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Abstract

Background: Forest residues can be a feasible alternative for converting energy into fuels, electricity, or heat.
Compared to other second-generation bioenergy sources, they do not compete for food, are relatively cheap,
abundant in forest-rich areas, and more importantly their energy balance is close to zero. Biomass estimations can
help design energy strategies to reduce fossil fuels dependency. Because of the land property distribution in Mexico,
biomass estimations should consider not only the physical availability, but also the willingness of landowners to extract
such raw materials.

Methods: This study presents a methodological approach for evaluating the potential use of forest residues as
a feedstock to generate bioenergy in northern Mexico. Remote sensing and field forest inventory were used
to estimate the quantity and distribution of forest residues. In addition, a discrete choice analysis evaluated
landowners’ preferences towards bioenergy development, including the most important factors that influence
their willingness to extract their products and the expected price.

Results and conclusions: Considering both physical and socio-economic aspects, results showed that about
59,000 metric tons per year could be available in the study area. The vast majority of landowners surveyed
are willing to extract forest residues, as long as they are presented with extraction plans with the highest
income. However, many showed concerns about the environmental impacts this activity can have on soils,
plants, and fauna. These results can help evaluate the potential of these resources for bioenergy development.
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Background
Bioenergy is the type of renewable energy from biological
sources that can be used for heat, electricity fuel, and their
co-products (Yuan et al. 2008; Fraver et al. 2018;
Rodriguez-Soalleiro et al. 2018). Particularly, plants trans-
forms sunlight into energy during the process of photo-
synthesis, which eventually becomes the source of our
food and fiber (Zhu et al. 2008; Ngugi et al. 2018). Plant
biomass can be produced from different sources including
agricultural crops and forest biomass. The latter can be
separated into components, such as branches, leaves, tops,
bark, roots, dried leaves, and dead wood (Schlegel et al.
2000). Through biochemical or physical technologies, this

material can be converted into various types of energy,
such as liquid fuels, power, or heat. In Mexico, about 665
Petajoules (Pj, 9.4% of total energy) were produced from
renewable resources, of which 369 Pj (5.3%) came from
firewood (3.5%), sugarcane bagasse (1.7%), and biogas
(0.1%) (SENER 2017).
Forest residues have some advantages over agricultural

or second-generation sources for bioenergy generation
(Solomon 2010; Pukkala 2018). First, they do not com-
pete for food, as in the case of corn, which in Mexico
has been restricted from certain bioenergy programs due
to its importance in the Mexican diet (Chuck-Hernández
et al. 2011; Pérez-Fernández et al. 2017). Second, they
play a critical role in regulating market prices for agri-
cultural crops that otherwise are not used for bioenergy.
Corn, sorghum, and wheat are some examples in which
their limited use for bioenergy regulates market prices,
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making them affordable for consumers (Pérez-Fernández
et al. 2017). Hochman et al. (2014) found that biofuel
production has resulted in a 30% increase in the price of
corn during the 2001–2011 period. Third, their relative
abundance and low cost, particularly in forest rich areas,
reduce total production costs (Alemán-Nava et al. 2015;
Ruiz et al. 2016). Depending on the type of species, be-
tween 10% and 22% of a tree’s biomass (Vargas-Larreta
et al. 2017) is considered forest residues. However, the
extraction of forest residues conveys various issues. Soil
nutrient decompensation, soil erosion, and deforestation
are undesired consequences if their use do not follow
sustainable measures (Perez-Verdin et al. 2012).
There are different methods to estimate forest biomass

in forest ecosystems. Direct or destructive methods use
felled trees to weight its components (branches, twigs,
stems, leaves, etc.) separately (Fonseca et al. 2009). As ex-
pected, these methods are expensive, but are more accur-
ate. Non-destructive or indirect methods instead use
equations or mathematical models adjusted by means of
regression analysis to construct the best relationship be-
tween several independent variables, such as diameter at
breast height, basal area, volume, or specific density of the
wood, and tree biomass. An extension of indirect methods
is the use of expansion factors to determine the total dry
weight, which can be extrapolated to any similar forest
growth conditions (Rojas-García et al. 2015). Remote
sensing (e.g., LiDAR technology) is another approach that
complements the advantages of indirect methods. These
methods can also be combined with parametric and non-
parametric statistical methods to get better fitting results.
Eventually, these emergent methods allow the estimation
of biomass at multiple scales at a larger spatial and tem-
poral coverage (Boudreau et al. 2008).
However, not only is the physical estimation of bio-

