(CASA) provides a useful tool to estimate NPP by com-
bining grid meteorological data and the satellite-derived
fraction of incoming photosynthetically active radiation
absorbed by vegetation (Smith et al. 2008). The Carbon
Exchange between Vegetation, Soil and Atmosphere
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(CEVSA) model was used to explore NPP in China’s ter-
restrial ecosystems, and confirmed a slow increase in NPP
over the period 1981–1998 (Tao et al. 2003). The Boreal
Ecosystem Productivity Simulator (BEPS) was used to
map the spatio-temporal variations of NPP in China for
the period from 2000 to 2010 (Chen et al. 2007; Liu et al.
2013). The Lund-Potsdam-Jena Dynamic Global Vegeta-
tion Model (LPJ-DGVM) was widely applied to predict
NPP dynamics by combining terrestrial vegetation dynam-
ics (Smith et al. 2008; Gao et al. 2016). Based on the eddy
covariance technique, an eco-physiological process model
was developed to calculate NPP directly from gross pri-
mary productivity (GPP) by the mean ratio of the NPP/
GPP of different vegetation types in a local area (Wang
et al. 2017). All the process models can be applied in other
regions. However, traditional process models have many
eco-physiological parameters, and the parameters need to
be modified for different research areas. It is difficult to
ensure the accuracy of the parameters. Additionally, there
are uncertainties in the estimation of NPP because of ac-
cumulated errors during the complex process.
Statistics models for vegetation NPP are relatively sim-

ple but they can provide a credible output for a specific
research area, although they may be difficult to apply to
other regions (Adams et al. 2004). The Miami model is a
classical statistics-based model that has been used widely
for estimating vegetation NPP in different regions (Lieth
1973; Alexandrov and Matsunaga 2008). In China, Zhou
and Zhang (1996) established a general statistical model.
The model is suitable for predicting NPP for terrestrial
vegetation over China, but its accuracy is not very good
for estimating forest NPP. Until now, there has not been
a specific statistics-based model to predict forest NPP
accurately.
Both process models and statistics models need to iden-

tify the dominant factors affecting NPP, since different
dominant factors might lead to different simulation re-
sults. For example, Zhao and Running (2010) reported
that global NPP had declined over the past decade, but
their findings were based on outcomes from models which
assumed a strong temperature dependence (Medlyn
2011). Despite recognition of the roles of temperature and
precipitation in controlling NPP dynamics, there are dif-
fering opinions over their relative influence (Nemani et al.
2003; Zhang et al. 2017). Some observations have revealed
that NPP was strongly correlated with annual precipita-
tion at a continental scale, but interannual variability in
ANPP (above-ground NPP) was not related to variability
in precipitation (Knapp and Smith 2001). This conclusion
is controversial, since it was reported that the interannual
variation in NPP could be explained by changes in precipi-
tation in arid and semi-arid regions, and by changes in air
temperature in other regions of China (Chen et al. 2013;
Liang et al. 2015; Xu and Wang 2016). In addition,

vegetation structure (e.g., canopy cover and leaf area
index) can change due to natural growth, climate change
and human disturbance (Chen et al. 2019). NPP dynamics
are likely to be affected by changes in vegetation structure,
but most studies ignore the effect of vegetation structure
dynamics on NPP fluctuations. The effect of environment
variables in NPP dynamics will most likely vary in differ-
ent regions.
This paper established a statistics-based multiple re-

gression model to estimate forest NPP across China.
The objectives were to (1) explore the long-term trends
and annual fluctuations of forest NPP for different forest
types at a national scale during the period 2000–2018;
and (2) identify the key environmental factors control-
ling the variability of forest NPP. This study helps to
understand the variability of forest NPP, as well as the
interactions between forest productivity and environ-
mental factors.

