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Abstract

Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.
This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning (TLS) data,
evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of
single-scan TLS to estimate stem curves.

Methods: We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed
three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning
distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from
single-scan TLS data.

Results: The results showed that the correlations between the occlusion rate and the stem curve estimation
accuracies were strong (r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors
(r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of
stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves.

Conclusions: Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval
from the single-scan TLS data in a typical-size (32 m × 32m) forest plot. However, the single-scan mode has the
capacity to accurately estimate the stem curve in a small forest plot (< 10 m × 10m) or a plot with a lower
occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the
practice of retrieving forest parameters using single-scan TLS data.
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Background
The tree stem curve is defined as the relative rate of
change in stem diameter with increasing tree height. It in-
dicates the diameter at any height along the stem (Liang
et al. 2013). Measurement of the stem curve is an import-
ant task in forestry, such as determining the inflexion
points or cut points along the stem, calculating the total
and merchantable stem volume, evaluating the quality of

stems and establishing the stem curve model (West 2009;
Burkhart and Tomé 2012). In addition, the stem curve is
an essential parameter used for accurate estimation of the
above ground biomass of trees (Kankare et al. 2013; Yu
et al. 2013; Stovall et al. 2017; Drew and Downes 2018).
The stem curve of felled trees can be measured precisely
using water displacement method or logging machines
(Lundgren 2000; Özçelik et al. 2008). However, the stem
curve of standing trees is hard to measure using trad-
itional tools (Clark et al. 2000; West 2009).
Terrestrial laser scanning (TLS) is a promising tech-

nology for accurately retrieving stem curves because of
its capability to document the 3D information of individ-
ual trees at the millimeter level (Dassot et al. 2011; Liang
et al. 2019). Some studies have revealed high accuracies
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of the stem curve estimation using multi-scan TLS data
(Liang et al. 2013), in which the reported root mean
square error (RMSE) of the estimated stem curves were
about 1.2 cm. Pueschel et al. (2013) found that the stem
attributes extracted from single-scan datasets had
greater variability compared with those estimates from
multi-scan datasets. However, deploying reflectors for
the registration of multi-scan point clouds in natural for-
est with poor inter-visibility is labor-intensive and time-
consuming compared to the single-scan mode that point
cloud registration is not required (Zhang et al. 2016a).
In forest inventory tasks, time efficiency is a crucial issue
especially when hundreds, even thousands of plots need
to be measured routinely. Therefore, the use of the
single-scan mode in forest inventory has received in-
creasing attention (Liang et al. 2008, 2012; Lovell et al.
2011; Astrup et al. 2014; Kelbe et al. 2015; Olofsson and
Olsson 2017). However, the single-scan mode has ser-
ious occlusion problems, which is an inherent limitation
of the TLS applying in forest area (Watt and Donoghue
2005). The occlusion effect is prompted by the objects
sheltering other objects of interest behind it in the direc-
tion of laser propagation (Abegg et al. 2017). The defect-
ive TLS data caused by the occlusion effect will lead to
the inaccurate and unstable estimation of tree attributes
(Van der Zande et al. 2006). Some studies have investi-
gated how to reduce the occlusion effect by optimizing
the arrangement of TLS positions (Trochta et al. 2013;
Abegg et al. 2017; Wilkes et al. 2017). However, few
studies have examined the occlusion effects in single-
scan TLS data.
To systematically evaluate the influence of the stand

condition, scan modes and point cloud processing ap-
proach on the extraction of tree attributes, Liang et al.
(2018) launched an international benchmarking project
on TLS methods for forestry applications. The main out-
comes of the project indicated that the accuracy of esti-
mated tree-level attributes from TLS data was mainly
dependent on two factors: 1) the occlusion level of forest
site; 2) the data processing method of tree attribute ex-
traction. Here, the occlusion level is the possibility of
trees being sheltered from the laser beam. The project’s
results showed that the accuracies of the stem curve re-
trieving from single-scan datasets were varied when
using different data processing methods but greater vari-
ances were seen in different stand conditions (the stem
density and the abundance of understory vegetation).
This results indicated that the occlusion effect was more
decisive than the performance of TLS data processing
approaches for the estimation of tree attributes. In previ-
ous studies, the stand conditions were qualitatively cate-
gorized based on the stem density and the abundance of
understory vegetation, which was not a quantitative and
direct way. It is necessary to describe the stand

conditions and occlusion effect quantitatively and
analyze the impact of occlusions on the estimated stem
curves.
This study aims to directly quantify the occlusions

within the single-scan TLS data, evaluate its correlation
with the accuracy of retrieved stem curves, and subse-
quently, to assess the capacity of single-scan TLS to esti-
mate stem curves.