mass important, but also the willingness of the owners
to extract such products as well as the factors influen-
cing this decision (Joshi et al. 2013). Given that most of
the forestlands in Mexico are owned by ejidos, commu-
nities or small properties, it is also necessary to identify
the social and economic factors that affect the supply of
this material. The availability of forest residues is heavily
influenced by a landowner’s decision to extract the ma-
terial or not. Many of them fear that the extraction of
this material can cause physical damage to the soil and
decrease its fertility. Others, however, believe it can be
beneficial and that, under certain conditions, it can add
and diversify sources of work and reduce the risk of
fires. To the authors’ knowledge, no single research has
been conducted in Mexico to explore the landowners’
preferences towards biomass utilization out of forest
residues.
This research was conducted in northwestern Durango

in a well-organized area that hosts various industries

that produce plywood, sawn timber, edge-glued panels,
and furniture, among others. The Union of Ejidos, or the
aggrupation of several ejidos, is intensively looking to in-
crease the use of forest biomass to produce electricity
and heat in their industries. Although the use of forest
residues for bioenergy has been steadily increasing in re-
cent years, the vast majority of such residues still remain
in the forests or in the yards of forest industries. In the
case of forest industries, to avoid the accumulation of
by-products, they burn them in open sites with no fur-
ther use. In the case of branches and tops, they are
chopped and scattered on the forest floor to clean the
site, reduce risk of fire, retain soil particles, and left to
decompose (López-Miranda et al. 2009; Perez-Verdin
et al. 2012). While some of the nutrients are either lost
to erosion or leached to deeper layers of the forest soil,
the remaining part improves soil fertility and water infil-
tration (Hueso-González et al. 2018), which in turn helps
the establishment of new trees, plants.
The overall objective of this research was to present a

methodological approach that can be used to analyze the
potential use of forest residues as a feedstock to generate
bioenergy in Mexico’s forests. The approach is com-
prised of two main goals: (i) to quantify the physical
availability of forest residues stocks, through remote
sensing and field forest inventory and (ii) to evaluate the
most important factors that influence landowners’ will-
ingness to extract their products through discrete choice
methods. The main reasons to include these two objec-
tives are to make the real availability of feedstocks more
comprehensive. It is not enough to know only their
physical availability, but the landowners’ behavior for
both supplying the workforce in harvesting operations
and being considered in the decision-making process.
Many of them complain that their opinions are never
considered in public policies, even though the resource
is theirs. In addition, as stated by Joshi et al. (2013),
assessing landowners’ willingness to participate in a
bioenergy project is a relatively new topic in forest eco-
nomics and policy research. By knowing an expected
stumpage price, the combination of these two objectives
should pave the road for constructing economic supply
curves (e.g., quantity, price) for biomass residues in fu-
ture studies.

Methods
Study area
Five counties of the northwest region of the state of Du-
rango were considered in this appraisal (Fig. 1). Durango
is one of the most important forest states in Mexico,
contributing about 30% of timber production nation-
wide. The average annual rainfall varies from 300 to
1400 mm, while the average annual temperature ranges
from 8 °C to 26 °C. The altitude above sea level ranges
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from 300 to 3200 m. About 84% of the total area is cov-
ered by pine-oak forests, including, among others, Pinus
arizonica Engelm., P. engelmanii Martinez, P. strobifor-
mis Engelm., P. durangensis Martinez, P. cooperi C.E.
Blanco, P. lumholtzii B.L. Rob., Quercus rugosa Nee, Q.
gambelii Nutt., Q. arizonica Sarg., Q. hypoleucoides A.
Camus, Arbutus bicolor Gonzalez., and A. madrensis
Gonzalez (González-Elizondo et al. 2012).