Materials and methods
Building the statistics model
The paper assumed that the spatiotemporal patterns of
forest NPP were controlled mainly by climatic, topo-
graphic and forest structure variables, although previous
research has shown different relative dominance be-
tween factors affecting NPP. To establish the statistics
multivariate regression model, we collected long-term
observations of annual forest NPP, normalized difference
vegetation index (NDVI, which was used to quantify
vegetation structure), altitude, average precipitation and
temperature between 1980 and 2010 at 1000 forest in-
ventory sites (Fig. 1).
Local topography significantly affects the spatial vari-

ation of climatic variables, and each elevation increase of
100 m in China leads to an average reduction of 25
gC·m− 2 for annual NPP (Chen et al. 2007). The topo-
graphic effect on NPP can be described by altitude, so
altitude from a digital elevation model (DEM) was se-
lected as an important variable in establishing the
statistics-based multivariate regression model. The
NDVI was extracted from the annual maximum NDVI
of a 16-day cycle, 2000–2010 (https://lpdaac.usgs.gov).
Forest NPP was calculated using the traditional Vol-

ume Growth Rate Model from the data of forest inven-
tories, 1980–2010 (Eq. 1) (Luo 1996).

NPP ¼ Psþ Pbþ Plþ Prþ Pu ð1Þ

where Ps, Pb, Pl and Pr are the annual net biomass of
stem, branch, leaf and root in the tree layer, respectively.
Pu is the annual net biomass of shrubs and herbs under
the forest canopy.
Quality control of forest NPP had been done. Firstly,

forest NPP for each observation site was the average
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value of continuous forest inventory since 1980, and the
average value reduced data uncertainty. Secondly, forest
NPP for each observation site was checked by comparing
with the values of the surrounding area and the values
of the same forest types. Thirdly, forest NPP was
checked by comparing with the results of some forest
productivity models (Luo 1996; Luo et al. 2004).
Based on the relationship between forest NPP and en-

vironmental variables (annual maximum NDVI, annual
precipitation, annual temperature, and altitude) at 1000
forest inventory sites, a statistics-based multiple regres-
sion model was established (Table 1), with a multiple re-
gression R = 0.72, and a standard error of 4.34 (Eq. 2),

NPP ¼ 97:13NDVIþ 0:022PT
þ 0:128P−9:136T−0:027Aþ 333:67 ð2Þ

where NPP is forest NPP (gC·m− 2·year− 1), NDVI is nor-
malized difference vegetation index (0 < NDVI ≤1), P is
annual precipitation (mm), T is annual temperature (°C),
and A is altitude (m).

Simulation of annual forest NPP over China
The statistics-based multiple regression model allowed
us to simulate annual forest NPP over China. The data
included climatic variables (annual temperature and an-
nual precipitation), altitude and NDVI. Annual
temperature and annual precipitation were obtained
from 800 meteorological stations of the National Me-
teorological Information Center of the China Meteoro-
logical Administration (http://cdc.cma.gov.cn). Altitude
was derived from a 90-m resolution DEM dataset
(http://srtm.csi.cgiar.org/srtmdata/). NDVI with a 1-km
spatial resolution was obtained from Land Processes

Fig. 1 Distribution of forest types and forest observation sites where environmental data were collected. Black dots show forest observation sites
used to establish the model, and the red dots show forest observation sites used to check the model
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Distributed Active Archive Center (https://lpdaac.usgs.
gov). To reduce the residual noise caused by haze and
clouds, the annual maximum NDVI was extracted from
a series of 16-day compositions of NDVI in the growing
season. All the input variables were interpolated or
resampled into raster layers with a spatial resolution of
1 km × 1 km grid cells using the Kriging method with
ArcGIS10.2 (http://www.esri.com/software/arcgis).
The distribution of annual forest NPP was obtained

from overlay analysis between the Vegetation Map of
the People’s Republic of China in 2008 and the simu-
lated annual forest NPP. Prior to overlay analysis, all the
forest types were merged into five dominant forest types,
including evergreen broadleaf forest, evergreen needle-
leaf forest, broadleaf-needleleaf mixed forest, deciduous
broadleaf forest, deciduous needleleaf forest.

