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Abstract

Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the
McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptions of the
Chapman-Richards growth function, constant mortality and recruitment into the mathematical form of the
distribution. Therefore, unlike ‘assumed’ distribution models, it is intrinsically linked with the underlying vital rates for
the forest area under consideration.

Methods: It is shown that the Chapman-Richards distribution can be recast as a subset of the generalized beta
distribution of the first kind, a rich family of assumed probability distribution models with known properties. These
known properties for the generalized beta are then immediately available for the Chapman-Richards distribution,
such as the form of the compatible basal area-size distribution. A simple two-stage procedure is proposed for the
estimation of the model parameters and simulation experiments are conducted to validate the procedure for four
different possible distribution shapes.

Results: The simulations explore the efficacy of the two-stage estimation procedure; these cover the estimation of
the growth equation and mortality—recruitment derives from the equilibrium assumption. The parameter estimates
are shown to depend on both the sample size and the amount of noise imparted to the synthetic measurements. The
results vary somewhat by distribution shape, with the smaller, noisier samples providing less reliable estimates of the
vital rates and final distribution forms.

Conclusions: The Chapman-Richards distribution in its original form, or recast as a generalized beta form, presents a
potentially useful model integrating vital rates and stand diameters into a flexible family of resultant distributions
shapes. The data requirements are modest, and parameter estimation is straightforward provided the minimal
recommended sample sizes are obtained.

Keywords: Diameter distributions, Chapman-Richards growth, Generalized beta distribution of the first kind,
Maximum likelihood, McKendrick-Von Foerster equation, Physiologically structured population model, Size-structured
distributions

Background
Diameter distribution models have a long history of use
in forestry. Perhaps the first, and arguably the best-known
published model was from a study in silver fir (Abies
alba Mill.) by de Liocourt (1898) and recently reviewed
by Kerr (2014). de Liocourt (1898) developed a reverse
J-shaped model to fit the distribution of diameters in
a “normal selection forest.” As noted by Kerr (2014),
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de Liocourt (1898) did not fit a negative exponential, or
so-called q-distribution to these data, which is a common
misunderstanding. Indeed, he did not fit a probability dis-
tribution at all. Rather, he used a mathematical method
that was undoubtedly common at the time, and which is
now referred to as a “difference table” approach (Gove
2015). The details are not important, but the fact that
this appears to be one of the first known applications
of a mathematical model being fitted to a diameter dis-
tribution in forestry is certainly of interest. A second
interesting historical application of a general mathemati-
cal method useful for the fitting of diameter distributions
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was the use of Fourier Series methods, which appeared in
the German literature in the 1920’s (p. 14, (Meyer 1930)),
and was introduced to the more general American audi-
ence by Anderson (1937). In addition to Fourier series,
Meyer (1930) discusses several graphical methods for fit-
ting “frequency curves” dating back to the 1880’s; he also
mentions other mathematical methods which include the
normal distribution. In his own application, Meyer (1930)
used the Charlier system ([now known as the Gram-
Charlier Series, e.g., p. 222], (Stuart and Ord 1987)) for
modeling diameters and notes that Cajanus (1914) was
evidently the first to apply this model to diameter distri-
butions in Finland. Clearly there has been a long history
of foresters who have recognized the need to character-
ize diameter distribution in somemathematical (including
graphical) form for use in management.
In more recent decades, foresters have moved from the

methods such as those mentioned above to the fitting of
probability distributions, or probability density functions
(PDFs), to the diameter data. Examples include the lognor-
mal (Bliss and Reinker 1964), negative exponential (Meyer
1952; Leak 1964), Weibull (Bailey and Dell 1973), John-
son’s SB (Hafley and Schreuder 1977; Zhang et al. 2003;
Rennolls and Wang 2005) and Burr distributions (Lindsay
et al. 1996; Gove et al. 2008), to name but a few. Many
of these distributions have several forms which have been
explored in the forestry literature; also, they have been
set in more complex applications such as finite mixture
models in order to fit, e.g., multimodal distribution shapes
(Liu et al. 2001; Zhang et al. 2001). These models are
often called ‘assumed’ distribution models, because there
is nothing in the mathematics of the individual model
development that in any way links it to the underlying
diameter data. While some of these models were origi-
nally derived with specific applications in mind (e.g., the
Weibull model), in forestry they are applied to diameter
distributions for their flexibility and, at least early on, the
ease with which parameters were able to be estimated. In
other words, in the application of such models, there is
no intrinsic link to the underlying population processes
that gave rise to the observed diameter distribution for
which a model is desired: these models indiscriminately
fit astronomical data, for example, as well as they do tree
diameters. Thus, one might perceive that a weakness to
the so-called assumed distribution approach is that these
are, with some exceptions, just mathematical constructs
that have no inherent link to the processes involved in the
generation of the observed data. On the other hand, a per-
ceived strength to this approach is perhaps the opposite:
lack of any process or mechanistic theory results in simple
models with modest data requirements that can fit a wide
variety of observed data.
Two extensions to the above assumed models were

developed that begin to address the issue of the data-

or application-agnostic approach. The first, parameter
prediction (PP), was introduced by Clutter and Bennett
(1965), whose models were subsequently independently
evaluated by Burkhart (1971). Many other PP studies
followed in the coming years (e.g., (McGee and Della-
Bianca 1967; Rennolls et al. 1985)), some with inter-
esting alternatives and extensions as part of the least
squares estimation process for the prediction equations
(e.g., (Cao 2004; Mehtätalo 2005; Mehtätalo et al. 2011;
Poudel and Cao 2013; Robinson 2004; Siipilehto et al.
2007)). These authors demonstrated how distributional
parameters could be predicted or estimated based on
stand attributes like age, number of trees, basal area, and
site index. In the PP method, simple regression relation-
ships were developed from individual plot data where
an assumed diameter distribution had been fitted to the
observed plot distribution. The data were combined over
many plots with a range of stand conditions to form a rep-
resentative data set, and regression equations calibrated
to predict the total number of trees in a stand along with
the parameters of an assumed distribution model. The
idea was that the regression predictions would tie the esti-
mation of a stand’s distribution parameters (and thus the
distribution itself ) to the stand attributes, thus providing
an empirical connection between the two.
Hyink and Moser (1983) generalized the PP model

approach and introduced a second related method, which
they called the parameter recovery (PR) method (see also,
(Hyink 1980)). Similarly to PP methods, PR methods used
stand attributes such as basal area and mean stand diam-
eter in a method of moments-type estimation setting.
Stand averages or totals could be predicted from relevant
growth equations within the system, and then the stand
diameter distribution ‘recovered’ from these predicted
values providing there were as many moment equations
as parameters in the distribution to be estimated (e.g.,
(Matney and Sullivan 1982; Burk and Newberry 1984;
Lynch and Moser 1986; Murphy and Farrar 1988)). As
an alternative or variant to using moments, various per-
centages of the distribution have also been employed
(e.g., (Baldwin Jr and Feduccia 1987; Bailey et al. 1989;
Brooks et al. 1992; Knowe 1992)). The moment-based
concept of parameter recovery means that the method
does not require the prediction of stand variables through
equations, it can be applied in a simple estimation scheme
matching empirical stand quantities from an inventory to
theoretical stand-based moment equations for parame-
ter estimation. These studies in the form of PP and PR
models were a step towards the synthesis of stand-based
attributes and the associated form of the assumed distri-
bution for diameters, and may be thought of largely as
pure stand-based approaches.
The methods of PP and PR might be considered inter-

