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Abstract

Background: In recent decades the future of global forests has been a matter of increasing concern, particularly in
relation to the threat of forest ecosystem responses under potential climate change. To the future predictions of
these responses, the current forest biomass carbon storage (FCS) should first be clarified as much as possible,
especially at national scales. However, few studies have introduced how to verify an FCS estimate by delimiting the
reasonable ranges. This paper addresses an estimation of national FCS and its verification using two-step process to
narrow the uncertainty. Our study focuses on a methodology for reducing the uncertainty resulted by converting
from growing stock volume to above- and below-ground biomass (AB biomass), so as to eliminate the significant
bias in national scale estimations.

Methods: We recommend splitting the estimation into two parts, one part for stem and the other part for AB
biomass to preclude possible significant bias. Our method estimates the stem biomass from volume and wood
density (WD), and converts the AB biomass from stem biomass by using allometric relationships.

Results: Based on the presented two-step process, the estimation of China’s FCS is performed as an example to
explicate how to infer the ranges of national FCS. The experimental results demonstrate a national FCS estimation
within the reasonable ranges (relative errors: + 4.46% and − 4.44%), e.g., 5.6–6.1 PgC for China’s forest ecosystem at
the beginning of the 2010s. These ranges are less than 0.52 PgC for confirming each FCS estimate of different
periods during the last 40 years. In addition, our results suggest the upper-limits by specifying a highly impractical
value of WD (0.7 t∙m− 3) on the national scale. As a control reference, this value decides what estimate is impossible
to achieve for the FCS estimates.

Conclusions: Presented methodological analysis highlights the possibility to determine a range that the true value
could be located in. The two-step process will help to verify national FCS and also to reduce uncertainty in related
studies. While the true value of national FCS is immeasurable, our work should motivate future studies that explore
new estimations to approach the true value by narrowing the uncertainty in FCS estimations on national and
global scales.
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Introduction
Over the last two decades, research on terrestrial plant
ecosystems has been expanding from field experimental
sites to national or global scales for addressing global
change issues (Bellassen and Luyssaert 2014). Accurately
quantifying carbon stocks is one of the critical compo-
nents to assessing potential impacts of climate change
(Temesgen et al. 2015). Many researchers have exten-
sively studied the estimation of forest carbon storage
(FCS), and provided much knowledge and information
(Ciais et al. 2008; Luyssaert et al. 2008; Keith et al. 2009;
Gustafson et al. 2010) for understanding large-scale for-
est resources (Petrescu et al. 2012; Crowther et al. 2015;
Kohl et al. 2015). However, when globally assessing for-
est resources, the accuracies are different between coun-
tries (MacDicken 2015). The results for certain countries
(in Europe, North America, etc) have relatively high
accuracies, which were statistically analyzed based on
detailed information (Jenkins et al. 2003; Lambert et al.
2005; Breidenbach et al. 2014; Berger et al. 2014; Neu-
mann et al. 2016), such as diameter at breast height
(DBH) and tree height data. Collecting this information
at a national scale has been difficult for other countries
because the details of data are scarce (Mather 2005).
This has generated criticisms on global-level forest re-
source assessments (Grainger 2008; Harris et al. 2012;
Hansen et al. 2013; Achard et al. 2014; Ussiri and Lal
2017; Avitabile and Camia 2018). Actually, in many
countries only the volume information is released in
their national forest inventory (NFI) reports (Mather
2005), which requires the volume-based method to con-
vert forest volumes to AB biomass. In practice, most
countries in the world use volume-based models and
biomass expansion factors (BEF) to estimate national
forest biomass (FAO 2010).
Using volume-based methods would lead to uncertainty