Materials and methods
TLS data
The TLS data was provided by the Finish Geospatial
Research Institute (FGI) for the international bench-
marking of TLS methods for forestry application (Liang
et al. 2018). The study area was located in southern
Finland, and 24 plots were deployed with a fixed size of
32-by-32 m (Fig. 1). These plots varied in species, growth
stages, and management activities and included both
homogeneous and less-managed forests. The tree species
included Scots pine (Pinus sylvestris), Norway spruce
(Picea abies), silver (Betula pendula), and downy birches
(Betula pubescens). The stand condition of these plots
was described as “easy”, “medium” and “difficult”. The
maximum stem density of the “easy”, “medium” and “dif-
ficult” plots were 600, 1000 and 2000 stem∙ha− 1, respect-
ively. In addition, the “easy” plot represents the plots
with few understory vegetation; the “medium” plot rep-
resents the plots with sparse understory vegetation and
the “difficult” plot represents the plots with dense under-
story vegetation.
The TLS data was collected in April/May 2014

using a Leica HDS6100 (Leica Geosystems AG, Heer-
brugg, Switzerland) terrestrial laser scanner in multi-
scan mode. The multi-scan TLS datasets consist of
five scans located at the center and in four quadrantal
directions of each plot, and the single-scan datasets
were the center scan of multi-scan datasets. For more
details on the forest plots and data acquisition, please
refer to Liang et al. (2018).

Retrieving of stem curve from multi- and single-scan TLS
datasets
In this study, trees with a DBH larger than 5 cm were
regarded as the targets of stem curve estimation. The
stem curves of the target trees were measured both from
single-scan datasets and multi-scan datasets. Datasets in
both scan modes were processed with the same steps: 1)
ground point filtering based on the cloth simulation fil-
tering (CSF) method (Zhang et al. 2016b); 2) stem point
extraction using an automatic method proposed by
Zhang et al. (2019); additional manual editing was im-
plemented to extract stem points accurately; 3) retriev-
ing stem curves based on the extracted stem point using
circle detection methods (Trochta et al. 2017). An
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overview of the workflow for retrieving the stem curve is
shown in Fig. 2.

Ground filtering
To filter the ground points out from the TLS data, we
adopted the CSF method implemented in CloudCompare
(2.10. alpha, 2018) because it is fast, easy-to-use, and well
performed. The CSF is a ground filtering algorithm based
on the principle of cloth simulation (Zhang et al. 2016b). By
iteratively dropping a simulated cloth on to an inverted (up-
side-down) LiDAR point cloud, the simulated cloth sticks to
the ground points and bridges over the object points due to
a certain degree of hardness of the simulated cloth. There
are three main parameters need to be set for implementing
the CSF algorithm, i.e., the cloth resolution, classification
threshold and max iterations, which were set to 0.1m, 0.1m
and 50, respectively, in this study.

Stem extraction
To investigate the impact of occlusion effects on the stem
curve estimation, the stem points need to be entirely and

correctly extracted. Therefore, an automated algorithm
(Zhang et al. 2019) plus manually editing was applied. The
automated stem extraction algorithm is implemented
using a program that developed on an open-source soft-
ware CloudCompare (Girardeau-Montaut 2018). The au-
tomated algorithm identified the stem points by applying
a segment-based classification strategy. First, the point
cloud was thinned based on the different local curvature
between stem points and points of other canopy elements.
A part of branches and foliage points were removed by a
threshold of local curvature. The local curvature was cal-
culated by the formula of surface variation (Pauly et al.
2002) and the threshold was set to 0.1 in this study. Then,
the remaining point cloud was segmented by connected
component (CC) labeling which is based on the proximity
of points. In CC labeling, the point cloud was voxelized by
3D grids. The points in the adjacent grids that contained
at least one point will be merged into the same segment.
The vacant grids then became the gaps between the seg-
ments. After the CC labeling, the stem points were identi-
fied by the geometric feature of the segments, such as the

Fig. 1 The location of the study area and the sample plots in Finland (Liang et al. 2018)
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size and height-to-width ratio. The automated algorithm
is accurate, fast and simple, however, some errors still
have occurred. Therefore, the stem points were further
manually refined through visual inspection.