Tree and stand level biomass estimation
Tree and stand level biomass were estimated using field
data from the 2014 forest inventory, which was provided
by the National Forest Commission (CONAFOR), as
well as regional biomass equations (Návar 2009; Vargas-
Larreta et al. 2017). The forest inventory included infor-
mation of tree species, diameter, height, site location co-
ordinates, among others. The forest inventory consisted
of a network of 1680 400-m2 permanent, circular-shaped
plots systematically distributed in the area (Fig. 1). The
types of forest residues that were considered were tops,
twigs, and branches; leaves were excluded from calcula-
tions. To avoid a critical soil nutrient decompensation, a
minimum load of 1.5 metric t∙ha− 1 of residues was
added to the leaf stock and subtracted from estimations
(Sanchez et al. 2003).

Following Návar (2009), an allometric equation that
relates tree biomass as a function of normal diameter
(ND) was used to estimate tree-level biomass (A).

Ai ¼ β0 NDð Þβ1 1ð Þ

where Ai is biomass of tree i (kg), ND is normal diam-
eter (cm), β0 and β1 are regression parameters condi-
tional to the type of species. Plot biomass was estimating
by adding the biomass of all trees. To standardize units,
plot biomass was converted to dry t∙ha− 1.

Use of remote sensing to estimate the enhanced
vegetation index
Using the United States Geological Service website
(USGS 2018), two MODIS satellite images of the Terra
sensor were obtained for the months of May and No-
vember of 2015. The images were geometrically cor-
rected using the reprojection tools in QGIS® (QGIS
Development Team 2016). The idea of using two images
at different times was to confirm or discard any influ-
ence of precipitation on the vegetation. Precipitation in
this area occurs from July to September.
In each image, the enhanced vegetation index (EVI)

was estimated, which corresponds to an average of 15

Fig. 1 Location of the study area, biomass sampling points (in yellow), and land coverage types
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days at a spatial resolution of 250 m per pixel (product
code MOD13Q1). This index is known to include an at-
mospheric correction in the regions of the electromag-
netic spectrum of blue (400 nm) and red (700 m) and a
correction related to the brightness of the soil (Heute
et al. 2002). The values of this index fluctuate between
− 1 to 1, where values of − 1 to 0 correspond to sites
without vegetal coverage. Values of 0 to 1 suggest sites
with greater photosynthetic activity or vegetal coverage.
The enhanced vegetation index (EVI) was developed

to optimize the vegetation signal with improved sensitiv-
ity in high biomass regions and improved vegetation
monitoring through a de-coupling of the canopy back-
ground signal and a reduction in the atmosphere effects
(Heute et al. 2002). According to Heute et al. (2002), the
equation to estimate EVI is:

EVI ¼ G
IRC−R

IRCþ C1LR−C2Bþ L
2ð Þ

where G is a factor for atmospheric correction; this par-
ameter is a simple scale factor and is included only for
the complete representation of the original formula.
IRC, R and B are surface reflectance values for the near
infrared, red, and blue bands, respectively, with a correc-
tion of the atmospheric effects. C1, C2 are the aerosol re-
sistance coefficients that use the blue band to correct
the influence of aerosol in the red band. L is the canopy
background setting that takes into account the near-
infrared differential radiant transfer and the red through
the canopy.
Once the EVI was estimated, different models and

statistical processes were evaluated to determine the best
relationship between the EVI (Eq. 2) and the total bio-
mass resulting from Eq. 1. The main reason to relate the
EVI with the biomass of forest residues is because there
is an appreciable, significant correlation between the two
(r2 = 0.47, p < 0.01). Some authors suggest that areas with
higher biomass, reflectance values also increase, eventu-
ally leading to higher EVI values (Vargas-Larreta et al.
2017). Thus, a higher total biomass means a greater bio-
mass of forest residues.

Total biomass estimation
Several linear parametric and automatic learning models
were used to estimate total biomass as a function of the
EVI. These included the ordinary least squares method
and machine learning models. Within machine learning
models, random decision forests are perhaps one of the
most common methods that allow the classification and
regression procedures using a collection of tree-
structured groups (Breiman 2001; Hastie et al. 2009).
Boosting machine is also a popular learning technique
for improving the accuracy of any given learning

algorithm widely used in computer tasks. Several classi-
fiers are trained sequentially using a weight distribution
on labeled samples and additively combined to a strong
classifier (Godec et al. 2010).
Ordinary least squares, random forests, and boosting