Accuracy assessment
The observed forest NPP at 90 observation sites from
forest inventories were used to check the accuracy of the
multiple regression model. The check sites were selected
following the principle of representativeness. The 90
check sites covered the typical forest types in China, and
their spatial distribution could not be concentrated in
one area.
Comparison between the predicted NPP and the ob-

served NPP provided a fitting coefficient of R2 = 0.536
(P < 0.01) (Fig. 2). The results indicated that the multiple
regression model had a good performance in predicting
forest NPP with acceptable accuracy. Therefore, the
model was capable of providing a reliable estimate of
China’s forest NPP.

Results
Trend and fluctuation of forest NPP
The results revealed an average forest NPP of 840
gC·m− 2·year− 1 for all forest types in China. Evergreen
forests had the highest NPP (1058 gC·m− 2·year− 1 for the
evergreen broadleaf forest, 934 gC·m− 2·year− 1 for the
evergreen needleleaf forest), because evergreen forest
maintains continuous photosynthesis throughout the
year. Deciduous forests had lower NPP values (759

gC·m− 2·year− 1 for the deciduous broadleaf forest, 590
gC·m− 2·year− 1 for the deciduous needleleaf forest) since
deciduous forests have a narrower photosynthesis
period.
Variations (long-term trend and interannual fluctu-

ation) of forest NPP in China were examined. Results re-
vealed an overall increasing trend in forest NPP, with an
average increase rate of 5.2 gC·m− 2·year− 1 over China
between 2000 and 2018. All the five major forest ecosys-
tems showed significant increasing forest NPP, with an
increase rate of 2.9–8.0 gC·m− 2·year− 1. The largest in-
crease rate was found in evergreen broadleaf forest (8.0
gC·m− 2·year− 1), followed by evergreen needleleaf forest
(6.5 gC·m− 2·year− 1), broadleaf-needleleaf mixed forest
(6.3 gC·m− 2·year− 1), deciduous broadleaf forest (5.4
gC·m− 2·year− 1) and deciduous needleleaf forest (2.9
gC·m− 2·year− 1) (Fig. 3).
Interannual fluctuation in forest NPP displayed a

fluctuation range of 50–269 gC·m− 2·year− 1 among the
five major forest ecosystems. NPP in the evergreen
broadleaf forest had the highest fluctuation range
(269 gC·m− 2·year− 1), followed by the evergreen nee-
dleleaf forest (202 gC·m− 2·year− 1). NPP in the decidu-
ous needleleaf forest had the lowest fluctuation range
(50 gC·m− 2·year− 1).

Fig. 2 Comparison between the observed net primary productivity
(NPP) with the predicted NPP at 90 forest observation sites
over China

Table 1 The parameters of the statistics-based multiple regression model between forest net primary productivity (NPP) and
environmental variables (T is annual temperature (°C), P is annual precipitation (mm), A is altitude (m), NDVI is normalized difference
vegetation index (0 < NDVI ≤1))

Parameters Coefficients Standard error t Stat P-value Lower 95% Upper 95%

Intercept 333.670 56.330 5.923829 4.33E-09 223.140 444.21

T −9.136 3.680 −2.483880 0.01316 −16.350 −1.92

P 0.128 0.056 2.285529 0.022492 0.018 0.24

T × P 0.022 0.004 5.620419 2.47E-08 0.014 0.03

A −0.027 0.009 −3.193080 0.001452 −0.044 − 0.01

NDVI 97.130 59.240 1.639560 0.101413 −19.120 213.39
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The fluctuation rate (ratio of fluctuation range to aver-
age value) was calculated to reflect the degree of fluctu-
ation. The results showed that the evergreen broadleaf
forest had the largest fluctuation rate (25%), followed by
the evergreen needleleaf forest (22%) and the broadleaf-
needleleaf mixed forest (20%). The deciduous needleleaf
forest had the smallest fluctuation rate (8%) (Fig. 3 and
Table 2). The results indicated that, among the major
forest ecosystems in China, the most unstable forest
NPP occurred in the evergreen broadleaf forest, and the
most stable forest NPP occurred in the deciduous nee-
dleleaf forest.
Comparing forest NPP with its fluctuation, our re-