Stem curve retrieving
We segmented the plot-level stem point cloud into indi-
vidual stems and measured stem diameters at different
heights above the ground, starting at 0.65 m and then by
1.3 m, 2 m and then for every next meter, until the max-
imum measurable height was reached (Liang et al. 2013;
Trochta et al. 2017). We measured the diameters from
0.65 m because it is a general height of tree stump that
left on the ground after tree felling by large sawing ma-
chines. It is also the start height for calculating the mer-
chantable stem volume (Corral-Rivas et al. 2007;
Kalantari et al. 2012). For measuring the stem diameters,
circles were fitted in a 10-cm horizontal slice that was
projected on the horizontal plane at each corresponding
height, and the diameters were measured through fitted
circles. We used the Randomized Hough Transform
(RHT) method (Xu et al. 1990; Xu and Oja 1993) to de-
tect the circles on the stem in this study. The RHT
method randomly selects three points from a point slice
and calculates the circle parameter. This process is per-
formed iteratively with a fixed number of iterations (200
in this study to balance the accuracy and speed). An

accumulator is used to record these circle parameters. If
the circle is similar to a circle in the accumulator, we re-
place the existing circle with the average of both circles
and add 1 to its score. Otherwise, we insert the circle
into an empty position in the accumulator and assign a
score of 1. Finally, the circle with the highest score is
selected.

Differences between the stem curve estimates from
single- and multi-scan data
To analyze the occlusion effect, stem curves from single-
scan TLS data are compared to that from the multi-scan
data. We assumed the estimates from the multi-scan
data are complete and accurate enough to be used as a
reference in this study because the stems were manually
extracted. We used three types of indexes to assess the
estimation accuracy in this study: 1) undetected rate, 2)
completeness and 3) bias and RMSE. The undetected
rate is the percentage of the reference stems that are not
being detected in the single-scan TLS data. The com-
pleteness is the ratio of the number of measured diame-
ters to the number of target height in percentage. The
target height is dependent on the length of the stems ex-
tracted from the multi-scan TLS data. For the measured
diameters on detected stems, the accuracy was assessed
with regards to the bias, the relative bias and the RMSE,
which were defined as

Fig. 2 An overview of the workflow for retrieving the stem curve
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where yi is the ith measurement on a stem, ryi is the ith
reference diameter and n is the number of measured di-
ameters. Bias% is the relative bias, ry is the mean of the
reference diameters.
The undetected rate is a plot-level index. The com-

pleteness, bias and RMSE are tree-level indexes and their
mean values of all trees in a plot are plot-level indexes.

Occlusion evaluation
Calculating the occlusion rate
The data deficient in single-scan TLS data is caused by
the occlusions from different sources, e.g., tree stems,
branches and foliage, and related to the stem density
and scanning distance. Here, we proposed an index, oc-
clusion rate, to quantify the overall occlusion degree of a
single-scan TLS dataset. To calculate the occlusion rate,
we projected the point cloud on the horizontal plane
and rasterized the point cloud with 2D grids. Then the
grids were binarized according to whether at least one
point was included inside. The empty grids within the
plot boundary were colored white, and the nonempty
grids were colored black, as shown in Fig. 3. The per-
centage of the empty pixels within the plot was regarded
as the occlusion rate. The grid size was set to 0.03 m in
this study. The occlusion rate is not sensitive to the grid
size because it is a percentage value of the number of

grids. And according to our actual test, the change of
grid size has less impact on the occlusion rate.

Test plots selecting based on the occlusion rate
We calculated the occlusion rates of all 24 single-scan
plots. However, only a part of these plots was used in
our tests because of the heavy workload involved in
manual extraction of tree stems, even though the auto-
matic method had been applied in advance. Test plots
were selected based on the occlusion rates. A significant
difference in occlusion rates among test plots was ex-
pected to make the trends in data emerged for exploring
the influence of occlusion rates on the accuracy of stem
curves. We reordered the plot IDs according to the oc-
clusion rates. The plot with the lowest occlusion rate
was first selected, and the following plots were selected
when the cumulative change of the occlusion rate is lar-
ger than 2%. Finally, 11 plots were chosen in this re-
search. As shown in Fig. 4, the occlusion rates of the
selected plots varied from 24.7% to 63.6%, and the differ-
ence among them were significant. A visualization of the
point cloud with different level of occlusion rates is
shown in Fig. 5. The attributes of the selected plots are
shown in Table 1.

