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Abstract

Background: To accurately and efficiently quantify forest carbon stocks, a good forest inventory using appropriate
sampling that minimizes costs and human effort is needed for landowners who want to enter carbon offset markets.
The most commonly used sampling unit is the fixed-area plot; however, it is time consuming, expensive, and is often
less accurate than variable probability methods when resources are limited. Previous studies show that big
BAF sampling is efficient at estimating volume, therefore, it is interesting to explore whether the efficiency
can be extended to carbon. The study is conducted at Noonan Research Forest, which located 30 km northwest of
Fredericton, New Brunswick, Canada. In this study, we compared count BAF effects and measure BAF effects on the
overall sampling outcome and sampling error for total aboveground C and each C component (wood, bark, branches,
and foliage) and explored the minimum sample size requirements and costs for different combinations of count and
measure BAFs.

Results: From our research, we found that the efficiency gained from estimating volume using big BAF sampling can
be extended to carbon estimation. The minimum overall inventory cost from this study is $3500 Canadian, compared
to a full Noonan inventory costs of $40,000 with 2% standard error. We also found that, similar to volume, count BAF
has a larger effect on carbon estimation than measure BAF and the optimum choice of measure BAF depends on the
choice of count BAF. The optimal count BAF and measure BAF combination for Noonan Research Forest was 2/24.

Conclusion: Our results show that big BAF sampling was a very efficient sampling design for estimating carbon and
significantly reduces overall inventory costs. Although big BAF sampling is not widely used in forest inventory, it should
be considered by landowners facing the cost constraint barrier for entering carbon market and seeking a cost-effective
inventory system for estimating carbon.
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Introduction
Forests are globally significant carbon (C) pools, and can
be managed to sequester additional atmospheric C. Ap-
proximately 60% of terrestrial C is estimated to be stored
in forest ecosystems (Elias and Potvin 2003). One of the
widely-used indicators of forest ecosystem C is above-
ground forest biomass (Case and Hall 2008). To estimate
this aboveground forest biomass, a forest inventory is
needed to collect relevant data. With all forest
inventories, there is a need for accurate and precise
estimates that are balanced by a need to be cost efficient
(Kershaw et al. 2016) Therefore, a good forest inventory of

aboveground forest biomass using appropriate sampling
that yields reliable estimates with minimal costs and
human effort is essential for better quantifying forest C
stocks (Ravindranath and Ostwald 2008).
The most commonly used sampling methods for car-

bon projects are simple random sampling, stratified ran-
dom sampling, or systematic sampling with rectangular
or square shaped fixed area sample plots (Brown 1999,
2002; Ravindranath and Ostwald 2008). Very few carbon
inventories actually measure carbon content directly
(Brown 2002) and, instead, rely on common individual
tree measurements (such as diameter and height) and
allometric equations (Brown 1999; Lambert et al. 2005;
Heath et al. 2009). The use of allometric equations
reduces the task of carbon estimation to a standard
forest inventory where the main concerns are: how many
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sample points; how these sample points are located
across the area of interest; what types of sample units to
use; what tree attributes to measure and record; and
whether or not to apply hierarchical or subsampling
selection schemes (Kershaw et al. 2016).
The use of fixed-area plots has a long history in forest

inventory and forest monitoring (Iles 2003; Kershaw et
al. 2016), and has been advocated as the preferred
method for carbon estimation and monitoring (Brown
1999, 2002). Using fixed area plots to collect data is rela-
tively straight forward, and can be easily applied to
standing trees and other materials in the forest (Kershaw
et al. 2016). Other reasons for preferring fixed area plot
sampling in forest projects include: 1) fixed area plots
are suitable for both large plots and small plots; 2) easy
to draw their boundaries for periodical and long-term
monitoring; and 3) easy to record GPS readings for sub-
sequent remeasurement and monitoring (Ravindranath
and Ostwald 2008). However, measurement of all trees
in a sample plot using fixed-area plot sampling is expen-
sive and time consuming, even with the most advanced
measurement technology (Rice et al. 2014). In addition,
Rice et al. (2014) showed that challenges such as errors
in stem tallies and in establishing plot boundaries may
contribute to bias in fixed area sampling, and the desired
accuracy or precision may not be achieved even without
these field errors. Thus, a more efficient method of col-
lecting field measurements is needed to improve accur-
acy, and minimize costs and human errors.
Horizontal point sampling (HPS) samples trees propor-

tional to their basal area at breast height (DBH). In HPS, a
horizontal angle is projected and rotated 360° about plot
center. Trees that are larger than the projected angle are
tallied as “in” trees. Because of the sampling geometry,
basal area (BA) per unit area is estimated by multiplying
the count of “in” trees by the basal area factor (BAF). The
ability to estimate BA by counting trees rather than
measuring all the tree diameters makes HPS a very effi-
cient sampling scheme since BA is closely correlated
with other forest attributes of interest such as volume,
biomass, and C (Kershaw et al. 2016).
Big BAF sampling is a subsampling modification of