in national FCS estimates (Jenkins et al. 2003; Henry et al.
2015), and on certain conditions, could generate apparent
inconsistency between the estimates for the same area (Ni
2013). This is particularly noticeable for monitoring dy-
namics of the biomass in those countries, in which the
promotions of afforestation and reforestation programs
have continued for decades and increasingly affect world
FCS. For instance, as the third largest country by landmass
(SFA 2013), China currently has the largest area of artifi-
cial forest (approximately 62 million ha) and the fifth lar-
gest total forested area (approximately 165 million ha) in
the world. Over the past 40 years, forest volume has in-
creased continuously at an average of 2% per year (SFA
1977, 1982, 1989, 1994, 1999, 2004, 2009, 2013). However,
the uncertainties in FCS estimates are hard to remove on
the national scale. Based on a partial literature review
(Zhou et al. 2016), existing studies suggest large differ-
ences between China’s FCS estimates. It is necessary to
explore a way to reduce such gaps that could appear in
FCS estimates of some regions or countries, as the gaps
may influence understanding for the FCS itself as well as
many study results associated with the FCS on national or
global scales.
National forest inventory and the first uncertainty
There are primarily two sources of uncertainties, the un-
certainty in volume prediction and the uncertainty from
volume to biomass conversion. Usually, the volume data
extensively published in most countries are available in
NFI reports, with the minimum scale being the average
provincial or regional mean volumes and areas. The first
uncertainty in NFI would be caused by many factors
(Berger et al. 2014), such as volume prediction models
and measurement errors (Suty et al. 2013; Breidenbach
et al. 2014; McRoberts and Westfall 2014), as well as be
impacted by different survey designs in different eras
(Stahl et al. 2013). The continuous improvement of
sampling design and remote sensing application made
significant advantages, so that the earlier NFIs have lar-
ger uncertainty than later NFIs. However, this kind of
data, as a compilation of national resource statistics, has
typically undergone rational sampling design and rigor-
ous statistical tests, and as such it is considered reliable
(Fang et al. 2001) despite the possible errors that exist.
For example, systematic sampling was adapted in Chinese
national forest inventory, which provides valuable statis-
tics on forest area, volume, and their changes with periods
of 5 years for strategic decision making (Lei et al. 2009).
For decades, the Food and Agriculture Organization of
the United Nations (FAO) and also Intergovernmental
Panel on Climate Change (IPCC) have relied on those
country NFI reports to publish their forest resources as-
sessment reports (FAO 2010, 2016).
National forest biomass and the second uncertainty
While using the volume information provided by NFI
reports, the successful conversion from the volume esti-
mates to accurate biomass estimates is still an arduous
process. The choice of methods could result in different
results. Generally, the volume-based method is called the
indirect method (Somogyi et al. 2007) which is a realistic
method based on building the relationships between vol-
ume and biomass (Brown and Lugo 1984; Brown 1997).
These relationships have been expressed in different defi-
nitions, such as BEFs and allometric equations of the bio-
mass with volume predictor(s) (Henry et al. 2015). These
equations can be derived empirically from tree sampling
as well as from estimates per unit area. Based on the latter,
as long as the volume per unit area (m3∙ha− 1) of a forested
land is known, the corresponding biomass (t∙ha− 1) can be
calculated using an appropriate factor or equation.
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Currently the allometric equations are widely applied in
FCS estimation of China’s forest ecosystems (Fang et al.
2007; Xu et al. 2007; Guo et al. 2010; Li et al. 2011; Zhou
et al. 2016). Previous studies have reported their methods,
which include mean biomass density (MBD), volume-
derived, and remote sensing methods. These are three
commonly applied approaches in China’s FCS estimation.
Table 1 summarized the features of the approach and the
main results of the estimations. Guo et al. (2010), Ni
(2013), and Tang et al. (2018) have discussed the difference
between the estimates for China’s FCS, and suggested that
various estimates may be resulted from different methods
and models. As the researchers pointed out, when we esti-
mate forest biomass using field data of biomass measure-
ments, an important issue is how to find an allometric
relationship that can suitably be applied to forest conditions
encountered (Sileshi 2014). This is rather troublesome.
Through the graphical analysis of volume-based biomass
equations listed in Table 1, we found that it is hard to
Table 1 Different methods for estimating carbon storages of China’
Farmland to Forest Program

Method Feature

Volume-derived Stand-level linear volume-biomass equations, or
continuous biomass expansion factor (CBEF),
using variables of total area, volume per unit area.
Data: NFIs.

Volume-derived Age-grouped, stand-level linear volume-biomass
equations based. Data: 6th NFI.

Volume-derived Mean ratio method, using variables of total
volume and mean BEF. Data: 6th NFI.

Volume-derived Tree-level allometric biomass equations with DBH
and height predictors. Provincial BEFs were
calculated based on DBH and height information
of plots (660,000 permanent plots established in
7th NFI). Data: 7th NFI.

Volume-derived Stand-level allometric volume-biomass equations
(power functions); removing upscaling error.
Data: NFIs.

Carbon density Mean biomass density method, using variables
of total area and mean biomass density.
Data: 6th NFI.

Carbon density Deriving carbon density from site measurements,
and average carbon density from the provincial
area-weighted average and its corresponding area;
using Random Forest model to detail spatial
patterns of carbon density. Data: Independent
investigation, establishing total 7800 sites for
field measurements in forests.

Remote sensing Multiple spectral bands of MODIS and forest
inventory data with an empirical statistical model.

Remote sensing A development of AGBmapping. Data:
Geoscience Laser Altimeter System (GLAS)/Ice,
Cloud, Land Elevation Satellite (ICESat) data,
optical imagery, climate surfaces, and
topographic data.

aTotal biomass carbon, estimated from the reported AGB (7.5 Pg)
observe and test a physiological relationship between
volume and AB biomass. These approaches converted
volume to AB biomass directly, and they seem to lack
an obvious causal relationship of volume and AB bio-
mass. In addition to the difference between results of
volume-derived methods themselves, there are also larger
differences between volume-derived and other methods
(Table 1). In general, the MBD and remote sensing methods
frequently introduce a larger estimate than volume-derived
methods for China’s forest ecosystems. The reason for this
remains unclear. One potential reason is likely due to the
uses of multiple data sources, limited sample size, and data
representativeness (Tang et al. 2018). Previous comparisons
have also indicated that MBD may result in overestimates
because of possible bias of field measurements (Dixon et al.
1994; Guo et al. 2010). The inconsistency of these estimates
implies that we may need to demarcate the range of
forest carbon. This range should be understandable
for practical applications at the national scale.
s forest (PgC). The first period is the start of the Returning

Period Reference

1999–2003 2004–2008 2009–2013

5.9 6.2 Fang et al. (2007; 2014);
Guo et al. (2010)

5.5 Xu et al. (2007)

6.2 Guo et al. (2010)

6.7 Li et al. (2011)

4.9 5.4 6.0 Zhou et al. (2016)

7.7 Guo et al. (2010)

10.4 Tang et al. (2018)

6.3 6.8 Sun et al. (2015)

10.2a Su et al. (2016)
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At the current stage, we are trying to find whether there is
any relationship that can be applied other than the relation-
ship between volume and AB biomass. If a relationship can
express AB biomass and its predictor biologically or physic-
ally, it will be possible to place complete reliance on the
range of FCS estimates on the national scale. Hence, several
basic issues have to be considered when performing an esti-
mation of national FCS, such as the national average WD
for each species, the ratios of stem to AB biomass for each
species, and the estimates of TB for each species across the
country. Although numerous studies have presented ap-
proaches to estimate national FCS, very few studies have ad-
dressed how to recognize whether those estimates are
beyond their possible upper and lower limits. Poor under-
standing of reasonable ranges of national FCS will limit our
ability to raise the accuracy in FCS estimations.