Stem density and its distribution
The occlusion level in a dataset largely depends on the
stem density and its distribution in the plot. In theory,
the closer the stems with large DBH to the scan center,
the higher the occlusion rate. Therefore, we used the
percentage of basal area within N meters from the scan-
ning center (PBA) to describe the stem density distribu-
tion near the scanning center. The N was set according
to the plot size. In this study, the N was set as 5 m for
the 32-by-32 m plots. Since we have extracted the stems

Fig. 3 Occlusion rate and its calculation. a The point cloud was converted to a 2D image from the top-view, the color from blue to red was filled
according to the maximum height in the grids. b Image binarization. The white pixels within the plot denote empty grids. The percentage of the
white pixels within the plot is the occlusion rate, which is 24.7% in this plot
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from the multi-scan datasets, the position and DBH of
each stem were already available. Therefore, the total
basal area in the plot and the basal area within 5 m from
the scanning center can be directly calculated. The basal
area and PBA were defined as

BAi ¼ π � DBHi=2ð Þ2
10000

ð4Þ

TBA ¼
Xn

i¼1

BAi ð5Þ

TBA Nð Þ ¼
Xm

i¼1

BAi ð6Þ

PBA ¼ TBA Nð Þ
TBA

ð7Þ

where i is the ith stem in the plot, n is the number of
total stems in the plot, m is the number of stems within
N meters, TBA is the total BA of the plot and TBA(N) is
the total BA within N meters.

Identification of the occlusion sources
The occlusion sources can be mainly categorized into
two types in forests, i.e., the stems (S1) and non-stem
components (S2). The S2 refers to the branches and foli-
age, the understory vegetation and artificial objects.
Since we had a stem map with the locations and diame-
ters of single trees in the plots (Fig. 6), the stems that

Fig. 4 Occlusion rates of all plots. The 11 red dots denote the plots selected for using in our experiments. The cumulative change between each
two selected plots is large than 2%

Fig. 5 Visualization of the point cloud with different level of occlusion rates (i.e., low, medium and high occlusion rate)
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are totally or partly occluded by other stems can be la-
beled through laser beam tracing. Here, the totally oc-
cluded stems in the stem map were undetected caused
by S1. However, there are other undetected stems not
showed in the stem map are considered to be caused by
S2. The diameters of the partly occluded stems caused
by S1 may be severely underestimated because laser
beams cannot penetrate the stems. Therefore, we used
the absolute bias to describe the influence of the partly
occlusions from S1. In contrast, the stems that seriously
occluded by S2 would have very low completeness

because of the dispersed distribution of branches and fo-
liage. Therefore, the stems with low completeness (< 5%)
are considered seriously occluded by non-stem
components.

Results
Accuracy of stem curve retrieving
Accuracies of the retrieved stem curves were assessed
using the three accuracy indices, which include the un-
detected rate, average completeness, and relative bias, as
shown in Table 2. In addition, the number of undetected
stems, mean bias and RMSE are also presented to show
the estimation accuracy from another perspective. The
undetected rates are at least 3.8%, and up to 39.0%. It
shows that nearly half the plots lost more than 10 stems,
all of which had a relatively high occlusion rate (Fig. 5).
Plot 16 is a sole exception; it has a high occlusion rate,
but only four stems were undetected. However, it has
the highest RMSE among all the test plots. The average
completeness range from 45.01% to 91.65%. For the
plots with large occlusion rates, their completeness of
stem curve also appeared to be relatively low (less than
60%). The same trend is also found in relative bias,
which ranges from 4.54% to 46.93%. The mean biases of
all the test plots are negative values, which indicate a
general underestimation of the stem curve in single-scan
datasets; and the underestimation ranged from 1 centi-
meter to over 8 cm.