HPS (Iles 2003; Marshall et al. 2004), which is aimed
at improving the efficiency and accuracy of HPS while
reducing measurement costs. Two angle gauges are
used in big BAF sampling: a small angle gauge is
used to select count trees and estimate BA per unit
area (count BAF); then a larger BAF angle gauge is
used to select trees for detailed measurement of vol-
ume or other attributes of interest (measure BAF).
These measure trees are used to estimate the ratio
between volume and/or other attributes (such as bio-
mass or C) and basal area (XBAR, where X denotes
volume or any other attribute of interest) (Iles 2003;

Marshall et al. 2004; Kershaw et al. 2016). Because
the variation in count trees between sample points is
much larger than the variation in XBAR, big BAF
sampling allocates more efforts to counting trees (i.e.,
more sample points) rather than to measuring trees
which leads to time and cost savings (Marshall et al.
2004; Yang et al. 2017). Therefore, only a small por-
tion of trees across the entire sample, selected using
a larger BAF angle gauge, needs to be measured.
Quantifying the effects of count BAF (cBAF) and

measure BAF (mBAF) on sampling outcomes is essential
for making informed design decisions when using big
BAF sampling (Yang et al. 2017). Yang et al. (2017) ex-
plored the interactions between count BAF (cBAF) and
measure BAF (mBAF) on overall sampling error, mini-
mum sample size requirements, and costs in a mixed
species forest structure in northeastern North America,
and found that the choice of cBAF had a bigger impact
on both overall sampling error and minimum sample
size requirements than did the choice of mBAF when
coefficients of variation of VBAR (CV (VBAR)) were
low. The wide range of choice for mBAF at low CV
(VBAR) can save substantial inventory investment by
choosing a larger mBAF, since the cost of measuring
trees is higher than counting trees. However, when CV
(VBAR) increased, choice of mBAF became increasingly
important and more measure trees were required (Yang
et al. 2017). Yang et al.’s (2017) work also showed that
trade-offs between cBAF and mBAF became increasingly
important as inventory resources became more limiting.
In the eastern Canadian provinces of New Brunswick

and Nova Scotia, almost half of the forested land is in
small private ownership. Given the current low markets
for pulpwood and sawlog material, small private land-
owners are looking for alternative markets for their for-
est products. The potential offered by monetized carbon
offset programs is large, and may help prevent the con-
version of forested land to other uses and/or the aban-
donment of forest management by small private woodlot
owners. Monetized carbon markets, in addition to
potentially helping to slow the rates of anthropogenic
climate change, offers forest land owners a new potential
market for their forest products. However, the require-
ments for an Improved Forest Management project
under a monetized offset program are often beyond the
financial ability of individual small private woodlot
owners. Russell-Roy et al. (2014) estimated costs of de-
veloping a compliance market oriented Improved Forest
Management project on 391 ha of forest-land in Ver-
mont at USD $78,650 for project development alone.
The estimated costs of a forest field inventory under this
same scenario was USD $12,903 for the same 391 ha, with
inventories required to be updated every 10–12 years
throughout the 100-year project timeline. Additional costs
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beyond those above were also identified in the same study,
highlighting the considerable cost barriers that small land-
owners face in accessing carbon offset markets. Big BAF
sampling for C might be one way to potentially reduce the
costs associated with the forest field inventories required
at project initiation and throughout the additional verifi-
cation events, required every 10–12 years throughout the
project lifetime.
To best apply big BAF sampling in carbon inventories,

it is important to explore whether the efficiency gained
from VBAR can be extended to the carbon: basal area
ratio (CBAR) and to quantify the interactions between
cBAF and mBAF on overall sampling error, sample size
requirements, and costs. The objectives of this study
were 1) explore the impact of CBAR on sampling out-
comes for both total C and C by component; 2) explore
the impact of the choice of cBAF and mBAF on overall
sampling error; 3) explore minimum sample size require-
ments and costs for different count and measure BAF
combinations to determine optimum combinations.