machine models were processed to find the one with the
best fit. The selection of the best model was based on
the root mean square error and R squared, in addition
to the analysis of residuals. Once the best model was
found, maps showing biomass quantity and distribution
were prepared. We input the final model into the QGIS®
algebra tool (QGIS 2016) and calculated the biomass for
each pixel of the satellite image. Then, we summed up
the number of pixels and quantified total biomass for
each county, vegetation type, and the study area. The
quantification assumed that only 34% of the total bio-
mass is usable, which is due to the type of silvicultural
treatment applied, and that all the material must be ex-
tracted along with commercial timber (or primary prod-
ucts, species), to take advantage of the road network
connectivity. The most common silvicultural treatment
is the individual selection of trees that removes between
30%–40% of total biomass (UAF 2015). In addition, a
50-year rotation age was applied, which indicates the
number of years between the regeneration of a tree and
its final cut (UAF 2015). Forest residues are mostly wet
and need to be dried from 30% to 60% moisture content
to about 8%–25% (Fagernäs et al. 2010; Honorato-
Salazar 2017). Because the material would be burned to
produce heat or electricity (by combustion), an 8% of
moisture content was used to calculate dry biomass.

Willingness of producers to extract their forest residues
Due to size, bulk density, and dispersion, the extraction
of forest residues require additional costs and, specially,
consent from their landowners. An important contribu-
tion of this research is the evaluation of landowners’
preferences towards the potential use of forest residues
for bioenergy (Fig. 2). Due to the land property distribu-
tion in Mexico, in which the majority belongs to ejidos
(or common properties) and private owners, it is neces-
sary to consider if they would be willing to participate in
supplying the raw material. Other studies have focused
on the physical estimation of biomass considering fac-
tors like forest stocks, spatial distribution, transportation
distance, and soil nutrient compensation (Perez-Verdin
et al. 2012; Vargas-Larreta et al. 2017). However, the real
availability of resources have to weigh the landowners’
attitudes and preferences towards the perceived environ-
mental impacts, job generation, and, of course, the price
of the raw material if bioenergy is implemented (Gruchy
et al. 2012; Joshi et al. 2013; Aguilar et al. 2014).
Following our conceptual model of biomass estima-

tion, a survey was conducted to assess the landowners’
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willingness for extracting their forest residues from their
properties (right part of Fig. 2). We used the method-
ology of choice experiments and designed a question-
naire to find out their preferences in terms of
environmental impacts, job generation, accessibility, and
other socio-demographic information. The question-
naires were applied to a representative sample of land-
owners with the support of two forest consulting
services units and the Union of Ejidos. This information
along with the physical availability of biomass can be
useful to design efficient energy policies.

Choice experiments
Stated-preference methods are increasingly common in
environmental research as a way of explaining the most
preferred alternatives of respondents (Hjerpe et al.
2015). Two of them are contingent valuation and choice
experiments (CE); the latter being increasingly used in
recent years for bioenergy studies (Susaeta et al. 2011;
Joshi et al. 2013; Bergtold et al. 2014; Khanna et al.
2017). It uses a survey instrument in which participants
are asked to choose their preferred alternative from a set
of scenarios characterized by different levels of qualita-
tive or quantitative attributes (Horne et al. 2005). A ref-
erence alternative that corresponds to the status quo or
“do nothing” situation is included. Not only landowners
will not be able to obtain any benefit from the supply of
raw materials, but they will keep absorbing the cost of
their disposal (i.e., chopping, piling, and occasionally
burning). Price is always present in the scenarios (or

choices) (Hanley et al. 1998). A great advantage of the
CE method over other stated-preference approaches is
that besides estimating a value, it is also able to rate,
rank, or select an alternative that provides the greatest
utility to the respondent (Mogas et al. 2006).

Design and survey management
The survey was divided into three parts. The first part
introduces the concept of bioenergy generated from for-
est residues and the perceived level of importance of for-
est resources to provide several ecosystem services. It
also asks about their environmental concerns and other
forest management statistics. The second part asks re-
spondents to choose the best scenario from an array of
options. Given the high number of possible options, usu-
ally this part is divided into subsections with two or
more set of questions. The third part includes questions
about the socio-demographic characteristics of land-
owners such as age, income, level of education, family
size, among others.
Following Rea & Parker’s methodology (1992), for popu-

lations smaller than 100,000 people, a sample size was de-
termined considering the percentage of allowed error,
level of confidence, and total population size. The study
area consisted of 550 properties and covered about 1.6
million hectares, of which 132 ejidos occupy 80% of the
area, while 418 small private properties occupy the rest.
We discarded those properties with no current forest
management plans, giving a total population of 355 active
properties. The rationale behind excluding properties with