Study objective
Our study addresses the second uncertainty. To address the
above issues, it is necessary to find an applicable method,
Fig. 1 An example (Pinus massoniana in China) to convert stem volume (V
equation for the species. The stem biomass (Bs, t∙ha

− 1) is an intermediate v
the limit line of Bw (showing a proportion of 80% stem and 20% other part
to Fig. 4. Note that the restricted zone may change for different species or
which can supplement or improve conventional ap-
proaches. Given this, we divided the uncertainty into two
parts as stem and AB biomass, and correspondingly built
two relationships, “volume to stem biomass” and “stem bio-
mass to AB biomass”. Then we tested the relationships by
two steps. Depending on possible error of WD, the range
of FCS can be predicted on the national scale. This is to
avoid systematic error by utilizing trees’ physical and
physiological properties. We hypothesize that the percent
error of WD is close to the percent error of the AB biomass
estimate, i.e., the range of WD error on average primarily
affects the ranges of national FCS estimates. As an applica-
tion, we estimate China’s FCSs using a two-step process to
avoid significant bias on the national scale.

Methods
Two parts of FCS estimation
The AB biomass is divided into two parts, i.e. stem bio-
mass and non-stem biomass, to be calculated separately
for each tree species (Fig. 1). Here, ρ is the ratio of dry
, m3∙ha− 1) to AB biomass (Bw, t∙ha
− 1) via WD (ρ) and allometric

ariable in the calculation. A restricted zone is designed ranging from
s of the tree) to the 45 degree line. Parameters a and b (plot 8) refer
forest types in realistic forests
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mass to stem volume per unit area. The ρ might not be
strictly defined as WD in forest or wood science. To
develop an approach for national-scale estimation, we
tentatively refer to the ρ as WD. As Fig. 1 illustrated, we
firstly convert stem biomass from the volume multiplied
by estimated WDs (ρ). Second, we estimated AB biomass
by converting stem biomass using widely used allometric
equations with a simple power-law form (West et al.
1999; Gillooly et al. 2001; Zianis et al. 2005; Sileshi
2014), which expresses the relationship between bio-
masses of an organ (stem) and entire organism (whole
tree).
A graph is imbedded in Fig. 1 illustrating several key

points in judging the relationships between stem and AB
biomass. Obviously, the curve of allometric equation is
always above the 45° line. This means that AB biomass
is larger by some percentage than stem biomass on ei-
ther observed data or regressed curve. The percentages
for non-stem parts are different for each species, but not
less than a lowest limit. Our analysis suggests a range of
20% to 30% for this limit, which is estimated as the
minimum ratio of the non-stem parts depending on the
observed data of mature stands (Fig. 2). The graph in
Fig. 2 The relationship between stem and AB biomass for multi-
species communities. Data were from field measurements by
destructive sampling (Luo et al. 2013) for 181 species at 803 sites
across China. a The ratio of stem to AB biomass. b The
allometric relationship
Fig. 1 shows an example of the ratio with 20% for Pinus
massoniana. Furthermore, the minimum ratio of non-
stem part forms an area existing between the limit line
and 45° line. It can be called the “restricted zone” where
the regression curve should not lie unless there are er-
rors or anomalies in the data. Similarly, the curve cannot
be too far from the 45° line as this curve is only decided
by the dynamics of the non-stem part ratio. The concept
of restricted zone helps to test systematic error depend-
ing on trees’ physiological properties. Reducing this
error is advantageous in diagnosing a range that will
possibly enclose the true value of the FCS.

Data and measurements
The field observations include both measured mean
diameter at breast height (DBH), mean tree height, vol-
ume per hectare, and biomass per hectare of each tree
organ (foliage, flower, fruit, branch, stem, and root) for
261 species at 1607 sites over the country (Fig. 3). The
reference (Luo et al. 2013) provided detailed information
on site description, species introduction, measurement
methods, and brief data analyses. We screened all avail-
able 1056 measurements for calculating WDs, and 803
measurements for building allometric equations. These
measurements were based on destructively sampled
trees. All tree-level observations have been initially
scaled to area-based values (per hectare) by data mea-
surers and providers (Luo et al. 2013; Additional file 1.
Therefore, our analysis is based on unit area rather than
plot or single tree because of the data source. The subse-
quently used allometric relationships employed refer to
area-based quantities. It means that certain patterns that
are observed on an area basis, such as the amount of
whole-tree or stem biomass per hectare, might differ
from those observed in individual trees. On the national
scale, we directly applied the area-based data (biomass
and volume).

Equations and estimations
Stem biomass estimation. The species surveyed in the
inventories were classified into 15 general tree types or
species. We calculated stem biomass based on volume
multiplied by WD corresponding to each species, i.e.,
Bs = ρV (V-to-Bs equation), where Bs denotes stem bio-
mass (oven dry, t∙ha− 1); ρ represents WD (t∙m− 3); V
expresses volume (m3∙ha− 1).
AB biomass estimation. This was estimated using allo-

metric equations of stem vs AB biomass, i.e., Bw = aBs
b

(Bs-to-Bw equation), where Bw is AB biomass (oven dry,
t∙ha− 1), a and b are parameters. To determine these
parameters, a nonlinear regression was conducted.
National FCS estimation. National FCSs of China are es-

timated by accumulating the biomass carbon of all combi-
nations of each species and province in each period, e.g.,