Fig. 6 A part of a stem map and the occlusions caused by stems. One stem was totally occluded (T1), and three stems were partly occluded (P1,
P2, P3). Φ denotes the DBH of the stem. The two distances are labeled to show the scale of this map

Table 1 The basic information on the selected plots in this
study

Plot ID Occlusion rate (%) Stem density (stems∙ha− 1) Mean DBH(cm)

1 29.98 469 17.5

4 24.66 762 12.7

5 63.62 664 12.1

6 37.54 557 18.0

10 55.47 615 15.8

12 49.76 1201 8.3

16 43.56 527 22.9

18 33.02 518 24.3

19 35.46 293 22.8

20 58.75 977 10.1

22 27.7 566 14.5
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Correlation between the occlusion rate and the
estimation accuracy
To further quantify the relations between occlusion rate
and the accuracy indices, the Pearson correlation coeffi-
cient and the p-value were used. The occlusion rate is
significantly correlated with the accuracy indices. The
correlation coefficient between the undetected rate and
the occlusion rate reached 0.83, and the p-value is 0.001
(Fig. 7). As expected, the completeness of the stem curve
is negatively correlated with the occlusion rate, and the
correlation coefficient is − 0.70, which is relatively lower
than that for the undetected rate. The relative bias has
the lowest correlation degree (r = 0.60, p = 0.048) with
the occlusion rate among the accuracy indices, however,
there is still an observed correlation between them.

Influence of the stem density and its distribution
A correlation matrix was generated to evaluate the cor-
relations between the occlusion factors and the accuracy
indices and the occlusion rate. As shown in Fig. 8, the

stem density and PBA, influenced the accuracy assess-
ment indexes to different degrees. The PBA is highly
related to the accuracy indices, especially for the un-
detected rate (r = 0.92) which is followed by the correl-
ation to the completeness (r = − 0.73) and relative bias
(r = 0.67). The correlation between the stem density and
the accuracy indices is weaker than the PBA correlation
with the accuracy indices; the correlation coefficients
range from 0.41 to 0.56. Furthermore, PBA is also the
most influential factor on the occlusion rate (r = 0.84),
compared to the stem density (r = 0.44). In addition,
strong correlations are also showed among accuracy in-
dices; the relative bias is highly correlated to the average
completeness (r = − 0.96). The correlations between the
undetected rate and the relative bias as well as the aver-
age completeness are 0.69 and − 0.74, respectively.

Influence of the scanning distance
We collected the scanning distance of the individual
trees (589 in total) in all test plots, and the undetected

Table 2 The retrieving accuracy of stem curve from single-scan TLS datasets

Plot ID Undetected rate (%) Average completeness (%) Relative bias (%) Number of undetected stem Mean bias (cm) RMSE (cm)

1 6.3 65.48 22.48 3 −3.938 4.198

4 7.7 73.74 19.76 6 −2.508 3.256

5 38.2 47.87 33.58 26 −4.077 3.192

6 26.3 47.09 46.93 15 −8.464 5.514

10 20.6 45.01 42.85 13 −6.780 4.298

12 16.3 51.81 38.71 20 −3.206 1.917

16 7.4 75.82 19.19 4 −4.388 5.980

18 3.8 78.45 17.75 2 −4.309 4.313

19 10.0 91.65 4.54 3 −1.034 4.061

20 39.0 55.45 37.21 39 −3.756 2.502

22 5.2 85.81 16.46 3 −2.394 2.489

Mean 16.4 65.29 27.22 13 −4.078 3.793

Fig. 7 Correlations between the occlusion rate and the three accuracy indices (i.e., undetected rate, mean completeness, and mean relative bias).
r denotes the Pearson correlation coefficient
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rate, mean relative bias and mean completeness were
measured in different distance sections. The distance
sections were set with a 5-m interval in this study.
Figure 9 shows the correlation between the scanning dis-
tance and accuracy. It shows that the undetected rate is
increased with an increased scanning distance, and the
correlation coefficient is 0.99. The undetected rate
within 10m is under 10%, and then rapidly increased to
25% within 10 to 15m. The completeness and relative

bias are also highly related to the scanning distance; the
correlation coefficient is − 0.85 and 0.85, respectively.
The results indicate that the scanning distance is a sig-
nificant factor in the stem curve retrieving.

Influence of the different occlusion sources
Based on the stem maps, the occlusion from S1 can be
directly recognized. We counted the number of un-
detected stems and partly occluded stems from S1. In

Fig. 8 The correlation matrix of all occlusion indicators and accuracy indices. The Occlu_Rate, Stem_Dens., Avg_Comp. and Undtec_Rate denote
the occlusion rate, stem density, average completeness and undetected rate, respectively

Fig. 9 The influence of scanning distance on the accuracy indexes. S1 to S5 denote the distance sections, (0–5), (5–10), (10–15), (15–20), (20–25)
m, respectively
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general, two-thirds of the undetected stems are caused
by S1, as shown in Table 3. Meanwhile, some stems are
partly occluded, which led to the defective point cloud
data of stems and unreal stem diameters. It shows that
partial occlusions seriously affected the accuracy of mea-
sured stem diameters. The underestimation of stem
diameters exceeded 10 cm in most plots, and the mean
value is approximately 13.6 cm.
Table 4 shows that approximately one-third of all un-

detected stems was caused by S2. In addition, the S2 are
the main factors for the seriously occluded stems which
have very low completeness (< 5%) of the stem curves.