Fig. 2 Conceptual model of the study of the physical and socioeconomic availability of forest residues for bioenergy generation
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no current plans was to obtain inputs from landowners
who would most likely contribute to supply forest resi-
dues. Also, one major assumption of this study is that the
current road network connectivity serves for both com-
mercial timber and forest residues extraction. Typically,
properties with no current forest management plans may
need to construct new roads or repair existing ones, which
may result in higher production costs.
Considering a ± 10% of sampling error and a confi-

dence level of 90%, the sample size was calculated at 58
properties. The majority of ejido representatives were
men between 26 to 75 years old. Half of them were will-
ing to extract their forest residues if they receive at least
MEX$ 220 per t (US$ 11 per t) (Table 1). We obtained a
list of landowners (or properties) and their spatial loca-
tion from two forest consulting units. To avoid issues
with selection bias, a random selection of landowners
was applied. The number of selected properties was
weighted according to their proportion between ejidos
and private properties.

Levels and attributes of scenarios
The survey’s design and the identification of attributes
were based on previous works developed elsewhere (Sus-
aeta et al. 2010; Gruchy et al. 2012; Joshi et al. 2013).
Another great advantage of using choice experiment
methods is the flexibility of combining qualitative and
quantitative attributes. Five attributes were selected with
three levels each, plus the original condition. These in-
cluded: woody biomass utilization, accessibility, environ-
mental impacts, number of jobs, and, as mentioned
before, price. Woody biomass utilization is the percent-
age of biomass that can be removed from the site. Three
levels (85%, 40% and 15%) were offered to landowners
based on conversations with forest managers and land-
owners as well as on Joshi et al. (2013) and Perlack et al.
(2005). Accessibility was labeled as the perceived ability
to extract forest residues based on the type of existing

roads, distance, and topography. This is a typical term
known among landowners to refer how hard (or easy) it
is to extract timber from a harvesting area. Environmen-
tal impacts refer to the perceived effects of biomass re-
moval from the soil (erosion, loss of nutrients),
vegetation, and water. While higher biomass removals
might increase the likelihood of landowners to extract
the raw material, it is true that this scenario could lead
to environmental deterioration and reduce soil quality.
Both accessibility and environmental impacts took three
levels of classification plus the status quo condition. Be-
cause of the few sources of employment in the area, the
potential to create jobs as a result of biomass extraction
was also offered to landowners in three levels: 20, 11
and 5 jobs. Finally, price (or stumpage price) refers to
the payment landowners could receive for the right to
utilize their forest residues (Grebner et al. 2008). The
price levels were based on previous meetings with log-
gers and landowners who have traded low-dimension
trees or branches for charcoal or paper production
(Table 2). We hypothesized that higher removal, good
accessibility, minimal environmental impacts, more jobs,
and higher prices would increase the landowners’ will-
ingness to extract the forest residues.
Due to the great number of possible combinations out

of the five attributes and three levels, an orthogonal de-
sign for the choice scenarios was applied to obtain a rep-
resentative number of alternatives to be presented to
respondents. The orthogonal design is useful for esti-
mating the total effects of the choice attributes, which
includes the individual effect of each attribute (Holmes
and Adamowicz 2003). Results from the orthogonal
design gave 15 scenarios, plus the original condition or
status quo (Table 3). Two types of questionnaires were
then structured for two groups of respondents (A and
B). In each one, two packages of scenarios (plus the ori-
ginal condition) were proposed, scenarios from 1 to 8
being in option A and scenarios from 9 to 15 in option
B. A total of 58 ejidos, communities, and private proper-
ties were surveyed: 31 had questionnaire type A and 27
had type B. Our design resulted in 205 responses.