Fig. 3 1607 plots at 623 study sites across mainland China (Latitude: 18.7°–50.87°N; Longitude: 87.13°–130.88°E). The forest species and types were
reclassified and grouped into 15 categories
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the inventory (2008–2013) provides 15 grouped species or
forest types distributed in 31 provinces. Carbon content is
converted from biomass using a factor of 0.5. The corres-
pondence between the tree species classified in forest in-
ventories and the tree species described by Bs-to-Bw

equations are listed in Additional file 1: Table SI_1. In our
experiment, the species surveyed in the inventories were
classified as 15 species, for which the WDs (ρ) were also
classified as such species. The national forest stem carbon

was calculated by the equation 0:5� ðP31
i¼1

P15
s¼1 BsÞ; the

national FCS was calculated by the equation 0:5� ðP31
i¼1P15

s¼1 BwÞ, where i represents the number of provinces in
China, and s denotes the number of species, Bs and Bw ex-
press stem biomass and AB biomass, and 0.5 is the carbon
fraction to convert dry biomass.
Results
Estimates of ratio of stem biomass to AB biomass and
WD for different species
The ratios of stem to AB biomass exhibit nonlinear varia-
tions, expressed by 15 allometric equations in Fig. 4. The
parameters of these equations have prediction precisions
that are high for all species (coefficient of determination
R2 ranges from 0.81 to 0.99). The field data were mea-
sured at various locations for each species. They are con-
sistent with regression curves. All the parameters of
equations are summarized in Additional file 2: Table SI_1
and Table SI_2. The WDs (ρ) are the ratios of stem bio-
mass to volume for each species (see the slopes in Fig. 4b).
Field measurements exhibited macroscopic homogeneity
of the ratio of stem biomass to AB biomass (Bs-to-Bw)
under different growth conditions. The standard deviation
of relative error (RE) of the mean values is approximately
5% based on our analysis. This is the range for “Wood
density estimates” in Table 2.

National wood densities
The WD in average does not change significantly during
40 years. It ranges from 0.429 to 0.502 t∙m− 3 (Table 2).
The upper limit of WD is specified as 0.7 t∙m− 3. This
value can be utilized to assess whether a FCS estimate is
realistic or not. In fact, WD cannot reach a national
average of 0.7 t∙m− 3 in non-tropical regions. This value
is the wood basic density (WBD, oven-dry mass divided
by green volume) of rosewood, which is much heavier
than most tree species. According to our analysis of
China’s NFI (the period of 2008–2013), 12 out of the 15
species have low WDs (ρ < 0.49) (see Additional file 2),
and occupied over 81.6% of volume in the country
(Fig. 5). This percentage implies that the WD should not
be higher than an average of 0.49 t∙m− 3 on the national
scale. Our analysis reports that the national WD was
0.469 t∙m− 3 on average in present.

China’s FCS estimates and its future trend
China’s FCSs are estimated in periods over a 40 year
span (1973–2013, Table 2, Fig. 6). The results demon-
strate a national FCS estimation within the reasonable
ranges, e.g., 5.6–6.1 PgC at the beginning of the 2010s.
These ranges are less than 0.52 PgC (relative errors:
+ 4.46% and − 4.44%) for confirming each FCS estimate of
different periods. The possible ranges of the errors for
FCS estimates are ranked depending on the errors of
WD. The ratio of Bs-to-Bw ranges from 57.4% to 59.2%.
We assessed the status of forest maturity depending on



Fig. 4 The biomass equations and wood densities used in China’s FCS estimation. a The regressions of 15 allometric equations (a: Bw = aBs
b; b:

Bw = ρV) that match 15 species re-classified in Additional file 1: Table SI_1. Bw represents AB biomass (t∙ha− 1), Bs expresses stem biomass (t∙ha− 1),
and a and b are parameters. b Wood densities (the ratio of stem biomass to volume) for the 15 species. All data are field measurements by
destructive sampling (Luo et al. 2013) for 181 species
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Fig. 5 The national weighted mean of WDs and volume shares for
High WD, Low WD. The High WD denotes the species Nos. 10, 12,
and 15. The Low WD represents the species Nos. 1–9, 11, 13, and 14

Fig. 6 The trend of China’s FCS in the past 40 years. Solid dots
denote the national FCSs, which are estimated using measured WDs
ranging from 0.454 to 0476 (t∙m− 3) on average for the country; error
bars indicate the biases when WDs change +/− 5%. The solid curve
gives maximum values of FCS by setting up WDs to be 0.7 (t∙m− 3)
as all species are assumed as rosewood. Because this curve indicates
unrealistic values, it can be used to test whether an estimate is
proper. Details of the curves and dots correspond to values listed in
Table 2. Note, 1) both 20% and 80% in this example are calculated
by comparing the measurements with the 45° line; 2) The prediction
in 2050 is only for timber forests
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the ratios of Bs-to-Bw in different periods. For example,
both of these ratios and the volumes per hectare in-
creased from 1994 to 2013 (Table 2). This implies that
stem biomass is growing faster than AB biomass while
the entire national forest is trending towards maturity.
But the average ratio (59.2%) and carbon density average
(35.5 tC∙ha− 1) is still relatively low in the 8th period
(2009–2013). These low values agree with our investiga-
tion on the forest age composition. Presently, the most
forested lands are the young and middle-aged (approxi-
mately 65%) (SFA-CFN 2013), the remaining is near ma-
ture, mature, and over-mature forests.
Figure 6 summarized notes for understanding the na-

tional forest development and the influence of forestry
policy in the country during the 40 years. The results in-
dicate that China’s forests have continually functioned as
a carbon sink in the past 40 years. The national FCS in-
creased approximately 2.4% per year on average during
the period, in which it exhibited a 1.7% increase per year
in the first 30 years and accelerated to 3.1% per year in
the last 10 years. We projected the FCS to be 9.1 PgC by
the 2050s for the primarily timber forests according to
the target of 23 billion m3 scheduled by China’s forest
planners in 2013 (SFA-CFN 2016). The biomass carbon
of potential plantation forests was estimated as 1.5 PgC
using the C sequestration rate (0.94 MgC∙ha− 1∙yr− 1) sug-
gested by Lu et al. (2018), which has reflected their
growth during the term. Adopting an estimate of the ef-
fect of CO2 fertilization and climate change as 3.0 PgC
in the 2040s (Yao et al. 2018), China’s FCS may be 12.6
PgC for 2050 (Table 2). Notice that this value is a lower
limit that might be surpassed depending on different
strategies of forest plantation. We do not predict either
an upper limit or total volume for the future.