Methods
Study site
This study was conducted in the Noonan Research
Forest (NRF, N 45°59′12′′, W 66°25′15′′), a 1531-ha
forest located 30 km northwest of Fredericton, New
Brunswick, Canada. Since 1985, the forest is managed by
The University of New Brunswick. In 2002, a total of
296 stands were delineated on the NRF, of which 38

stands were considered non- forested stands and 19
stands were recently harvested. Hardwood, mixed and
softwood stands compose the remaining 239 stands.
These stands all originated following land clearing and fire
in the 1920s.
A permanent 100m by 100 m inventory grid was over-

laid on the NRF in a north-south, east-west orientation
(Fig. 1). In this study we used random selection within
stand polygons, and 3 grid intersections per stand were
randomly selected. In stands with 3 or less grid inter-
sections, all grid intersections within that stand were
selected. A total of 705 sample points was selected
(approximately 1 point per 2 ha), and all data were
collected in the summer and early fall of 2002 using
a 2M basal area factor angle gauge (i.e., each tally
tree represented 2 m2∙ha− 1 of basal area).
Diameter at breast height (DBH, nearest 0.1 cm),

distance from sample point to tree center (DIST, 0.1 m),
and species were recorded for each count “in” tree. Total
height (TOTHT, nearest 0.1 m) was measured on a sub-
sample of up to three trees per species per plot. For each
species the diameter distributions were divided into thirds
and one tree selected from each third. Species-specific
height-diameter equations were derived from the sub-
sampled heights and total height for all trees estimated.
A total of 8518 trees were tallied and 4572 trees were
selected for height measurement.
The BAF at which trees become borderline (maxBAF) for

all trees was calculated using measured DBH and DIST:

Fig. 1 Map of Noonan Research Forest showing stand polygons by forest type and sample point locations
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maxBAF ¼ DBH
2 � DIST

� �2

ð1Þ

and used in the sample simulations to quickly determine
if trees were “in” or “out” for a given BAF (see Yang et
al. (2017) for more details).

Carbon estimation
To estimate aboveground Carbon (C) storage, above-
ground biomass (AGB) needs to be estimated first using
allometric equations (Elias and Potvin 2003). Using
Lambert et al.'s (2005) Canadian biomass equations,
aboveground biomass was estimated by four compo-
nents/pools (stem wood, stem bark, leaf, and branches)
for each tree. Total biomass was calculated by summing
across the four components. Total C and C by compo-
nent (kg) were estimated using the species-specific con-
version factors from Lamlom and Savidge (2003) for
each tree. The carbon to basal area ratio (kg∙m− 2) for
total, stem wood, stem bark, branch, and leaf, were cal-
culated by dividing the estimated C component by tree
basal area:

XCBARi ¼ CX;i

BAi
¼ CX;i

0:00007854� DBH2
i

ð2Þ

where XCBARi = the carbon to basal area ratio of the X
carbon component (total, stem wood, stem bark, leaf or
branches) for the ith sample tree (kg·m-2); CX,i = esti-
mated X carbon component (total, stem wood, stem
bark, leaf or branches) for the ith sample tree (kg); BAi

= the basal area of the ith sample tree (m2); DBHi = the
measured diameter at breast height of the ith sample
tree (cm).

Big BAF sample simulation
The 705 plots collected in the original complete inven-
tory of NRF were used here to simulate smaller sample
sizes. Sample plots were selected using simple random
sampling, and 250 replicate sample simulations were
generated with different fixed sample sizes ranging from
20 to 100 in steps of 10 and from 100 to 200 in steps of
50. Count BAFs (cBAF) ranged from 2 to 30M in steps
of 2 and measure BAFs (mBAF) ranged from 4 to 100M
in steps of 4. Only combinations where mBAF > cBAF
were used and all allowable combinations of cBAF ×
mBAF were simulated on each sample point selected in
each replicate sample simulation. Count and measure
trees were determined using maxBAF, if maxBAF was
greater than or equal to cBAF, then the tree was consid-
ered “in” for that sample point and cBAF. Likewise,
measure trees were those trees that had a maxBAF that
was greater than or equal to a given mBAF.