mediate methods as they are based on models that rely



Gove et al. Forest Ecosystems            (2019) 6:27 Page 3 of 17

wholly on stand attributes rather than individual tree
attributes. An alternative approach is to couple the stand
diameter distribution with the individual tree demo-
graphic equations that underlie the dynamics that gave
rise to it. An early approach to the solution of this prob-
lem was given by Bailey (1980). He presented a method
that used the regenerative property of distributions to
characterize the diameter increment required in order to
‘regenerate’ the distribution family at time t2 based on the
form assumed at time t1 (where t1 < t2), and applied it
to several different families of distributions that included
the Weibull and beta models. Bailey (1980)’s method was
innovative and insightful in producing a method that
mathematically linked the diameter distribution to indi-
vidual tree diameter growth equations. However, it was
incomplete in the sense that it lacked a companion theory
for births (regeneration or ingrowth) and deaths within
the system. The stated assumption was that either there
was no mortality, or that it was proportionately dis-
tributed over the diameter classes. This limitation was
recognized by Cao (1997), who later incorporated a mor-
tality component into Bailey (1980)’s approach. Of further
note, Matney and Sullivan (1982) developed a compatible
diameter projection model based on Bailey (1980)’s work
that was constrained by their stand-based PR projection
model. More recently, Matney and Schultz (2008) devel-
oped a method for deducing the transformation equations
that link a distribution at t2 from both the initial distribu-
tion at t1 and the distribution of trees surviving from t1
to t2. Clearly, there appears to be an interest in linking the
underlying vital rates to distributions of diameter at one
or more points in time based on these and other studies.
A general and arguably more flexible approach was

taken in population biology where such individual-
based models are often referred to as “physiologically
structured” population models, replacing the concept
of chronological age with “physiological age” (VanSickle
1977; de Roos 1997); here, physiological age refers to
some size attribute of an individual. These models are also
referred to as size-structured distribution (SSD) models
(e.g., (Botsford et al. 1994)). Perhaps the best known exam-
ple of a SSD, used by these authors and others, arises from
the partial differential equation

∂n(d, t)
∂t

+ ∂
[
g(d, t)n(d, t)

]

∂d
= −m(d, t)n(d, t) (1)

which has units number ·cm−1 ·yr−1. This equation states
that the rate of change of numbers, ∂n(d,t)

∂t , in a very small
diameter (at breast height, DBH) class d + �d is balanced
with the rate of growth of individuals through the class,
∂[g(d,t)n(d,t)]

∂d , and the decline in individuals through mor-
tality, [m(d, t)n(d, t)], where t is time. Here the numbers

density, n(d, t) (number · cm−1), rather than a probabil-
ity density, is evolved through time. The connection to a
PDF, however, is simple since Nt = ∫ d∞

d0 n(d, t) dd, and
therefore n(d, t) is simply a scaled version of a PDF, with
minimum and maximum diameters respectively d0 = 0
and d∞ = ∞ in general. The annual diameter growth
rate is given in the model by g(d, t) cm · yr−1, and the
per capita mortality rate ism(d, t) yr−1. When a boundary
condition is included for “births” into the population, this
model intrinsically links the three vital rates of recruit-
ment, growth, and mortality into the dynamics of the
numbers density. These SSD models are not assumed
models, or even hybrid, they are “inherent” diameter dis-
tribution models because of the implicit link with the vital
rates in (1).
Each of the above three classes of diameter distribution

model has different data requirements. Assumed models
normally require only the empirical diameter distribution
to be fitted. The hybrid PR and PP models potentially
require more plot data along with stand attributes for
prediction model calibration. Size-structured models are
the most data-intense, requiring growth data for cali-
bration of g(d, t), or an existing growth model; similarly
for m(d, t) and the recruitment rate. However, some-
times the mortality and recruitment parameters can be
estimated without such measurements as in the case
of constant mortality under the negative exponential
model (Gove 2017).
In some cases—i.e., under appropriate vital rate form

assumptions—the steady state SSD model can be shown
to analytically conform to an individual, or potentially
a family of, assumed distributional forms. In forestry,
Muller-Landau et al. (2006) was evidently the first to
have made such a connection, demonstrating some spe-
cific vital rate models that led to negative exponential,
and Weibull distributions. Later, Gove (2017) expanded
upon the vital rate model forms that would give rise to
a negative exponential. Among the benefits of showing
how an implicit distribution relates to some individual
or family of assumed distributions, without losing the
link to the underlying vital rate parameters, is the inclu-
sion of all the theoretical work related to that family of
distributions, though on a different set of distributional
parameters. The purpose of this paper is to show how the
steady state “Chapman-Richards” distribution (CRD) is
actually a subset of the generalized beta distribution of the
first kind (GB1) (McDonald 1984). In addition, a param-
eter estimation scheme that preserves the essence of the
SSD, while simultaneously also fitting the GB1 distribu-
tion is described. It will be demonstrated that the change
to the GB1 form actually presents a simpler equation for
the estimation of mortality rate than that arising from the
CRD. This simplification, as it were, also lends itself to
a much more tractable version of the size-biased form:
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specifically, the basal area-size distribution (Gove and
Patil 1998). Note that under this scheme, the GB1 is not an
assumed distribution, it is simply a different mathemati-
cal representation of the CRD and thus shares all of the
inherent coupling of vital rates as the CRD form.

Methods
The Chapman-Richards Distribution
The steady state or equilibrium solution of the general
SSD model in (1) is one in which the distribution remains
constant through time (found by setting ∂n(d,t)

∂t = 0) and
is given by. . .

n(d) = R
g(d)

exp
(

−
∫ d

d0

m(d′)
g(d′)

dd′
)

d > d0 (2)

= R
g(d)

S(d)

where the exponential term is the survival function, S(d),
and R is the recruitment rate (note that the time index
is no longer required as time-invariant dynamics are
assumed). To find the associated PDF, simply divide the
numbers density by the total population size, N.
The assumptions for the vital rates underlying the

Chapman-Richards distribution are that mortality is con-
stant, m(d) ≡ M, like recruitment. In addition, annual
diameter growth follows the Chapman-Richards growth
function (Pienaar and Turnbull 1973)

g(d) = dd
dt

= ηdm − γd 0 ≤ d < d∞ (3)

with

d∞ =
(

γ

η

) 1
m−1

(4)

where m, η, and γ are model parameters to be esti-
mated from the data. The maximum DBH (d∞) is found
by setting the derivative of (3) to zero and solving. It is
straightforward to show (Additional file 1: Section S.2)
that substitution of these vital rate forms into (2) yields the
equilibrium distribution given by

n(d) = R
ηdm − γd

(
dm−1 (

ηd0m−1 − γ
)

d0m−1 (
ηdm−1 − γ

)