Temporal and spatial patterns of forest biomass carbon
We selected 10 year period from 2003 to 2013 for depicting
the change of spatial patterns. At the start of this period,
the Returning Farmland to Forest program began, which
has profoundly influenced China’s forest development. The
provincial forest C stock, wood density, and the ratio of
stem biomass to AB biomass are illustrated in Fig. 7 for im-
aging the changes of China’s forests between the early
2000s (1999–2003) and the early 2010s (2009–2013). The
forest C in all provinces has functioned as C sinks during
the period (Fig. 7a and b). The largest C sink was in Hei-
longjiang (102.1 TgC, 10.2% of total forest C sink in China),
followed by Inner Mongolia (98.8 TgC, 9.8%), and Yunnan
(80.0 TgC, 8.0%). The average wood densities decreased in
most areas (18 provinces) (Fig. 7c and d), which made the
wood density national average decrease slightly during the
decade (Fig. 5b). The ratio of stem biomass to AB biomass
increased widely in 25 provinces. The ratio in national aver-
age was also increased from 58.9% to 59.2% in the period.



Fig. 7 The spatial distributions of China’s forest C and related estimates of forest C indicators by zoning at the provincial level in the period of
2003–2013. a and b Above and below-ground FCS and its change. c and d The forest C density for the forested lands. e and f The wood density.
g and h the ratio (Bs/Bw) of stem biomass to ASB. The numbers in the map b represent each province (1, Anhui; 2, Beijing; 3, Chongqing; 4,
Fujian; 5, Gansu; 6, Guangdong; 7, Guangxi; 8, Guizhou; 9, Hainan; 10, Hebei; 11, Heilongjiang; 12, Henan; 13, Hubei; 14, Hunan; 15, Jiangsu; 16,
Jiangxi; 17, Jilin; 18, Liaoning; 19, Neimenggu; 20, Ningxia; 21, Qinghai; 22, Shaanxi; 23, Shandong; 24, Shanghai; 25, Shanxi; 26, Sichuan; 27, Tianjin;
28, Xinjiang; 29, Xizang; 30, Yunnan; 31, Zhejiang)
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Discussions
Effects of two relationships on national FCS estimation
Confirming our hypothesis, generally we found that each
of the species, whether conifer or deciduous, has the ob-
served data appear to be in good agreement with the
allometric equations, whereas each of the species has
relatively low correlation between stem biomass and vol-
ume. The difference of R2 on average is 0.09 lower for
the equations of V-to-Bs than Bs-to-Bw (Fig. 4). The
slopes (p) for V-to-Bs can be regarded as measured WDs
for each species. When the slope (p) changes, it results
in a larger difference on final carbon estimate than the
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allometric equation to AB biomass does. For example,
on average ± 5% modification of slope (p) resulted in ap-
proximate percentage change (4.43% and − 4.46%, Table
2) of AB biomass estimates. The possibility of significant
total effects of WD on forest biomass estimation is also
supported by the findings of previous analyses (Baker
2004; Chave et al. 2004; Nogueira et al. 2005; Swenson
and Enquist 2007; Henry et al. 2010). In their papers, the
variance of WD and its effects were deeply discussed,
and are further discussed in this study (see next section).
Although these previous analyses mainly focused on AG
biomass or plot-level measurements, they indicated four
critical issues, i.e., WDs may vary between trees (Stegen
et al. 2009), between different parts in a tree (Hytonen
et al. 2018), on soil fertility (ter Steege et al. 2006), and
in time or under climate change (Slik et al. 2010;
Bouriaud et al. 2015). It means that observed WD
would be discrepant depending on measurement de-
sign. This variance is consistent with our analysis of
field measurements for the relationship of V-to-Bs.
In addition to the effect of WD, the relationship be-

tween stem and AB biomass also influences the final
FCS estimate. Nonetheless, it is limited by robustness of
the relationship. Our results illustrate that stem biomass
can explain an average of 94.3% of AB biomass via allo-
metric equations (Fig. 3a). This partly confirms that WD
has major effects on FCS estimation. A high correlation
of the two variables (Bs and Bw) implies that the robust
relationship individual organ and whole-tree organism
reflects, in tree physiology, how the different net primary
production (NPP) was allocated at different locations
(Falster et al. 2011; Hytonen et al. 2018). This finding is
also concordant with the results of the recent study (Luo
et al. 2013) which compared biomass measurements of
tree components for 17 species at 1607 plots across
China, and indicated that the correlations are higher be-
tween Bs and Bw (R2 > 0.927) than other correlations
(e.g., root-mass and Bw, R

2 = 0.883, SEE = 0.115; foliage-
mass and Bw, R

2 = 0.203, SEE = 0.275). These imply that
the disparity of allometric relationship between stem-
and AB biomass is not large for the same species. This
low dispersion is consistent with a pattern analysis in
forest biomass partition (Zhang et al. 2015). At the
present stage, we suggest that the allometric relation-
ships are utilizable at large scales.