Discussion
The capacity of retrieving stem curve from single-scan
TLS data
The capacity of a single-scan TLS data to retrieve
stem curves is mainly dependent on the level of data
deficient caused by occlusion. The results showed that
the occlusions significantly affect stem curve esti-
mates. On average, approximately 16.4% of stems
were undetected in each plot, the mean completeness
of the stem curve was 65.29%, and the underestima-
tion of the diameters was approximately 4 cm when
compared with the multi-scan datasets. Among the
test plots, only one plot obtained a mean bias fewer
than 2 cm and the relative bias was less than 10%.
The largest mean bias and relative bias reached −
8.464 cm and 46.93%, respectively. A plot with a lar-
ger occlusion rate is more likely has lower accuracy
on retrieving stem curves. The undetected rate was
similar to the conclusion of the international TLS
benchmarking project (Liang et al. 2018), in which
the stem-detection rate was improved by

approximately 20% when using the multi-scan ap-
proach. However, they reported no significant im-
provements in the parameter estimations. The
discrepancy indicates that, to some extent, a good
method of stem modeling can overcome data defi-
cient. It should be noted that the occlusion effect also
exists in the multi-scan datasets, which makes the
detection rate of stems and the completeness of the
retrieved stem curve not completely accurate. In
multi-scan datasets, according to the results from
international TLS benchmarking project, the best de-
tection rate of stems was approximately 90% in the
easy plots and approximately 66% in the difficult
plots. In addition, the best completeness rate reached
97% and 88% for the easy and difficult plots, respect-
ively. According to the results in this study and the
conclusions made in previous research, the single-
scan TLS data can be used for the stem curve retriev-
ing in small plots for rapid forest inventory tasks. In
this study, the stems within 10 m from the scanning
center were measured accurately (Fig. 9). Since the
stem density of the plots is diverse in our experi-
ments, we suggested that 10 m is an appropriate ex-
tent size of plot for most forest condition for using
single-scan mode. This result may enlighten the fu-
ture studies that combining traditional forest statis-
tical methods and single-scan TLS data of small plots
to survey forest resources. Besides downsizing the
plot size, we can improve the accuracy of retrieving
stem curves by selecting the plots with lower occlu-
sion rates (< 35%) or optimizing the scanning position
for a lower PBA. The occlusion rates and PBA can be
predicted using airborne remote sensing techniques

Table 3 The occlusion effect caused by tree stems

Plot
ID

Totally blocked stems Partly blocked stems

Number Percentagea Number Mean bias (cm)

1 1 1/3 1 −7.4

4 4 2/3 5 −8.6

5 7 1/4 1 −8.3

6 10 2/3 5 −19.2

10 9 2/3 3 −18.2

12 11 55 8 −10.5

16 4 1 6 −12.8

18 2 1 4 −24.0

19 2 2/3 0 –

20 10 1/4 7 −7.8

22 3 1 1 −19.3

Mean – 2/3 – −13.6

Note: aThe percentage of the undetected stems caused by tree stems in all
undetected stems

Table 4 The occlusion effect caused by non-stem components

Plot
ID

Totally blocked stems Seriously incomplete stems

Number Percentagea Number

1 2 2/3 4

4 2 1/3 1

5 19 3/4 7

6 5 1/3 13

10 4 1/3 10

12 9 4/9 12

16 0 0 0

18 0 0 1

19 1 1/3 0

20 29 3/4 8

22 0 0 2

Mean – 1/3 –

Note: a The percentage of the undetected stems caused by non-stem
components in all undetected stems. The seriously incomplete stems are the
stems where the completeness of the retrieved stem curves is less than 5%
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before TLS data collection. Therefore, further studies
may focus on the optimization of the scanner position
of TLS.