) M
γ (m−1)

(5)

= R
ηdm − γd

S′(d) 0 ≤ d < d∞

A similar form of this distribution is due originally to
Zavala et al. (2007), who used a slightly different param-
eterization for (3). It was subsequently rederived in the
current form by Gove (2017). Neither of these studies
named the distribution, which has been remedied here. It
is straightforward to verify that the survival function fol-
lows immediately via comparison to (2) such that S(d) ≡
S′(d) under growth relation (3) with constant mortality

(see Additional file 1: Section S.2 for the full derivation).
And, of course, the CR version of the survival function is
a much simpler form because the integration has already
been accomplished.
Note that many other forms of mortality models may be

coupled with the CR growth equation, so the current form
may turn out to be just one form in a larger, more complex
family. However, more complex examples are not guaran-
teed to have closed-form solutions like (5), and can require
numerical integration of the survival function for eval-
uation. The closed-form solution in (5) makes the CRD
easier to work with, and lends it to further manipulation—
even simplification—as demonstrated below. Note that
the range in both parameters and diameters is inherited
from the CR growth equation; specifically, the distribution
will have finite d∞.

The relationship of the CRD to the GB1
Ducey and Gove (2015) have recently demonstrated that
the GB1 distribution and its associated size-biased form
may have some potential applications to diameter distri-
bution modeling in forestry. The GB1 PDF is given by

f (d; a, b, p, q) =
|a|dap−1

(
1 −

(
d
b

)a)q−1

bapB(p, q)
b, p, q > 0

(6)

with 0 < da < ba, and B(x, y) = ∫ 1
0 tx−1(1− t)y−1 dt is the

beta function.
A subset of the full GB1 distribution can be derived from

the CRD (Additional file 1: Section S.3), which yields the
numbers density

n(d) = Ñ
|a|dap−1

(
1 −

(
d
b

)a)q−1

bapB(p, q)
(7)

where

Ñ = R
[
η − γ

d0m−1

] M
γ (m−1) × η

M
γ (1−m)

−1

× bapB(p, q)
|a| (8)

and because the numbers density must integrate to N, we
have that

N = Ñ
∫ d∞

d0

|a|dap−1
(
1 −

(
d
b

)a)q−1

bapB(p, q)
dd

The relationship of the parameters in (7) to those of the
CRD (and growth equation) are: b = d∞, a = 1 − m,
p = 1 and q = M

γ (1−m)
. The fact that GB1 parameter p is

unity makes (7) a subset of the full generalized beta given
in (6); thus, we will refer to the reduced form given in (7)
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as the Chapman-Richards GB1 (CR-GB1). Note that Ñ is a
normalizing constant that makes the right hand side in (7)
a numbers density rather than a PDF. Since the remain-
der of the right-hand side is a PDF, this means that the
constant Ñ has a physical interpretation as an estimate of
the number of individuals in the population, N. It is worth
noting that the normalizing factors for most PDFs have
no such physical meaning, therefore this is a somewhat
unique model.
The CR-GB1 contains only a subset of the fully rec-

ognizable distributional forms of the GB1 (McDonald
1984; Ducey and Gove 2015) due to the constraint that
p = 1. Nevertheless it still has a range of flexibility that
includes both positively and negatively skewed, concave,
mildly rotated-sigmoid, reverse J-shaped, uniform and U-
shaped forms as noted by Gove (2017). These forms are
all achieved based on the full set of parameters inher-
ited from the CR growth model and CRD itself, since p
is not related to any of these parameters. In addition, the
two-parameter Weibull and the negative exponential dis-
tributions can be derived through limiting arguments as
in McDonald (1984), though as we will see later, these
forms are of limited value as derived through the CR-GB1
size-structured setting.

Basal Area-Size Distribution
One useful consequence of the CRD and CR-GB1 equality
is that quantities that might be tedious to derive from (5)
may already exist for the CR-GB1 form. Notably, any result
that has been derived for the GB1 distribution (includ-
ing all of the special case distribution forms, moments,
Gini coefficient, etc.) is applicable to the CR-GB1 with the
above parameterization. One recent application of this is
in Ducey and Gove (2015), who derived the size-biased
version of the GB1. A convenient relationship useful in
forestry is that the distribution of basal area over DBH—
termed the basal area-size distribution (BASD) (Gove and
Patil 1998)—is the size-biased distribution of order α =
2. In general, if D ∼ f (d; θ) (where θ can be vector-
valued) then the size-biased distribution of order α is
D∗

α ∼ f ∗
α (d; θ) where

f ∗
α (d; θ) = dα f (d; θ)

∫
dα f (d; θ) dd

(9)

Thus, if D ∼ GB1(d; a, b, p, q), then it follows that D∗
2 ∼

GB1
(
d; a, b, p + 2

a , q
)
(eq. 9, (Ducey and Gove 2015)). It is

therefore straightforward to show that the BASD form of
the CRD is given by

b(d) = B
|a|dap′−1

(
1 −

(
d
b

)a)q−1

bap′B(p′, q)
(10)

where p′ = 1+ 2
a , B is total stand basal area, and b(d) is the

basal area density at diameter d, analogous to the numbers

density n(d) (of course, both b(d) and n(d) conforming to
the normal continuous density interpretation). It is worth
noting here that the PDF component of (10) is a full GB1
form, since the parameter restriction on p has been lifted
through its dependence on the CR growth parameter m.
This will result in a richer set of distributional shapes for
basal area in general.
Notice in (10) that the total basal area, B, is required.

Normally an inventory will yield an estimate of this figure
from the sum of the individual tree basal areas per unit
area. However, an inventory may not yield a compatible
estimate for the entire basal area distribution over full sup-
port of the CRD (d0, d∞) matching the GB1 estimate of
population size, Ñ , but, the size-biased CRD relationship
does indeed provide such an estimate. Recall the simple
relationship of numbers and basal area to the quadratic
mean stand diameter (D̄q), (e.g., (Gove and Patil 1998));
viz.,

B̃ = κD̄2
qÑ (11)

where D̄2
q ≡ μ′

2 such that

μ′
α = bαB

(
p + α

a , q
)

B(p, q)
(12)

is the αth raw moment of the GB1 density (Ducey and
Gove 2015); and κ the conversion factor from diameter-
squared to basal area. Thus substituting B̃ in for B in (10)
yields the theoretical basal area density that will exactly
match that of the theoretical numbers density.

Parameter estimation
In order to fit the CR growth model, the diameter incre-
ment data, dd

dt , must be available from increment cores,
dendrometer bands, permanent remeasured plots or the
like. In the latter case, mortality data would also be avail-
able. In this case the procedure would be to fit the growth
model using the methods described below, and estimate
the mortality rate,M, from themean of the mortality data.
If ingrowth data are available, this would similarly provide
an estimate of the recruitment rate, R. If ingrowth data are
not available, but mortality rate and the number of trees,
N, are known (i.e., estimated) for the population in ques-
tion, then the recruitment rate can be estimated from the
equilibrium relation

R = MN (13)

When only the diameter increment and DBH data are
available, we must resort to slightly more sophisticated
methods for estimating recruitment and mortality. A two-
step estimation process is proposed where (i) the CR
growth equation is estimated from the diameter incre-
ment data, possibly on a data set that is independent or a
subset of the population for which the final numbers den-
sity is desired; and (ii) the mortality rate is estimated using
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the empirical diameter distribution for the population of
interest. These steps are straightforward and are detailed
in the following sections.