Assessment of wood densities at the national scale
Unlike the relationship between stem and AB biomass,
the collected data of WD are usually over wide ranges
with a relatively high dispersion. Previous studies found
that WD varies not only in a region (Crowther et al.
2015) but also in a stand at tree level. For instance, the
lighter species can change in life cycle (Visser et al.
2016) due to their initial fast growth with low-density
and later high-density wood for structural support (Rueda
and Williamson 1992). In addition, different periods in life
cycle determine tree size that is related with different
densities, because smaller young trees have higher ratio of
sapwood to heartwood than larger trees (Adu-Bredu and
Hagihara 1996). Amongst different species, there is great
variation in WD (Chave et al. 2003; Baker 2004; Chave
et al. 2009). Fast growing species generally have low dens-
ities (Kojima et al. 2009; Pretzsch et al. 2018) in their ju-
venile wood, especially for the first one or two decades.
Denslow (1980) also reported that WD is lower for pion-
eer trees in succession. However, in our study we found
that these differences did not remarkably influence na-
tional estimates of WD, which locate between the values
of dominant and non-dominant species (Fig. 5). This may
be attributed to following processes.
The first is regression analysis. Its results were not

largely impacted by a few possible outliers in field mea-
surements. Most of all, some outliers of juvenile stand
illustrated that their WDs exceed 1.0 (t∙m− 3) (Fig. 4b),
but their impact was weakened on calculating average
WDs (slope of regression lines) because of their low bio-
masses. The regression indicates that standard error of
the parameter (slope p) is 5% approximately on average.
The robustness of the ranges could be explained by the
measurements used in the study. The stem biomass and
volume were measured across the country and over 30
years, which contain locational, regional, and climate im-
pacts (Luo et al. 2013). It is to say, WD correlates with
environmental factors and presents a variety of endemic
feature (Swenson and Enquist 2007). Based on such a
large area and long time period, WDs are expected to
contain influences of different regions and climates, and
to provide an integrated assessment of average value
with less systematic bias at the large scale.
Second, the weighted-average treatment counteracted

the single effect of each species on the national level. In
practice, these effects cannot be easily assessed as lack-
ing data may result in WD changing in different ways
(Chave et al. 2006) or only representing a part of trees
or species (Lewis et al. 2009). We noticed that a prior
study reported China’s WDs being 0.56 (Chave et al.
2009), which are estimated based on a global WD data-
set (Zanne et al. 2009) and higher than our estimates of
19%. The possible reason could be that those measure-
ments compiled in the database are normally associated
with different study objectives for specified species or
commercial importance, for which the wood is normally
denser (Henry et al. 2010). In terms of data, Flores and
Coomes (2011) suggested building more data into the
dataset for improvement. Considering the large scale of
the study area, our estimation adopts the national mean
value calculated by weighting volume amounts of each
species, instead of mixing and averaging the sample
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values reported by literatures. We found that the volume
share of dominant species is decisive to estimate average
WD at the national scale, therefore a comparison of
average WDs between dominant, non-dominant, and all
species, is advantageous to demonstrate the effects of
species in combination. Depending on our analysis, the
averaged WD is very different from what their WDs
were observed in isolation. For example, although some
non-dominant species have high (e.g., 0.56 for Eucalyp-
tus, weight: 1.2%) or low (e.g., 0.35 for Cunninghamia
lanceolata, weight: 4.9%) WDs, they cannot represent
national WD. Accordingly, the volume-weighted WD
and its range should be close to realistic conditions.
Furthermore, we compared WD with another dataset

(RIWI 1982) to avoid systematic errors in WDs at the
national scale. This dataset provides WBD and contains
426 measurements for 283 tree species in 28 provinces
across the country. The comparison between two differ-
ent estimates indicates that ρ values are very close on
the national scale. For example, during 2009–2013, ρ is
0.461 (±5%) using field biomass measurements, and
0.460 (±8%) using WBD dataset. It confirms statistical
consistency without systematic errors. In short, our ana-
lysis suggests that a regional or national WD can be esti-
mated by resulting regression line for the relationship
between measured volume and stem biomass, and calcu-
lated by weighting the volume amount of each species,
to ensure that the national WD becomes a mathematical
expectation lest a bias occurs in the FCS estimates.

National FCS estimate based on the two-step process
According to our hypothesis, the two-step process sepa-
rates the uncertainty as two parts that are caused by as-
sessments of WD and allometric relationship. The first
step aims at stem biomass. To convert stem biomass from
the volume is straightforward (Neumann and Jandl 2005).
It is the way to exclude possible systematic errors using
WD. Many studies suggested adding a factor of WD in
the biomass equation (Henry et al. 2010; Domke et al.
2012; Chave et al. 2004, 2014; Weiskittel et al. 2015) be-
cause biomass estimation is a complex process (Temesgen
et al. 2015), in which some aspects may not necessarily be
considered or processed well. We found that it is effective
to infer a range for AB biomass using WD. For example,
the ±5% bias of WD keeps estimates of AB biomass to
range from 5.6 to 6.1 (PgC) for 2009–2013 (Table 2). This
implies that the maximum AB biomass can be predicted
using an upper limit of WD. We suggest using 0.7 (t∙m− 3)
as an upper limit of WD, which is common for rose-wood
and impossible for temperate forests located in much of
China. Thus, our estimation acquired limitations of AB
biomass that should not be exceeded for each period
(Table 2). We suggest predicting the potential error within
an expected range around a central value, named averaged
WD for all species. In the second step, the AB biomass is
calculated by allometric equations, which are reliable with
high coefficients of determination. The approach of two-
step is general and can be applied to estimate FCS from
local to national scales. In the case of wood density esti-
mation, our analysis suggests a possibility to estimate FCS
based on a reference of reasonable ranges. Figure 6 and
Table 2 summarized the dynamics of China’s FCS in the
past 40 years and future year up to 2050, and compared
FCS estimates with earlier estimates. Although most of
which are within the ranges (Table 2), to propose an
upper limit of FCS is feasible and meaningful at the na-
tional level. In short, the two-step process demonstrates
that the estimate of growing stock volume and stem bio-
mass is a cornerstone in the estimation using volume-
derived methodology.