Data analyses
To explore the influence of cBAF and mBAF on sampling
outcomes on total C and different C components, trends
were evaluated across the range of cBAFs and mBAFs. For
each sample combination (cBAF × mBAF × sample
replicate), average basal area per hectare (m2∙ha− 1)
was estimated using:

�BA ¼

XN
i¼1

gi � cBAF
� �

N
ð3Þ

where �BA is the average basal area (m2∙ha− 1); gi is the
number of count trees on the ith sample point; cBAF is
the count BAF; N is the number of sample plots. The
mean XCBAR was calculated by averaging the individual
tree XCBARs across all measure trees in the sample
(mean ratio estimator):

�XCBAR ¼
PM

m¼1XCBARm

M

¼ 1
M

� �XM
m¼1

XCm

BAm

� �

¼ 1
M

� �XM
m¼1

XCm

0:00007854� DBH2
m

� �
ð4Þ

where XCBAR is the carbon: basal area ratio of the
Xth C component for the mth measure tree (kg∙m− 2);
M = the total number of measure trees in the sample;
XCm = the content of the Xth C component in the
mth measure tree (kg); BAm = the basal area of the
mth measure tree (m2); and DBHm = the DBH of the
mth measure tree (cm). Average C per ha (kg∙ha− 1)
by C component is then obtained by multiplying each
XCBAR by BA:

�XC ¼ �XCBAR� �BA ð5Þ
Bruce’s formula (Goodman 1960; Yang et al. 2017)

was used to estimate percent sampling error for each
C component for each sample combination:

se% XC
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se%2 Countsð Þ þ se%2 XCBARð Þ
q

ð6Þ

where,

se%ð�Y Þ ¼ 100ðS �Y
�Y
Þ ¼ 100ð Sffiffiffi

n
p Þ ð1�Y Þ ¼

CVð�Y Þffiffiffi
n

p ð7Þ

where �Y is either Counts or XCBAR, S�Y is the associated
standard error, S is standard deviation; CVð�Y Þ = coefficient
of variation; and n = sample size (Note that while
seð �BAÞ > se(Counts), se % (Counts) = se%ð �BAÞ because
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Count and BA differ only by the constant BAF, which
appears in both the numerator and denominator of eq. 7).

The “true” or “best” value of XC (denoted as cXC ) was
assumed to be the normal horizontal point sample average
based on cBAF = 2 and all trees measured (i.e., mBAF = 2)

across the 705 sample points. cXC and its associated stan-

dard error (se%ðcXCÞ) were compared to the estimates of
XC and se % (XC) by cBAF and mBAF using beanplots
(Kampstra 2008) and other graphical methods.

Sample size and sample cost estimation
Using the sampling results, a nonlinear mixed effects
model was fit to predict se%ðXCÞ as a function of sam-
ple size (Yang et al. 2017):

se% �XCð Þ ¼ b0
1
nb1

� �
ð8Þ

with random effects for cBAF and mBAF nested within
cBAF fitted for both b0 and b1. Using the random effects,
the variance contributions associated with cBAF and
mBAF were estimated for each C component. The
minimum samples sizes required for 10% error were
then estimated for each C component over the range of
cBAF and mBAF.
Yang et al. (2017) outlined methods for determining

costs associated with big BAF sampling and their
methods were used here to estimate inventory costs
associated with the various C components and combi-
nations of cBAF and mBAF. Yang et al.’s (2017) cost
equation was:

CostTotal ¼ CostOverhead

þ n CostEst þ k
�BA

cBAF

� �� �
þr � n

�BA
mBAF

� �
þ w

ffiffiffiffiffiffiffiffiffiffiffiffi
n� A

p

ð9Þ
where CostOverhead = the costs of planning the forest
inventory; CostEst = the costs associated with plot estab-
lishment, k = the costs of a count tree determined, spe-
cies identified and DBH measured; r = costs to measure
tree height, w = travel costs between sample points
(dollars per m travelled). Assuming a two-person crew-
day costs $650.00 Canadian, and using the time-motion
values reported by Yang et al. (2017), the coefficients in
eq. 9 were as follows: CostOverhead = $1300.00 (assumed 2
days for planning); CostEst = $2.70; k = $0.765; r = $4.41;
and w = $ 0.0945. Using these values and the minimum
sample sizes estimated from Eq. 8, total inventory costs
were calculated. Design effects, defined as the relative
efficiency of sample design 1 versus sample design 2

(Särndal et al. 1992), were calculated as the ratio of costs
of the two sample designs:

DE1;2 ¼ Cost1
Cost2

ð10Þ

If DE < 1, then sample design 1 is more efficient than
sample design 2. In this study, sample design 1 and 2 are
various cBAF and mBAF combinations.