Random utility theory
The theoretical basis for using the choice experiment
(CE) method is derived from the random utility
model (Holmes and Adamowicz 2003). Landowners
(n = 1, ..., N) maximize the value of their forests by
comparing J forest extraction alternatives (j = 1, ..., J)
and selecting the one that provides the highest level
of satisfaction or utility. The economic rationality
suggests that a landowner prefers an alternative to ex-
tract forest residues if its indirect utility increases
more than the other alternatives available (Joshi et al.
2013). The random utility model assumes that the

Table 1 Socio-demographic characteristics of the landowners
surveyed to evaluate their preferences towards bioenergy
development in northwestern Durango, Mexico

Variable Sample data

Men 97%

Age range between 26 to 75 years 91%

Completed elementary school 35%

Income no greater than MEX$ 6000 per month 72%

Accepted a forest residue removal ≤40% 65%*

Did not accept high environmental impacts 63%*

Accepted 11 or more jobs generated out of the
extraction of residues

67%

Accepted a payment of at least MEX$ 220 per t 53%*

* These data include the status quo choices
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indirect utility of an individual is the sum of a set of
known variables during the investigation and a sto-
chastic element (not known for the researcher). This
model is defined as (McFadden 1973):

Uij ¼ V ij þ εij ð3Þ

where Uij is the utility of landowner n from choosing be-
tween different alternatives j; Vij is the determinist part
of the utility, and εij reflects a set of unobservable factors
linked to the respondent’s choice.
Out of all the choices, the individual chooses alterna-

tive j, which reflects a change or improvement, over al-
ternative k (status quo) if the utility associated with
alternative j exceeds the utility of alternative k (Holmes
and Adamowicz 2003). The probability that the individ-
ual chooses alternative j over k is:

Pn j ¼ PðVnj þ εn jÞ > PðVnk þ εnkÞ; j≠k ð4Þ

If the stochastic term εnj is independent, with an ex-
treme value distribution, eq. 4 becomes a conditional lo-
gistic model (Train 2003), where the probability that a
landowner n chooses scenario j is:

Pnj ¼ eVnk

X

j

eVnj
ð5Þ

The questionnaires were conducted from December
2017 to February 2018. All were taken through face-to-
face interviews, first asking if they were willing to par-
ticipate in the survey, then introducing the objectives of
the study and making sure that the respondent under-
stood each question. The interviews were held in the

Table 2 Levels and attributes used in the scenarios to assess the socio-economic availability of forest residues

Attributes Description Levels Status quo

Woody biomass utilization
(%)

The percentage of total residues that will be removed from the
site.

85 40 15 0

Perceived accessibility
(numeric code)

The perceived ability to extract forest residues based on roads,
distance, and topography.

Good (2) Reduced
(−1)

Medium
(1)

Original
(0)

Environmental impact
(numeric code)

Perceived impacts to soil quality, water quality, and biodiversity. High
(−1)

Medium (1) Little (2) None (0)

Number of jobs Potential jobs created as a result of the extraction of forest
residues.

20 11 5 0

Price (MEX$ per t) The amount of MEX$ per t that will be paid to landowners
(stumpage price).

$220 $110 $40 $0

Table 3 List of selected scenarios resulting from the orthogonal design

Scenario Removal (%) Accessibility Impact Number of Jobs Price (MEX$∙t−1)

1 85 Good High 20 220

2 15 Good Medium 20 40

3 85 Bad Little 20 220

4 85 Good High 5 110

5 85 Regular Little 5 40

6 15 Bad High 5 220

7 40 Good Little 11 220

8 85 Regular Medium 20 220

9 40 Regular High 20 110

10 85 Good High 11 40

11 85 Bad Medium 11 110

12 15 Good Little 20 110

13 40 Bad High 20 40

14 15 Regular High 11 220

15 40 Good Medium 5 220

16 0 Original None 0 0
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Unión de Ejidos, in the community of Torance, or dir-
ectly in their property.

Results
Results of the three biomass models (ordinary least
squares, random forests, and boosting machine), as a
function of the EVI vegetation index, showed that the
best one was the linear regression model (Table 4).
Though the linear model had a slightly lower, but statis-
tically significant (p < 0.05), R square, its root mean
square error was the lowest. Given also that the linear
model can generate an equation, which the other two
cannot, and considering the easiness of application, we
decided to use it to eventually calculate the total biomass
in the study area. Table 5 shows the analysis of variance
of the linear model and the values of its regression coef-
ficients. Both coefficients were statistically significant.
Using the coefficients of the variables (Table 5), we in-

put their values into the QGIS raster calculator and cal-
culated the biomass at a pixel level of the satellite image.
Figure 3 shows the concentrations of biomass ranging
from 3.8 t∙ha− 1 in the eastern part to 25 t∙ha− 1 in the
western part. In total, the study area may be producing
around 70,699 dry ton of biomass annually.