sults revealed an interesting phenomenon: the greater
the forest NPP, the greater the fluctuation of forest
NPP for the five major forest ecosystems in China.
For example, evergreen broadleaf forest had the lar-
gest NPP at 1058 gC·m− 2·year− 1, with the largest
fluctuation range, 269 gC·m− 2·year− 1, as well as the
largest fluctuation rate (25%) among the five major
forest ecosystems. Deciduous needleleaf forest had the

smallest NPP at 590 gC·m− 2·year− 1, with the smallest
fluctuation amplitude, 50 gC·m− 2·year− 1, as well as
the smallest fluctuation rate (8%) (Fig. 3 and Table
2). It is likely that this phenomenon is related to the
fluctuation of dominant factors affecting NPP, but it
needs further confirmation.

Spatial distribution of forest NPP trends
Figure 4 shows the rate of change of forest NPP during
the period 2000–2018 at 1 km × 1 km spatial resolution.
China’s forest NPP exhibited an increasing rate of 0–161
gC·m− 2·year− 1, which was statistically significant over
90% of forest area during the period 2000–2018. Forest
NPP over China did not exhibit a consistent increasing
trend everywhere. Approximately 10% of forest area in
some regions of southwest and northern China showed
a slight decreasing trend in forest NPP, with a range 0–
20 gC·m− 2·year− 1 (Fig. 4). Generally, there was an over-
all increasing trend in forest NPP, despite a slightly de-
creasing trend in some forest areas in China.

Fig. 3 Long-term change and annual fluctuation of forest net primary productivity (NPP) in five forest ecosystems over China, 2000–2018. EBF is
evergreen broadleaf forest; DBF is deciduous broadleaf forest; ENF is evergreen needleleaf forest; DNF is deciduous needleleaf forest; BNMF is
broadleaf-needleleaf mixed forest

Table 2 The average annual net primary productivity (NPP) and its interannual fluctuation for five main forest types over China
during the period 2000–2018

Forest name Area
(km2)

Average NPP
(gC·m−2·year− 1)

Min NPP
(gC·m− 2·year− 1)

Max NPP
(gC·m− 2·year− 1)

Fluctuation amplitude
(gC·m− 2·year− 1)

Fluctuation rate
(%)

Evergreen broadleaf forest (EBF) 23,673 1058 942 1211 269 25

Evergreen needleleaf forest (ENF) 48,269 934 851 1053 202 22

Broadleaf-needleleaf mixed forest (BNMF) 5525 860 790 960 170 20

Deciduous broadleaf forest (DBF) 35,074 759 699 810 111 15

Deciduous needleleaf forest (DNF) 6943 590 568 618 50 8
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Key drivers of the variation in forest NPP
To identify the key drivers leading to the variation in
forest NPP, the fluctuation values (deviation from the
mean) of NPP and the environment variables were ex-
tracted. Correlation analysis showed a significant correl-
ation between NPP and precipitation fluctuations, with a
Pearson coefficient 0.977 (P < 0.01), Kendall tau-b

coefficient 0.908 (P < 0.01), Spearman’s rho coefficient
0.973 (P < 0.01). A moderate correlation was found be-
tween NPP and temperature fluctuations, with Pearson
coefficient 0.484 (P < 0.01) (Table 3). The results indi-
cated that the variation in forest NPP was much more
sensitive to annual precipitation fluctuation and annual
precipitation fluctuation played a pivotal role in