Estimating the CR growth curve
Two basic approaches are available for the estimation of
parameters in (3): unconstrained and constrained non-
linear least squares (NLS). The unconstrained problem
is straightforward, and is often reasonable for general
growth modeling applications. However, there is a poten-
tial problem with this approach given the desire to fully
estimate the CRD (5) (or, equivalently, the CR-GB1 (7)).
The distribution inherits the upper bound on diameter,
d∞, from the growth curve, and fitting the curve with sim-
ple NLS can produce a maximum diameter that is either
higher or lower than what is found in the stand distri-
bution under consideration. If the estimated d∞ is larger
than the observed maximum diameter, dmax, then there
will be extra density above the largest tree in the popula-
tion. This is not such a bad situation if the overall density
is small in this diameter range, as the growth curve will
still predict diameters encompassing the largest tree in the
population. More problematic is when the estimated d∞
is less than the largest tree in the population. The growth
function does not exist for trees larger than the estimated
d∞, nor does the density, both of which are clearly present
in the population. This latter case may occur when the
larger trees in the population were not represented in the
sample of growth trees used to fit the regression. The first
case can occur regardless, when the growth on the larger
trees show large variation.
An elegant method was proposed by Shifley and Brand

(1984) to constrain the CR growth model so that it ter-
minated at some observed or target maximum diameter.
These authors used relation (4) to re-write (3) in terms of
d∞ rather than γ , in the form

dd
dt

= η
(
dm − d∞(m−1)d

)
0 ≤ d < d∞ (14)

This equation involves only two unknown parameters to
be estimated, η and m, since d∞ is specified as a con-
straint and is assumed known from measurements. After
this is fitted, onemay easily obtain an estimate for γ , to get
the third desired CR parameter by simple re-arrangement
of (4) as γ = ηd∞m−1. This constrained nonlinear least
squares (CNLS) method was adopted in this study to fit
the CR function in the first phase of estimation. As noted
above, this will fix the target d∞, which will then be inher-
ited by the CR-GB1, ensuring the appropriate coverage
in the numbers density for the range of diameters in the
target population.

Estimatingmortality
There are many methods that could be used to esti-
mate mortality. One such method, parameter recovery,

has been discussed earlier. In this case a simple estimating
equation based on basal area similar to that presented in
Gove and Patil (1998) and Gove (2004) can be developed
and solved as a simple sums-of-squares minimization
problem. However, an even simpler approach is to apply
the principles of maximum likelihood (ML) to either (5)
or (7) to develop an estimator for mortality. While both
approaches produce closed-form solutions, it turns out
that the CR-GB1 form, (7), is easier to work with, and
produces a simpler estimator equation than (5). The ML
estimator for mortality based on (7) is (Additional file 1:
Section S.3.1)

M̂ = nγ (m − 1)
{ n∑

i=1
ln

(

1 −
(

di
d∞

)1−m
)}−1

(15)

where di, i = 1, . . . , n is a sample of diameters represent-
ing an empirical diameter distribution for the population
of interest. Note that this is written in terms of the esti-
mated CR growth parameters γ ,m, and d∞, though it can
be easily re-expressed in terms of η rather than γ (e.g.,
Additional file 1: equation (S.9)). As a final step, if no
ingrowth estimates are available, then recruitment can be
estimated using relationship (13).

Simulations
A set of simulations was designed to test the convergence
of the simple two-step parameter estimation scheme out-
lined above. The simulations look at both the effect of
sample size and magnitude of added noise to the growth
increments on the convergence of the estimated growth
equations and the overall distribution. In the simulations
it is assumed that n diameters are drawn from the respec-
tive population distribution and that growth increment
is determined on each tree in the sample. Furthermore,
the growth is computed using (3) with the population
parameters and additive Gaussian noise; viz.,

g(d) = ηdm − γd + ε 0 ≤ d < d∞

where ε ∼ N (0, σ 2). Two different levels of Gaussian
noise were added to the growth increments with stan-
dard deviations σ1 and σ2 cm·yr−1 depending on the
distribution shape.
The diameters were drawn from four different distri-

butional shapes that roughly characterize the flexibility
of the CR-GB1 distribution. These shapes are listed in
Table 1 along with the population parameters used in
the simulations; in addition to the growth and vital rate
parameters, the populations size Ñ based on (13) and the
total stand basal area, B̃ from (11), are also given. Sam-
ple sizes of n = 25, 50, 100 and 200 trees were drawn in
a Monte Carlo experiment for each of the four shape and
two noise level combinations, each with N = 500 Monte
Carlo replicates. In each replicate, the maximum diameter
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Table 1 The population parameter values for four different
distributional shapes arising from the CRD

Population
parameter

Concave Positively
Skewed

Rotated-
Sigmoid

U-Shaped
(Bathtub)

m -0.180 -0.280 0.260 0.540

η 0.840 0.540 0.330 0.480

γ 0.012 0.004 0.019 0.088

R 20.000 20.000 20.000 21.000

M 0.019 0.019 0.019 0.026

d∞ 36.614 46.166 47.353 39.962

Ñ 1052.632 1052.632 1052.632 807.692

B̃ 32.474 19.939 35.858 31.689

σ1 0.080 0.080 0.100 0.080

σ2 0.150 0.120 0.180 0.160

was fixed at the population value of d∞ for estimation of
the growth curve via CNLS. This produced a simple fac-
torial design with 32 factor levels. Convergence in growth
equations and distribution is demonstrated graphically in
the results, while a set of Kolmogorov-Smirnov (KS) tests
([p. 344], (Conover 1980)) is also presented as an index of
fit for the distributional results.

Results
Growth Estimation
There is little new per se in our results regarding the
estimation of the CR growth function by nonlinear least
squares, though the extensive use of the constrained
approach in a Monte Carlo setting, which was well-
behaved overall, may be somewhat novel. Here, however,
the focus is not on the efficacy of the CNLS approach
in general, rather the intent is to demonstrate the effects
of the assumed noise levels on the estimation of the CR
growth parameters by comparing the perturbed results
to the population. Moreover, the ultimate goal is to illus-
trate how the variability in the growth increment data—
through its effect on the CNLS fit results—affects the final
estimation of mortality and recruitment in the second
phase of estimation.