Landowners’ perceptions
Close to 84% of respondents are willing to extract their
forest residues. The most preferred scenario was the sta-
tus quo with 16% of choices, followed by the plans: 3
(12%), 12 (10%), and 1 (9.7%). The least preferred sce-
narios were 4 and 11, with only one selection. Overall,
53% are willing to extract forest residues if they receive
at least MEX$ 220 per t, 18% if they receive $110 per t,
and 12% if they receive $40 per t. As for the logistic re-
gression analysis, four variables were statistically signifi-
cant. The probability of extracting their forest residues
increases when the perceived environmental impact is
lower and more jobs are created. It reduces when the
percentage of residues removal increases. As expected,

the probability increases as the stumpage price (or the
price paid to the owner for the right to extract the forest
residues) also increases (Table 6).

Discussion
Temperate forests showed the highest values of forest
residues (around 25.3 t∙ha− 1). This type of forests con-
sists of Pinus, Quercus, Cupressus, and other broadleaf
species. Low values of biomass (around 3.8 t∙ha− 1) were
found in the shrub and grasslands areas. Some shrub
areas and deciduous trees have the appearance of a dry
forest (Lopez and Ramirez 2004). This characteristic,
and the date on which the image was taken (May 2015),
could be factors that explain the low amount of solar
light reflected, low EVI values, and, eventually, available
biomass. The results of the satellite image taken in No-
vember had a worse performance than the one of May;
so the analysis for this month was discarded. Many de-
ciduous trees start dropping their leaves as early as
October (González-Elizondo et al. 2007), which seems to
explain its bad performance.
Results showed that, on average, 8.3 dry t∙ha− 1 of for-

est residues are found in the study area (confidence
interval between 4.05 to 12.61 t∙ha− 1). Vargas-Larreta
et al. (2017) found, in a larger scale study, between 9.5
and 19.5 t∙ha− 1, considering a proportion of 14.9% of
forest residues over the total above-ground biomass.
These results are slightly higher than the ones estimated
in our investigation. The differences are perhaps due to
the type of methods or databases used. They considered
a different network of permanent plots and their estima-
tions were based on machine learning models. However,
it is agreed that the EVI is an adequate approach for es-
timating biomass. Other authors have reported biomass
estimates using the Geographic Information Systems
(GIS) and allometric equations. Using a set of regional
allometric equations, national forest inventory database,
and forest management programs, Perez-Verdin et al.
(2012) found in this area about 78,000 t per year, which
is pretty close to the numbers estimated in our study
(before considering the socio-economic analysis).

Landowners’ willingness to extract their forest residues
As remarked throughout this research, biomass availabil-
ity should consider the landowners’ preferences to ex-
tract this type of material. This study found that close to

Table 4 Parameter used to select the best model to predict biomass as a function of the EVI

Parameter Linear regression Random Forest Boosting machine

Average (t∙ha−1) 8.336 8.3298 8.1521

Standard deviation 2.182 2.814 2.113

R2 0.226 0.231 0.285

Root mean square error 3.602 3.872 4.03

Table 5 Analysis of variance of the linear regression model
(n = 1211)

Coefficients Standard error t value Probability

Interception −2.263 0.574 −3.948 8.66E-05

EVI 44.094 2.344 18.83 1.41E-69
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84% of respondents are willing to extract their forest res-
idues. This means that 59,300 dry t∙year− 1 would be
physically and socially available to use. Furthermore,
considering the stumpage price and the number of land-
owners who are supposed to supply this material, about
36,000 t per year are available at MEX$ 220 per t (US$
11 per t), 14,100 t per year at MEX$110 (US$ 5.5 per t),
and 8480 t per year at MEX$ 40 per t (US$ 2 per t).
These results show the implications of considering the
landowners opinions in the estimation of biomass