Fig. 4 Spatial distribution of trend rate (gC·m− 2·year− 1) of forest net primary productivity (NPP), 2000–2018. Positive values denote an increasing
rate, negative values denote a decreasing rate

Table 3 The correlations between fluctuations (deviation from the mean) of net primary productivity (NPP) and the driving factors
(annual precipitation, annual temperature and normalised difference vegetation index (NDVI))

Parameters Pearson Kendall_tau_b Spearman_rho

Coefficient Sig.(bilateral) N Coefficient Sig.(bilateral) N Coefficient Sig.(bilateral) N

Precipitation 0.977b P < 0.010 19 0.908b P < 0.010 18 0.973b P < 0.010 19

Temperature 0.484a P = 0.042 19 0.307 P = 0.075 18 0.463 P = 0.053 19

NDVI 0.390 P = 0.110 19 0.333 P = 0.053 18 0.490 P = 0.039a 19
a indicates significant correlation at 0.05 level; b indicates significant correlation at 0.01 level
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controlling forest NPP changes compared with other en-
vironment variables.
Comparing the interannual change curves of forest NPP,

annual precipitation, annual temperature, and annual max-
imum NDVI, more similar curves were discovered between
NPP and annual precipitation. The results provide another
credible proof that forest NPP fluctuation was sensitive to
changes in precipitation. In contrast, temperature and
NDVI made a smaller contribution to forest NPP (Fig. 5).
We also examined the spatial patterns of the changes

of forest NPP, precipitation and temperature. It was dis-
covered that the increase in forest NPP was accompan-
ied by an increase in precipitation and temperature for
most forest areas in China. The decrease in forest NPP
was accompanied by a decrease in precipitation for a few
forest areas in southwest China (Figs. 4, 6 and 7).
In brief, precipitation fluctuation was a key factor leading

to variations in forest NPP, and temperature was a second-
ary factor, judging by the correlation coefficients, the
change curves and the spatial patterns of change trends.

Discussions
There are different estimates of China’s forest NPP, ran-
ging from 420.1–843 gC·m− 2·year− 1 according to

previous studies (Table 4). It was difficult to judge
whether one was more credible than the others because
of the use of different methods. However, all (previous
and our) studies conclude that forest NPP has shown an
obvious increasing trend over China in recent decades
(Wang et al. 2008; Mao et al. 2010; Yu et al. 2014). The
increase in forest NPP is consistent with other findings
that the terrestrial vegetation NPP of the northern hemi-
sphere has increased over the past several decades
(Nemani et al. 2003). Our results presented an average
increase rate of 5.2 gC·m− 2·year− 1 for China’s forest
NPP in the period 2000–2018, despite different increase
rates for the five major forest ecosystems in China (Fig.
3).
Previous studies have ignored the impact of forest

structure on NPP, even though forest spatial structure
might affect forest NPP (Fotis et al. 2018). The general
statistical model of Zhou and Zhang (1996) as a typical
climate productivity model also ignored the impact of
forest structure, and forest NPP from the model of Zhou
and Zhang was usually lower than the observed forest
NPP. Our model selected vegetation structure (quanti-
fied by NDVI) as an important factor, since spatio-
temporal change in forest structure was directly related

Fig. 5 Interannual variation curves of annual net primary productivity (NPP) and the major environmental factors (annual precipitation, annual
temperature and annual maximum normalised difference vegetation index (NDVI)) in Chinese forests, 2000–2018
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to forest NPP dynamics. Our results confirmed that for-
est structure had significant effect on forest NPP dynam-
ics (with Spearman’s rho coefficient 0.490, P < 0.05).
Therefore, vegetation structure as an input variable in
our model improved the accuracy of simulation.
There are a series of factors that may affect NPP, but