Effects of noise
Figure 1 illustrates the differences in the growth incre-
ments due to the noise parameter, σ , using n = 1,000
diameters drawn from the Rotated-Sigmoid distribution
(Table 1). The set of actual diameters drawn are the same
in Fig. 1a,b, only the growth increments differ due to the
difference in noise standard deviation. Note that noise val-
ues that would cause negative increments were discarded
(and a new value re-drawn) in Fig. 1 and the simulations
below, resulting in a mildly truncated normal distribution
for some values of the individual noise, εi. This is minor
for both levels, but more pronounced for the higher noise

standard deviation, σ2. The increments in Fig. 1a show a
scatter that might be reasonably associated with the fit
of this model. The figure clearly shows that the CNLS fit
for these data is quite close to the population curve from
which it was generated, and that d∞ is equivalent for both
these curves. The unconstrained NLS fit is also presented,
showing how the scatter can result in a poorer fit to these
data, with larger estimated value for d∞ from the associ-
ated coefficient estimates. Figure 1b illustrates the result
of the larger noise associated with the increments. The
fact that the underlying model is shown by the popula-
tion curve in this case is less convincing due to the high
degree of scatter. The resultant fit for the CNLS curve is
obviously worse (in the sense of matching the population
curve) than that for Fig. 1a, though d∞ is again preserved
to the population value as desired. The unconstrained
NLS fit is poor, with an estimatedmaximum diameter that
is much larger than the population value of d∞ due to
the high degree of scatter in increment values around the
upper DBH limit, effectively lifting the curve at the pop-
ulation d∞ value into the mean of the increment values
at the larger diameters. This simple example clearly illus-
trates that the noise corruption added under the standard
deviation σ1 can provide reasonable estimates close to the
population parameter values for a large sample size. On
the other hand, increments showing more scatter under
σ2 may not lead to parameter estimates that are as close
to the population values. Keep in mind that these results
are based on a larger sample of diameters and growth than
what are used in the simulations below. Corresponding
graphs for the other three distributions shapes listed in
Table 1 are shown in Figure S.5 in the Additional file 1,
where similar interpretations apply.

Convergence in growth
The methods described in the previous section were
applied to the estimation of the CR growth function
under each of the four distributional shapes with each
of four levels of sample size, n, and two levels of stan-
dard deviation, each repeated N = 500 times. Figure 2
presents the results for the Rotated-Sigmoid shape with
a subset of individual growth curves shown. As would
be expected, regardless of perturbation level, the individ-
ual Monte Carlo estimated curves tend to converge (the
spread becomes tighter) to the population growth curve
as sample size increases. This phenomenon is much more
pronounced for the σ1 curves, such that the nσ1 = 25
ensemble set (where nσ1 denotes the sample size n for
the σ1 set) is roughly equivalent in spread to the nσ2 =
100 curves, while the nσ1 = 50 and nσ2 = 200 results
are also approximately comparable. The mean curves in
each panel denote the curve that corresponds to the set
of mean parameter values for each of the N ensemble
members. These mean curves track the population curve
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(a) (b)
Fig. 1 A sample of n = 1,000 diameters from the Rotated-Sigmoid population for a σ1 = 0.10 and b σ2 = 0.18, demonstrating the effect of noise
on dd

dt increment variability, with the population curve (solid), the unconstrained fit (dashed blue), and the constrained fit (dot-dashed red). Note the
difference in scale for the growth increments between the two figures. Similar results for the remaining three shapes in Table 1 are in Additional
file 1: Figure S.5

well for all levels of nσ1 , and for larger sample sizes in
nσ2 , but the mean curve for nσ2 = 25 is quite poor,
yielding a very low estimate for d∞. The results for the
U-shaped distribution growth curves (Figure S.8) are sim-
ilar to those for the Rotated-Sigmoid distribution. The
U-shaped ensemble spread appears tighter in most cases
than those for Rotated-Sigmoid but this is due in part to
the scale of the two curves: while the shape is similar, the

U-shaped population growth curve has a maximum diam-
eter growth at twice that of the Rotated-Sigmoid curve.
The mean curves for σ2 converge more slowly for the
U-shaped ensembles.
The growth curves for the other two distributional

shapes, Concave and Positive-Skew, show a continuous
decline in growth from the smallest to largest diame-
ter classes yielding mildly reverse J-shaped curves overall

Fig. 2 Convergence of growth in sample size, n, represented by a subsample ofN = 50 Monte Carlo replicates (dotted) for the Rotated-Sigmoid
population (solid blue) and mean (of the fullN = 500 replicates) curve (dashed red) for a σ1 = 0.10 and b σ2 = 0.18. Similar results for the
remaining three shapes in Table 1 are in Additional file 1: Figure S.6–S.8



Gove et al. Forest Ecosystems            (2019) 6:27 Page 9 of 17

(Figures S.6 and S.7), unlike the concave Rotated-Sigmoid
and U-shaped curves. As diameter nears zero in both sets,
the predicted growth can become quite large and is trun-
cated for display at a diameter of 0.1 cm in both cases.
Also, in both cases, regardless of noise level, there is at
least one estimated curve in the ensemble that flips to a
concave shape at the n = 25 level. For the Concave-σ2
curves, only nσ2 = 200 lacks such a flip. The ensemble
growth curves are all well-estimated for nσ1 > 25 over
both distributional shapes. When more noise is added to
the estimation scenario, nσ2 of at least 100 appears nec-
essary for consistent estimates under both distributional
shapes.

MLEMortality Estimator Convergence
The estimation of the CR growth parameters through
nonlinear least squares is, in general, well supported. The
results in the previous section indicate that lower noise
in the growth observations lead to better behaved curves;
and in each case, the model curves tend to converge as
sample size increases. None of this is surprising. In the
two-phase estimation scheme proposed, the results from
the last section may now be considered as fixed constants
and incorporated into the ML estimator for mortality,
(15). This section provides details on the convergence
of this estimator where the simulation results from the
last section are used as a basis for conditional estima-
tion. Recall that diameter growth only enters the model
estimation phase through the estimation of the growth
equations; and the same diameter values drawn for use in
those simulations are used here for the mortality results.
Efron and Hinkley (1978) advocate the use of the

observed rather than the expected Fisher information for
establishing confidence intervals on individual estimates.
It is easily shown (Additional file 1: Section S.6.1) that an
estimator for the variance of the MLE using the observed
information is given by

V̂ar
(
M̂

)
= M2

n
(16)

Likelihood theory then provides that an asymptotic confi-
dence interval for the estimate is given by

M̂ ± 1.96
√

V̂ar
(
M̂

)
(17)