Temporal and spatial changes
Geographically, forested area, volume, and FCSs are mainly
accumulated in the northeast and southwest in China, be-
cause of the moderate precipitation and temperature. These
two regions contain the largest growing volumes in six
provinces (Nos. 11, 17, 19, 26, 29, and 30 in Fig. 7a). The
province No. 29 has the greatest amount of FCS amongst
these provinces. But the spatial pattern of forest C sink is
different. Two other provinces (Nos. 11 and 19) in north-
east China have the largest carbon sequestration (Fig. 7b).
Comparing the C changes of these two regions, the forests
in the northeast area functioned as the larger carbon sink at
the end of the first decade in the twenty-first century. Fur-
thermore, we found that the spatial pattern did not change
significantly since 2000 after comparing with a comprehen-
sive analysis (Fang et al. 2001). It implies that the policies of
forest conservation and protecting forests have entirely in-
fluenced most forested lands in the country.
The spatial pattern of forest C density is similar to FCS

(Fig. 7c) during the period. But the pattern of the dynamic
density change became notably different (Fig. 7d). The
higher C density was distributed in the southeast area, in
which increased C densities have offset the decreased C
densities in a few provinces. At the national level, forest C
density had increased from 2000 to 2013. Our results of
both FCS and forest C density are consistent with previous
studies (Xu et al. 2007; Li et al. 2011; Guo et al. 2013).
The distributions of wood density (Fig. 7e) influences

stem biomass by multiplying growing stock volume (see
Fig. 1), and explains approximately 60% China’s FCS at
the end of the 8th period of NFI (59.2% for the year of
2013, Table 2). The remaining 40% FCS can be ex-
plained by the ratio (Bs/Bw) of stem biomass to AB bio-
mass (Fig. 7g, Table 2). Graphical analysis illustrates that
the ratios range from 53% to 64% for all forested lands
across the country. We have conformed that this ratio is
stable (Laiho and Laine 1997) and similar to different
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species using the field measurements (Fig. 2). This indi-
cates that stem biomass is a dominating part in whole
forest biomass, and the estimate of stem biomass should
be the foundation in national FSC estimation.
Overall, through reviewing the forestry development in

China, our results are consistent with the policy influence
on FCS in the country. The estimated dynamics of national
FCS has portrayed an impressive trend (Fig. 6) since the
1970s. The continuous FCS increase has been facilitated by
several large projects and programs (Lu et al. 2018). The
initial policy concentrated on forest conservation and pro-
tecting forests against desertification and embankment
damage (Zhang et al. 2000; Fang et al. 2001, 2018). After
ten years of ecological restoration, the natural forests have
started to increase. By 1999, the most influential program,
Returning Farmland to Forest (Zhang et al. 2000; McNutt
2014), was implemented by compensating rural residents
for the conversion of some farmland and barren mountain-
sides to forestland with financial support (Cao et al. 2011;
Trac et al. 2013; McNutt 2014). This program has remark-
ably expanded forestland. Our results indicate that the na-
tional FCS exhibited a 1.7% increase per year in the first
30 years and accelerated to 3.1% per year in the last 10
years. In the long term, the policy-driven programs have
contributed to a dramatic increase in forest cover from 8%
in the 1960s to over 20% at the beginning of the 2010s.
In the prediction of future FCS, the temporal and

spatial patterns could help to reason the possible dy-
namic changes. We found that wood densities have de-
clined in most provinces (Fig. 7f). This means that both
the area and volume have increased for the species that
have low wood density. Our calculation has also proved
this trend at the national level (Fig. 5), despite a very low
decrease (− 0.4%, Table 2). This was probably because
there were mainly plantation forests of fast growing spe-
cies during the period (Cao et al. 2011; Xu 2011). Those
species have relative low wood density (RIWI 1982).
Choosing species for forest plantation will affect wood
density pattern in the future. On the other hand, the
spatiotemporal pattern of the ratio (Bs/Bw) shows an in-
creasing trend from 2003 to 2013 (Fig. 7g and h). This
was because of the growing years and stand ages (de-
Miguel et al. 2014). We suggested that the ratio (Bs/Bw)
will tend to increase and stabilize up to around 0.7 with
the body weight increase of trees based on our analysis
of field measurements (Fig. 2; Luo et al. 2013). In short,
we tentatively propose that the wood density will not
change largely, and the ratio (Bs/Bw) will not greater
than 70% (Fig. 2) at the national scale in the 2040s.
Using these rough estimates, we suggest that 9.1 PgC is
a lower limit of China’s FCS in the 2040s according to
the volume target of 23 billion m3 predicted by China’s
forest planners (SFA-CFN 2016). Above this level of the
FSC, there may be two extra increments, which are
caused by climate change and forest plantation in the fu-
ture. These issues will be discussed in the following
section.