Effectiveness of the occlusion rate to predict the
estimation accuracy
As a general descriptor, the occlusion rate was highly re-
lated to the plot-level accuracy assessment index, such
as undetected rate, for which the correlation coefficient
reached 0.828. The correlation was followed by − 0.696
and 0.607 for average completeness and relative bias,
respectively. This is consistent with the report of the
international TLS benchmarking project where the stand
condition (i.e., easy, medium, and difficult) mainly in-
creases the difficulty of stem detection. The decline in
correlation was considered reasonable because the influ-
ence factors became more complicated and random for
the completeness and the bias. The occlusion rate is
easy-to-calculate and highly related to the estimation ac-
curacy, which can be used for dataset selection before
calculating the stem curve. It is worth noting that the
occlusion rate is a macro indicator derived from the 2D
image. Therefore, it is not always consistent with the real
level of occlusions. In some plots with small trees and
very dense leaves, the occlusion rate is low but the level
of occlusions is high, because of the presence of the
dense leaves in 3D space. A 3D occlusion index may de-
scribe the occlusion level more precisely and has a
higher correlation to the stem curve retrieving. However,
it could be more complex which we cannot obtain easily.
In future studies, the 3D occlusion index and its rela-
tions to the optimized scanning positions could be
explored by simulating the TLS data of a virtual forest
(Hämmerle et al. 2017). The advantage of our proposed
occlusion rate is easy-to-obtain and easy-to-calculate.
The occlusion rate is a device-independent index that
only determined by the stand condition and scanning
position, which means that using different devices with
different setting up parameters will obtain similar occlu-
sion rates for the same forest plot.

Factors influencing the estimation accuracy of the stem
curve
The percentage of basal area within N meters from the
scanning center (PBA) was found to be more strongly
correlated with the accuracy indices compared to the
stem density. The correlation between the PBA and the
undetected rate reached 0.92, which was much higher
than that for stem density (r = 0.41). In regard to the
depiction of the occlusion effect, PBA is more effective
because more stems are close to the scanning center and
stems with larger diameters will have a higher probabil-
ity to occlude other stems during data collection. In
contrast, the stem density only reflects the overall

distribution of stems without the information about
stem diameters. However, they are not independent oc-
clusion factors. Stem density influences PBA to some
extent as evidenced by our tests (Fig. 8); the correlation
coefficient between them was 0.62.
Previous studies suggest that the scanning distance

mainly affects stem detection and has less impact on the
estimation accuracy of basic forest inventory parameters,
such as the diameter at breast height (DBH) (Pueschel
2013). Some research reported a steadily decreasing rate
in tree mapping as the scanning distance increases and
the tree mapping accuracy decreased from 85% to 73% if
the plot radius increases from 5 to 10m (Liang et al.
2012). In this study, we found that the scanning distance
is a significant factor that influences the estimation accur-
acy of stem curves, not only the undetected rate but also
the completeness and bias. It can be explained that the
retrieving of stem curves is more easily affected by the oc-
clusions than other forest inventory parameters because
the upper stems are more challenging to measure.
The key to recognizing the source of occlusion is a stem

map with position and DBH of tree stems. Based on the stem
map and the propagation of laser beams, we can simulate
the inter-visibility of a plot between stems. In this study, the
stem maps were derived from the multi-scan TLS datasets.
However, the inter-visibility analysis should be performed be-
fore the TLS data collection. In practice, the stem map can
be obtained by using other remote sensing approaches, such
as unmanned aerial vehicles (UAV) and TLS data simulation.
The analysis of stem map and the arrangement of scanning
positions based on the UAV imagery and TLS data simula-
tion, which is a worthy direction for further studies.

Conclusions
The single-scan terrestrial laser scanning is a time-efficient
approach for the estimation of stem curves. However, occlu-
sion effect severely affects the accuracy of retrieved stem
curves. In this study, we proposed an effective and easy-to-
calculate index, the occlusion rate, to quantify the occlusion
degree of single-scan TLS data. The occlusion rate of a plot
is highly related to the accuracy of retrieved stem curves
and the distribution pattern of stem density. To describe the
distribution pattern of basal area, we introduced the PBA
which is more effective in determining the occlusions than
stem density. In addition, we found that the accuracy of the
estimated stem curve was decreased with increasing scan-
ning distance with high correlations (r= 0.85–0.99). Based
on the conclusions drawn from the findings of this study,
we suggested that to use single-scan TLS data to accurately
estimate the stem curve in a small forest plot (< 10m) or
the plot with lower occlusion rate, such as less than 35% in
test datasets. The findings from this study are useful for
guiding the practice of retrieving forest parameters using
single-scan TLS data.
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