The relationship in (17) was used to establish approxi-
mate confidence intervals on the MLE for mortality in
each of the Monte Carlo simulations. The percentage
of times these confidence intervals capture the popula-
tion mortality parameter, M, is given in Fig. 3 (with full
results in Additional file 1: Table S.1). The capture rates
for nσ1 ≥ 100 are in the range of ∼ 94–96% for all
shapes, with only slightly lower rates for the U-shaped dis-
tribution attributable to chance. The smaller sample sizes,

nσ1 < 100, showmixed results as would be expected.With
the exception of the Rotated-Sigmoid shape, the results for
nσ1 < 100 vary in a non-systematic manner for each dif-
ferent shape, with some capture rates approaching ∼ 92%
(Positive-Skew) and others as high as ∼ 96% (Concave).
The results for nσ2 are more varied and less conclusive

as would expected due to the less reliable results of the fit-
ted growth equations: if the underlying growth equations
are not estimated accurately, then conditional basis for
application of the ML estimator is reduced. There is con-
siderable ‘randomness’ associated with all shapes, even
the well-behaved Rotated-Sigmoid shape suffers from a
decline in capture rate to ∼ 91% at the largest sample
size. Clearly, the conditional foundation on which (15)
is applied for likelihood estimation is diminished to the
point where the results are of questionable value when
larger variations in diameter growth observations lead to
poorer fit in the CR function. Recall that the intervals
given by (17) are asymptotic, and therefore, the tendency
for decreased capture rates at the largest sample size is
troubling: the lower rates may be a more honest indicator
of the MLEs under poorly estimated growth equations.
A second approach is to regard the Monte Carlo esti-

mates as the random samples that they are and establish
sample-based confidence intervals based on the distribu-
tion of samplemeans using the averagemortality estimate,
ˆ̄M, and the standard error of the estimate. This approach
provides one summary confidence interval for each shape-
nσ level, the results of which are presented in Fig. 4. Sim-
ilar to the likelihood-based intervals, the sample-based
intervals tend to decrease as sample size increases. The
average mortality estimates for σ1 converge by approxi-
mately n = 100; the small upturn for the Concave and
Positive-Skew shapes are negligible and attributable to
chance. The results for σ2 appear to be less accurate, with
mean estimates converging only the U-shaped distribu-
tion. These results corroborate those of Fig. 3, indicating
that the estimates for the growth equations produce a less
reliable MLE on average as the variability in the observed
growth increases.

Convergence in Distribution
The Monte Carlo ensemble sets of growth curve param-
eter estimates and their associated MLEs for mortality
from the two-phase estimation results in the previous two
sections were used to generate the corresponding num-
bers densities (5) (or equivalently (7)); recruitment was
estimated using (13), substituting the MLE for mortal-
ity into this estimator. This provides a complete set of
numbers densities, which can be compared to the popu-
lation density at each experimental level. Recall that the
same diameters were used for both levels of σ in both
phases of estimation for each Monte Carlo sample at each
given shape-sample size level, so that only the variability
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Fig. 3 Percent catch forN = 500 individual Monte Carlo observed Fisher information confidence intervals on estimated mortality at the nominal
α = 0.05 level by sample size, n, for σ1 (solid blue) and σ2 (dashed red) within each shape. Complete results are found in Additional file 1: Table S.1

(a) (b)
Fig. 4 Convergence of average ML mortality estimates, ˆ̄M, (solid dots) in sample size, n, fromN = 500 Monte Carlo replicates per level. The
population value,M (dotted) and sample-based 95% confidence intervals (shaded) are also shown. a σ1. b σ2
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Fig. 5 Convergence of distribution in sample size, n, represented by a subsample ofN = 100 Monte Carlo replicates (dotted) for the
rotated-sigmoid population (solid blue) and mean (of the fullN = 500 replicates) curve (dashed red) for a σ1 = 0.10 and b σ2 = 0.18. Note that the
lowest diameter class width is (0, 1.5] cm, while the largest class width is [ 46.5, 47.353] cm. Similar results for the remaining three shapes in Table 1
are displayed in Additional file 1: Figures S.9–S.11

in the growth observations is responsible for observed
differences between distributions at each level.
The results for the Rotated-Sigmoid distribution are

presented in Fig. 5 using a random subset of approx-
imately N = 100 ensemble members out of the full
complement of 500 at each shape-nσ level. For nσ1 < 100
the individual distributions appear to fit reasonably well,
except that a few aberrant U-shaped distributions tend
to appear. Recall that the growth functions for Rotated-
Sigmoid and U-shaped distributions both share a similar
shape (compare Figs. 2 and S.8), with the main difference
being that of larger growth increments and higher average
mortality rate (Fig. 4) in the latter; such a random draw
coupled with the mortality estimate will evidently cause
a flip in shape in these few realizations. Distributions for
nσ1 ≥ 100 are all generally well-behaved, with the mean
densities (over all N = 500 members) converging quickly
by nσ1 ≈ 50. Similar trends hold for the σ2 results in
Fig. 5b, except that the number of aberrant distributions
has increased for nσ2 < 100, with a few U-shaped forms
continuing to appear in the larger sample sizes. The differ-
ence in overall fit is also shown by the mean curves, which
are poorly estimated for the levels with nσ2 < 100.
The other shapes (Additional file 1: Figures S.9–S.11)

share many features with that of the Rotated-Sigmoid
results. All distributions tend to converge with increasing
sample size and do somore rapidly at the lower noise level,
σ1. The Concave ensembles show some sigmoid-shaped

distributions arising at nσ1 < 100, while a few U-shaped
forms also appear in the nσ2 < 100 groups. Notable
also are Concave distributions with some degree of posi-
tive skewness. The mean distributions are all remarkably
close to the population distribution given the anomalous
forms. The Positive-Skew forms are also well-behaved in
general with a few tending towards reverse J-shaped or
Rotated-Sigmoid, especially in the smallest sample size.
The mean distributions are all well-formed for all nσ lev-
els. Of particular note, d∞ is very well estimated in all
scenarios for both distribution shapes. Finally, in the U-
shaped distributions a small quantity of aberrant shapes
in the smaller sample sizes for nσ < 100 appear, which
tend to L-shaped or mildly rotated-sigmoid in form. The
mean distribution is well estimated for nσ1 > 50, but
it is poorly estimated for nσ2 < 100, apparently due in
large part to average parameter values that underestimate
d∞ in (4).
In an effort to provide a form of numerical index to

facilitate the above qualitative comparison of distribution
convergence, KS tests for agreement in distribution were
calculated at each combination level. Thus, the test com-
pared each Monte Carlo realization of the distribution
against its population counterpart as given in Table 1,
resulting in N = 500 KS tests performed at each shape-
nσ level. The null hypothesis for each such test is that
there is no difference between the simulated and popula-
tion distributions; the rejection level used was α = 0.05.
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This simulated distribution versus population test is sim-
ilar to traditional treatment versus control, and the tests
are therefore dependent in nature within a given shape.
The p-values for each level were adjusted using a method
that controls the false discovery rate (FDR) developed by
Benjamini and Hochberg (1995); this method was sub-
sequently shown to be applicable to dependent tests by
Benjamini and Yekutieli (2001). In essence, the FDR is
simply the expected proportion of all rejections that are
false as described by these authors; and it is applied to
the family of distributions at each shape-nσ level in the
simulations. Fully congnizant of the recent concerns and
discussions over the use and misuse of p-values ([e.g., see
also associated comments online] (Wasserstein and Lazar
2016)), it must be emphasized that our use of these meth-
ods is not for formal testing per se, but simply to provide a
more tangible way to quantify how the distributions con-
verge than by the Monte Carlo distribution plots alone
(e.g., Fig. 5). The results are therefore presented simply
as the percentage of rejections at each experimental level,
and it is important to note that the α-level used is imma-
terial in this context as any reasonable cutoff could have
been chosen: it is largely the trend of ‘rejections’ with
sample size regardless of level that is of interest.
The results of the convergence index calculations just