Trend in the future
The first extra increment affected by CO2 fertilization
and climate change has been analyzed recently by Yao
et al. (2018). It might further increase the total forest
biomass C sequestration to 2.2 or 3.7 PgC (on average
3.0 PgC) according to the RCP scenarios in the 2040s.
Another extra increment should come from forest plan-
tation. Although it is difficult to quantify the contribu-
tion of low canopy cover to the increased area, we can
assess the growing trends (Fang et al. 2018). Previous
evaluations (Zhang et al. 2000; Lu et al. 2018) pointed
out that extensive afforestation has been carried out for
millions of hectares of open forested land, barren hill-
sides, and converted marginal farmland in the 1900s and
2000s. In these afforested lands, most open forests in the
1990s would have become closed forests in the 2010s,
finally accumulating volume (SFA-CFN 2013). Our re-
sults support the increase of forest cover percentage.
The cover percentage is consistent with volume increase.
The total amounts of both area and volume have been
rising continually with relative high rates. However, the
total area of suitable lands for forest had been decreasing
through expansive and continuous afforestation, because
of limited total amount of lands. These lands have been
reduced by approximately 10% from the 7th to 8th NFI
(2008–2013) (SFA-CFN 2013). Assuming all suitable
lands will be forested before 2050, their total area (39 ×
106 ha; SFA-CFN 2013) could produce around 1.5 PgC
FCS from 2013 to 2050. This may be the second extra
increment of China’s FSC at the end of the 2040s. Thus,
we reckon that the comprehensive lower limit of China’s
FSC might reach up to 12.6 PgC (Table 2) for the long
term prediction, i.e., increase by a further 38% from the
estimate (9.1 PgC) of current forests. In addition, over
time the effect of low canopy cover on the national aver-
age level will be lighter in the future than present time.
Hopefully, the FCS will rise steadily in the next few
decades.

Uncertainty analyses
Our analysis demonstrates how the use of average WDs
ensures the estimates of national FCS within a reason-
able range, however, uncertainties still remain due to in-
herent limitations in measurements and the lack of large
datasets. Some of species have small amounts of samples
(e.g., species No. 9 and No. 13) (Fig. 4b), which may not
well represent statistical population of those species.
Thus, the regression could be questionable for a few spe-
cies. Nevertheless, our comparison between WD and
WBD suggests that this may not cause large biases in
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this study. The average WBDs are 0.36 (species No. 9)
and 0.395 (species No. 13). These values are only 0.01
higher and 0.005 lower than the WD measurements
(0.35, species No. 9; 0.40, species No. 13). Additionally,
these two species had very low volume weight, which
was 3.1% of total volume during 2009–2013. We suggest
that the over- or under-estimation of these two WDs
may not be an issue in this study.
Another source of uncertainty may frequently come

from field measurements. We noticed that a few sample
points over the 45 degree line in Fig. 4b. It means that
several ratios of stem biomass to volume (i.e., WD) be-
come higher than 1.0 t∙m− 3. Errors notwithstanding, our
results show that these outliers do not have a great im-
pact on the regression because they are younger stands
with low biomass than most measurements. Moreover,
the slopes express WDs as the values of mathematical
expectation in a normal distribution, in other words,
over- and under-estimated WDs actually canceled each
other out. As for those outliers that usually represent
younger stands with low biomass than most measure-
ments, we suppose that the measurement issue may be
found in the measurements of volume, rather than in
biomass. This is because the stem biomass explained
94.3% of AB biomass on average through allometric
equations. It implies that the relationships between bio-
masses of different tree organs are practical. Yet, it is dif-
ficult to confirm the results of volume measurements,
since the data used in this study comes from a public
dataset. The dataset provides biomass and volume per
unit area that have been converted already by the ob-
servers from the measurements in field plots. Overall the
lack of a sufficient number of high-quality measure-
ments still reduces our ability to remove the uncertainty
in national forest carbon estimation. From the present
study, we suggest that: (1) More measurement experi-
ments and studies are needed from principal species in
different regions for better large scale estimations, and
(2) well-designed measurement of stem volume and con-
version from plots to unit area are needed for better un-
derstanding WD ranges to narrow the uncertainty in
national forest carbon estimation.
At last, after considering the effects of forest planta-

tion, CO2 fertilization, and climate change, the FCS is
projected to be further increased. However, there is still
uncertainty on predicting the increment of total volume
at the national level during the future long term. The
future effects of the Returning Farmland to Forest pro-
gram on FCS may be largely impacted by development
of the national economy. Furthermore, forest growth
rates are affected in very complicated ways by a number
of factors, such as, planted species, site index, soil mois-
ture, temperature and phenology, CO2 concentration
and acclimation, stand mortality, and forest management
practices. The target volume of national forest develop-
ment (23 billion m3) might be a conservative figure
under climate change. Predicting the future volume re-
mains a challenge.

Conclusions
By surveying, it is difficult to accurately estimate AB bio-
mass and FCS at the national scale because the true
value is unknown and impossible to measure directly.
However, whether the estimates are appropriate or not
can be deduced and verified with the suggested compu-
tation, which splits the processing of forest biomass esti-
mation into two parts for stem and whole tree. This
presented method will help us understand the relation-
ship between these two parts, and conveniently confirm
the results according to a general knowledge of tree and
wood. Our study performs a robust estimation of FCS
using this two-step processing, and recommends the
ranges which should be used for China’s FCSs. We sug-
gest applying this approach to narrow uncertainty in the
estimation that converts forest volume to biomass. The
method presented helps to verify national FCS and to
avoid significant biases in FCS estimates and related
studies at the national scale. As a case study, the estima-
tion results confirmed that China’s forest ecosystems
have functioned as a C sink in the past 40 years. The na-
tional FCS increased approximately 2.4% per year on
average during the period, in which it exhibited a 1.7%
increase per year in the first 30 years and accelerated to
3.1% per year in the last 10 years. This suggests that na-
tional forest restoration policies and projects could be
an effective way to increase forest C sequestration.
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