they do not all have a strong influence on NPP dynam-
ics. The dynamics of the dominant factors affecting NPP
are the real causes of changes to NPP. Therefore, we ex-
tracted the fluctuation values (deviation from the mean)
of NPP and environment variables prior to analysing
their relationship. The relationship between these fluctu-
ation values provided more reliable information on the
factors controlling NPP dynamics.
Our results revealed that changes in precipitation

played a key role in the variation in forest NPP over

China, and temperature fluctuation was a secondary fac-
tor affecting forest NPP variation. The results disagreed
with previous results that air temperature was the dom-
inant climatic factor that controlled the interannual vari-
ability in NPP throughout China, except for arid and
semi-arid regions (Liang et al. 2015). The disagreement
might result from different analysis methods. The results
of Liang et al. (2015) came from a simple correlation
analysis between annual NPP and climate conditions
(i.e., mean annual air temperature and annual cumula-
tive precipitation) from 1982 to 2010. Our results came
from the correlation analysis between the fluctuation
values of annual forest NPP and environmental factors
(annual precipitation, annual temperature, and annual
maximal NDVI) from 2000 to 2018. Furthermore, our
results from the correlation analysis were confirmed by

Fig. 6 Change trend rate (mm·year− 1) of annual precipitation in China, 2000–2018 (Positive values denote an increase, negative values denote
a decrease)
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the fluctuation curves and the spatial trends of forest
NPP and environmental factors.
However, there were some uncertainties in the simula-

tion results of our model. Our model paid more attention
to natural factors, but ignored human factors. In fact,

vegetation NPP in China benefited from the ecological
conservation and restoration efforts, since a series of eco-
logical protection policies had been implemented, such as
Three-North Shelter Forest Program, Grain for Green
Program, and Natural Forest Protection Program (Lv et al.

Fig. 7 Change trend rate (°C·year− 1) of annual temperature in China, 2000–2018 (Positive values denote an increase, negative values denote
a decrease)

Table 4 Forest net primary productivity (NPP) and its trends in China in recent decades according to previous studies

Mean NPP
(gC·m−2·year−1)

NPP trend
(gC·m−2·year−1)

Period
(year)

Method Cites

567 – 1989–1993 Scaling up method Ni 2003

606.3 – 1989–1993 Scaling up method Ni 2003

627 Increase 1984–1998 Geographically weighted regression model Wang et al. 2008

843 – 1990s Spatial statistical approaches Zhuang et al. 2009

> 500 Increase 1981–2000 Sheffield dynamic global vegetation model Mao et al. 2010

420.1 Increase 1973–2008 Relationship between biomass and NPP Yu et al. 2014

840.2 Increase 2000–2018 Statistics-based multiple regression model This paper
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2015; Zhu and Zheng 2019). Although our model selected
vegetation structure (quantified by NDVI) as an important
factor, and vegetation structure could reflect the impact of
human beings on vegetation NPP to some extent, it was
not enough to reflect the overall human impact.

Conclusions
This paper established a statistics-based multiple regres-
sion model to estimate annual forest NPP across China.
The model had a good performance in providing a reliable
estimation in forest NPP. The trends and the fluctuations
of forest NPP in the period 2000–2018 were examined.
The results revealed a significant increasing forest NPP for
all the five major forest ecosystems, with an average in-
crease rate of 5.2 gC·m− 2·year− 1 over China. There was an
increasing NPP trend rate of 0–161 gC·m− 2·year− 1 over
90% of the forest area. The interannual fluctuation range
of forest NPP was 50–269 gC·m− 2·year− 1. The
evergreen broadleaf forest had the largest fluctuation
(269 gC·m− 2·year− 1), followed by the evergreen nee-
dleleaf forest, the broadleaf-needleleaf mixed forest,
the deciduous broadleaf forest and the deciduous nee-
dleleaf forest. Our results revealed that the variability
in forest NPP was caused mainly by variations in pre-
cipitation, then by temperature fluctuations. There-
fore, precipitation played a key role in the variation
in forest NPP.
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