described are presented in Fig. 6 (for details see the

Additional file 1: Table S.2). The results clearly illustrate
that the smaller sample sizes are inadequate for estima-
tion of the numbers density regardless of the amount
of variability in the growth observations. It is interest-
ing to note that evidently the Concave and U-shaped
distributions were the least affected by the difference in
noise level in terms of percentage of model rejections
at the larger sample sizes. This is all the more interest-
ing because the two growth curves are of different shape
class. This suggests the conclusion that these particular
distributional shapes are more robust in terms of slight
variations in growth curve than perhaps are the other two
forms studied (however, see the Discussion). The results
for the Rotated-Sigmoid shapes show the largest sepa-
ration in fit index of any shape-class in the n = 100
sample size. As mentioned above, note in Fig. 5 that
there are a few σ2 distributions that still turn U-shaped at
this sample size (the full set of N = 500—not shown—
corroborate this proportionally), while those in the σ1 set
are all quite well behaved. Indeed, the Rotated-Sigmoid
nσ2 = 100 distributions record the most rejections,
while the nσ1 = 100, the least, of the four shape classes
(Additional file 1: Table S.2). The results for the Positive-
Skew distributions are unremarkable in terms of the index
results, shedding no new interpretation on the graphical
results.

Fig. 6 Percentage rejections of KS tests using adjusted p-values at the α = 0.05 level illustrating convergence of distribution in sample size, n, with
N = 500 Monte Carlo replicates for σ1 (solid blue) and σ2 (dashed red); the 5% level is also shown (dotted). Complete results are found in Table S.2
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Discussion
The Chapman-Richards distribution described here is a
fairly flexible family of numbers density curves that are
intrinsically tied to the stand demographic drivers of
(i) diameter growth that follows the Chapman-Richards
growth function, (ii) constant per-capita tree mortality
over all size classes and, (iii) constant recruitment. The
distribution is presented in its equilibrium form, because
this facilitated the link to the GB1 distribution and the
subsequent derivation of the ML mortality estimator. It
also facilitated the design and implementation of sim-
ulations for the assessment of the proposed two-phase
estimation method and should make future comparison
with alternative estimation schemes, should they be pro-
posed, simpler. As noted earlier, the CRD has the ability to
take a fairly large set of final shapes; a subset of only four
were presented here in order to identify the behavior of
the proposed model and estimation scheme over a range
of shapes. These included two potentially useful forms in
forestry in the Positive-Skew and Rotated-Sigmoid shapes,
along with the two more extreme shapes represented by
the Concave and U-shaped distributions, which would
perhaps find less use in forestry diameter distribution
applications.
The target, or population distributions in Table 1, were

chosen to have approximately the same values for R and
M, yielding the same population size,N, for three levels of
shape; the U-shaped distribution was found to be unable
to support this number of stems at a reasonable level
of basal area and maximum diameter. This latter point
is important because not every combination of parame-
ters will yield realistic growth curves, final distributional
forms, and consequent stocking parameters. However,
controlling these variables to be as close as possible as
part of the experimental design also reveals very suc-
cinctly how the different shapes lead, unsurprisingly, to
different basal areas, and demonstrates how changes in
the growth parameters alone can affect the curve shapes.
This particular design was a determined choice because
of the complexity of the model and the number of free
parameters and it is straightforward to show that one can
similarly fix the growth parameters and manipulate M
(since recruitment is a simple scale factor) resulting in a
similar range of shapes. Manipulating all parameters can
thus yield a very complete set of shapes and upper diame-
ter limits, a more complete enumeration of which, is well
beyond the experimental limits of the study.
Given the number of free parameters and the range

of shapes just described that could be elicited by either
manipulation of the CR growth parameters while hold-
ing mortality constant, or changing mortality for a given
growth parameter set, it is not surprising that the two-
step conditional approach to estimation was a reasonable
solution to the estimation problem. It also may be of no

surprise that a maximum likelihood solution on the full
parameter set was attempted and failed because of this
interaction effect between growth and mortality in the
model, leading to multiple parameter set solutions for a
given data set. However, this full ML approach was based
only on the observed diameter distribution; inclusion of
the increments was not attempted. Inclusion of the incre-
ments into a joint likelihood could produce issues with
scaling, leading to multi-modal likelihoods (e.g., (Gove
1995)).
Indeed, each of the parameters has the ability to affect

the shape of the distribution with the exception of recruit-
ment, which is a simple scale factor. The growth function
serves to shape the survival function, which, in turn is
also dependent on growth. Therefore, each of the growth
parameters can change the distribution shape. However,
the growth function is fitted to the growth increments and
is independent of the stand distribution shape (except in
the sense that growth can be density-dependent); and it
has been noted that the growth sample need not come
from the stand where diameters were sampled, only rep-
resent its underlying increments. Thus, it is the stand
diameter data that fine tunes the final shape of the dis-
tribution. This is determined only by mortality. As noted
above, it is easy to show that for given set of growth
parameters, changing mortality can change the stand dis-
tribution through a variety of shapes similar to those
presented here. The two-step procedure for estimation,
therefore, appears to make sense. While it would be inter-
esting to have a joint procedure as noted previously, this
appears to be unnecessary, and would actually restrict the
increment data to be from the same trees as the diameter
data (or a subset thereof).
As noted previously with regard to the KS statistic

results, the Concave and U-shaped distributions appear
to be more robust at all but the smallest sample sizes.
However, this interpretation is conditional on the σ val-
ues chosen; thus, it may simply be that the chosen values
did not impart as much variation for the high level as
expected, hence the better results. A certain amount of
subjectivity went into the selection of the two σ levels for
each growth equation. This was due in part to the mono-
tone reverse J-shape associated with the Concave and
Positive-Skew distributions. In the very small diameters
the curve increases quickly so that perturbations added
to such values can result in abnormal growth estimates
(Additional file 1: Figures S.6 and S.7). Therefore, these
two sets of σ2 especially, were set to levels that did not pro-
duce extreme synthetic observations. A natural constraint
on the standard deviation of the perturbations appeared
in that too large a noise level can lead to NLS results
with poor fit statistics with models that depart from the
population curve not only in degree within growth curve
shape, but also in overall shape as has been demonstrated
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at smaller sample sizes, especially for the σ2 level. The
results point out that if the CR model is fitted to growth
data with moderately large degree of variation, aberrant
distributional shapes are possible in combined param-
eter estimation at moderately small sample sizes. This
phenomenon may also occur if a growth equation that
is inappropriate for the stand diameters under consider-
ation is used in the model. Even though mortality can
have a large effect on overall distribution shape as noted
above, one can not expect ML to correct for an inappro-
priate growthmodel, and if it does in some instances, then
the entire model estimation results are suspect, including
both growth and mortality.