feedstocks. By virtue of the type of land ownership in
Mexico, in which different degrees of responsibility were
transferred to local communities, this type of analysis can
help delineate efficient wood-based bioenergy policies ac-
cording to the landowners’ needs and aspirations. It not
only shows the proportion of landowners willing to par-
ticipate in potential bioenergy projects, but also the factors
motivating such decision. In addition, it could pave the
road to construct real supply curves for forest residues.
Obviously, other costs such as transportation and process-
ing operations have to be considered. Even though this
material can be considered as waste, any bioenergy policy,
whose feedstock base is from forest residues, should con-
sider a stumpage price to landowners.
Results showed that more than half of respondents (53%)

are willing to extract their forest residues with the highest
possible payment. The expectation of having the highest pay-
ment may be because the majority (72%) earns a monthly in-
come between MEX$ 2000 and $ 6000 (US$ 100–300), and
this type of alternative is seen with great interest. The socio-
demographic variables and their interactions with the attri-
butes were not significant for this study; the sample was, in
general, a very homogeneous group.

Fig. 3 Biomass distribution using the enhanced vegetation index (EVI) in northwestern Durango, Mexico

Table 6 Conditional logistic parameter estimates of landowners’
preferences for supplying forest residues for bioenergy in northern
Mexico

Variable Coef. Std.
Err.

z p > |z| 95% Conf. interval

Min Max

Removal −0.012 0.003 −4.030 0.000 −0.017 −0.006

Accessibility 0.075 0.084 0.900 0.369 −0.089 0.239

Impact 0.177 0.084 2.120 0.034 0.014 0.341

Jobs 0.035 0.014 2.520 0.012 0.008 0.063

Price 0.004 0.001 5.680 0.000 0.003 0.005

Log likelihood = − 188.4; Pseudo R2 = 0.19; Model significance (Prob > χ2) < 0.01
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Choosing a scenario different to the status quo is not
surprising. A scenario that could generate better living
conditions is better than not having this type of extra in-
come opportunities. What is a little surprising is that
many landowners (63%), while giving enough import-
ance to the economic benefits, showed some concerns
about the environmental impacts this activity could have
on the soil, plants, and fauna. These seemingly conflict-
ing interests have been also reported by Joshi et al.
(2013). They found that some landowners prefer forest
scenarios that provide them an optimum premium with
a minimal loss of environmental quality. These results
could lead to subsequent studies focusing on reducing
environmental impacts if bioenergy from forest biomass
is implemented.
Soliño-Millán et al. (2008) evaluated the role of a bioe-

nergy program based on the partial replacement of electri-
city generated from fossil fuels for electricity generated
from forest biomass in Galicia, Spain. They too applied
the method of choice experiments. Their results showed
that, like in this study, people are willing to accept com-
pensation as long as they get the most expensive options.
The results of these investigations also reveal the need to
create awareness and provide training to increase the
knowledge of owners about the extraction of wood, the
use of forest biomass, and ecological sustainability.

Conclusions
This study estimated the physical and socio-economic
availability of forest residues to be used as a feedstock
for bioenergy conversion in northern Mexico. The study
used information from allometric equations for several
tree species, satellite images, CONAFOR’s forest inven-
tory, and landowners’ perceptions. It is concluded that
in the study area, about 59,000 t per year of forest resi-
dues can be physically and socio-economically available.
The availability varies according to the expected price. It
also showed that the most preferred scenario, out of the
16 presented to landowners, was the status quo. This
means that for many of them doing nothing seems to be
the best deal. For those landowners who agreed with the
extraction of forest residues, the majority is willing to do
so as long as they are presented with extraction plans
with the highest stumpage price and, at the same time,
the lowest environmental impact. The results of this re-
search provide important information on landowners’
preferences on forest residue extraction generated dur-
ing timber harvesting operations. Their concern over
possible adverse environmental impacts and their will-
ingness to invest in the extraction activities to take ad-
vantage of this material is evident.
The use of forest residues for bioenergy represent a

market opportunity and an important source of employ-
ment in rural areas. It can help boost the local

economies, reduce risk of fire, and eventually reduce fos-
sil fuel dependency. However, given that this is a rela-
tively new issue for Mexico’s landowners, awareness
must be raised about the benefits and implications ob-
tained by collecting this resource. Likewise, more re-
search is needed to improve biomass estimation through
remote sensing and to better understand landowner’s
behavior through more refined socio-economic valuation
methods.
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