Limiting Forms
McDonald (1984) presents a hierachy of different well-
known distributions that can be derived by simple math-
ematical arguments from the full GB1 distribution. Like-
wise, the CR-GB1 also has similar distributions as sub-
ordinate forms. Two examples that will be discussed are
the two-parameter Weibull and the negative exponen-
tial distributions. These particular distributions are found
using a limiting argument that is outlined in the appendix
by McDonald (1984) (details of the derivation are avail-
able from the authors on request). The first part of the
derivation entails the substitution b = β(p + q)

1
a , which

implies that β = b
(p+q)

1
a
. Following substitution, the CR-

GB1 is written in terms of β rather than b. This density
is simplified by letting q → ∞ after employing Sterling’s
approximation and other simplifications. This limit in q
is not applied to the terms in β , however. Thus, all of
the parameters in the original CR-GB1 are retained in the
limiting forms. The final form is again a subset of the gen-
eralized gamma distribution (GGD) with p = 1. However,
the GGD with p = 1 is simply the two-parameter Weibull
distribution; viz.,

f (d; a,β) = ada−1e−
(
d
β

)a

βa a,β > 0 (18)

with shape parameter, a, and scale parameter β . The neg-
ative exponential distribution follows immediately from
(18) by letting a = 1, which forces the condition that
m = 0 in the CR growth equation since a = 1−m, imply-
ing linearly decreasing growth. The negative exponential
form is given as

f (d;β) = 1
β
e−

d
β β > 0 (19)

with rate parameter λ = 1
β
.

At first glance, the above results seem like a very sim-
ple way to connect the underlying vital rates with the
oft-used Weibull and negative exponential distributions

in forestry. However, there is a problem with this inter-
pretation for two reasons. First, under the CR-GB1, the
parameter b ≡ d∞ by definition; this substitution means
that there is now an added constraint on the underlying
parameters such that b = β(p + q)

1
a must equal (4). The

original reparameterization of b by McDonald (1984) was
simply an expedient way to create a new parameterization
of the GB1 density that would yield itself to further sim-
plification. There was no reason to be concerned with this
originally under the full GB1 because b was not already
defined in terms of other model parameters as it is here.
However, under the CR-GB1 this leads to a potentially
conflicting redefinition of parameter b.
The second reason why this is problematic is found in

the fact that a limiting argument, q → ∞, was used
in the derivation procedure to arrive at the final distri-
butional forms of the Weibull and negative exponential
distributions in (18) and (19). Because q is comprised of
three of the vital rate parameters, γ ,m, and M, informa-
tion on the relationship of these parameters to the original
vital rate assumptions has been lost through the appli-
cation of this asymptotic argument. Thus, the limiting
argument for the development of the Weibull and neg-
ative exponential forms has decoupled the remnants of
these parameters (still found in a and β) from the under-
lying growth and mortality equations that were inherent
components in the original CRD model (5) through the
loss of parameter information. The crux of the problem
stems from the factorization of (5) in getting to (7), which
creates a situation where the full set of parameters are
no longer concentrated in the recognizable forms of the
CR growth equation, g(d), and the CRD survival function,
S′(d). Thus, application of the limiting argument made
some of the pertinent terms in the dispersed model (7)
vanish, and the full forms of these important functional
components—growth and survival—of the full CR-GB1
density were broken as a consequence.
The conclusion to this is that while (18) and (19) still

retain all of the vital rate parameters (they can be mul-
tiplied by Ñ to include recruitment and form numbers
densities), there is no relation now between the driving
vital rates and the final densities. The two-step estimation
procedure no longer provides the relationship between
estimated growth parameters and the CRD or CR-GB1
because of the information loss. If the CNLSmethod were
used to estimate the CR growth function, it would not aid
in estimating (18) and (19) because the simplification has
destroyed the fundamental link between the vital rates and
the density. It is too much to ask that a ML scheme involv-
ing the only remaining unknown parameter, M, would
yield meaningful results. The result of the limiting forms
is shown in Fig. 7, where the same population parameter
sets fromTable 1 are used for each density. Note that there
is no relationship between either the Weibull or negative
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Fig. 7 The numbers densities for the limiting two-parameter Weibull (red, dashed) and negative exponential (blue, dot-dashed) in comparison to
the true population distribution (gray, solid). (Refer to Table 1 for the parameter values used)

exponential densities to underlying true population CR-
GB1 density in any case; thus illustrating the complete
decoupling of vital rates from limiting forms.
It must be emphasized that the fact that these limiting

forms, while interesting, are not useful in the sense of a
full demographic model, this does not mitigate against the
actual CRD (CR-GB1) itself. The forms contained within
the limiting distributions are also largely found in family
of shapes within the CRD models (5) and (7), though in a
less obvious manner.

Conclusions
The so-called CRD and associated CR-GB1 is based on
the vital rate assumptions that diameter growth incre-
ments follow a CR growth curve, and mortality rates
are constant over diameter, with constant recruitment.
These assumptions have been investigated under the
equilibrium solution to (1) for a range of distribution
shapes that depend on two general forms of the under-
lying growth equation: convex and concave responses.
Simulation experiments designed to assess the sample
size requirements for the two-phase estimation scheme
yielded variable requirements for both growth and mor-
tality estimation; however, a conservative estimate of n =
100 to 200 observations in each shape-nσ case seems
necessary for convergence, depending on the amount
of variation in the diameter increments. The variation

observed in the simulation results for the numbers den-
sities was, of course, also linked to the individual Monte
Carlo samples drawn, which obviously deviate from the
target population distribution. However, the results of the
KS rejection index indicates that more of the individual
distributions tend to conform to those of the population
as sample size approaches n = 200 observations. In addi-
tion, for each shape-nσ combination, the mean of the
distributions converges as expected to the population dis-
tribution as sample size increases. Thus, somewhere in the
neighborhood of n = 200 observations would be a rea-
sonable target for estimation of the CRD and its vital rate
components.
We have referred to the CRD and more generally those

arising from (1) as inherent distributions because of the
mathematical link between the numbers density and the
underlying vital rates, which shape the density and asso-
ciated survival function. It might be argued that in one
sense, the CR growth equation and the constant mortal-
ity, being empirical models, makes the CRD a form of
assumed model at the size dynamics level in the model
structure. Of course, this is quite common in growth
models and is also found in the many studies cited.
However, the vital rate models are not required to be
empirically based: in general, process models or a more
mechanistic approach could also be used. In such cases,
this would lend a more complete connection between
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the processes driving the vital rate models and the final
numbers distribution form.
The CRD arises from simple assumptions on growth

and mortality. As noted earlier, these may be general-
ized into more complex models which will produce far
more flexible SSD forms, including multi-modal distribu-
tions (VanSickle 1977; Botsford et al. 1994). Though the
more complex the vital rate models, the less likely there
will be any link to known statistical distributions as was
found here. A further complexity in the SSD model (1)
can be accommodated in the sense of density dependence.
The current model is considered density independent,
since the number of trees in the stand (or some function
of stocking like basal area) does not appear within the
growth equation component of the model. However, if a
more complex density dependent model were assumed,
with feedback through any of the vital rates including birth
or mortality, then model (1) becomes nonlinear, generally
requiring more sophisticated solution methods (Murphy
1983) with concomitant loss of connection to known PDF
forms such as the GB1 described here.
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