Results
Coefficients of variation
Figure 2 shows coefficients of variation (CV) for count
BAF (cBAF) and the various carbon:basal area ratios
(CBAR) by basal area factor (BAF). As expected, the CV
for counts increased rapidly with increasing cBAF. The
CBARs, on the other hand, were relatively constant over
the range of mBAF. Total CBAR averaged just above
20% while wood and bark CBARs averaged about 25%
across all mBAFs explored in this study. Branch and leaf
CBARs were more variable, averaging about 42%, but
also independent of mBAF.

Carbon estimates
The average total aboveground live tree carbon (kg∙ha− 1)
based on the field data was 40,046.39 kg∙ha− 1 (±16.5%
CV). Wood C was 27,824.40 kg∙ha− 1 (±16.6% CV), Bark
C was 4126.37 kg∙ha− 1 (±16.9% CV), Branch C was
6002.55 kg∙ha− 1 (±18.7% CV), and Leaf C was 2093.07
kg∙ha− 1 (±18.8% CV). Bias was minimal for total carbon
across most combinations of cBAF, mBAF, and sample
size (Fig. 3). From Fig. 3, it can be seen that variation in
carbon estimates increased with increasing cBAF, but
remained more or less constant with increasing mBAF.
As expected, increasing sample size decreased sample
error (Fig. 3). Similar to the results of total carbon,
variation increased with increasing cBAF for all carbon
components (Fig. 4). For the wood, bark, and branch
components, bias increased with increasing cBAF but
generally remained small (less than about 6% overall).

Sample size effects
Table 1 shows the fixed effect parameter estimates and
associated regression statistics for Eq. 8. The full model
with all random effects accounted for 84% of the va-
riation in %SE, with the fixed effects component accoun-
ting for 64%. Random effects associated with the b1
parameter were quite small, though significant (p < 0.05)
cBAF accounted for an additional 22% of the variation in
SE% while mBAF within cBAF only accounted for 1% of
the variation. cBAF had a larger effect on percent stan-
dard error than did mBAF (Fig. 5). Similar results were
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Fig. 2 Coefficients of variation for count BAF and for each carbon component: basal area ratio (XCBAR) by basal area factor

Fig. 3 Beanplots of estimated total carbon across the range of count basal area factor (cBAF, m2∙ha− 1∙tree−1) or measure basal area factor (mBAF,
m2∙ha− 1∙tree− 1). a) fixed measure BAF is 20 and sample size is 20; b) fixed measure BAF is 20 and sample is 100; c) fixed count BAF is 20 and
sample size is 20; d) fixed count BAF is 20 and sample size is 100. (grey line shows the value of estimated total carbon from normal horizontal
sampling across 705 sample points)
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found for each of the 4 carbon components (Figs. 6 and 7).
Higher cBAF led to higher SE%, especially for branch
and foliage (Fig. 6). Effects of mBAF are not apparent
among the four components (Fig. 7), especially for
wood and bark that had lower CV.

Sample cost efficiency
Figure 8 shows the inventory costs associated with
different cBAFs, mBAFs, and stand basal areas. As cBAF
increased, overall inventory costs (as estimated using Eq.
9) increased. Within each cBAF there was an optimal
mBAF observed (Fig. 8a). The best combination of
cBAF/mBAF in this study was 2/24. As basal area de-
creased, variability in counts increased, and associated
inventory costs increased (Fig. 8b). As with increasing
cBAF, each level of basal area had an optimal combi-
nation of cBAF/mBAF. The optimal mBAF increased
with increasing stand basal area.
The design effects, expressed in terms of cost of in-

ventory design 1 versus inventory design 2 showed
trends similar to those observed in Fig. 8 for total cost
(Additional file 1: Table S1). Design effects < 1 indicated
that the column design was superior to the row design.

Fig. 4 Beanplots of estimated carbon component: a) wood, b) bark, c) branches, and d) leaves for fixed measure BAF 20 and sample size 100
across the range of cBAF (grey lines show the estimated value of each carbon component using normal horizontal point sampling across the full
705 sample points)

Table 1 Fixed effects parameter estimates (standard errors in
parentheses) and associated regression statistics for Eq. 8
predicting SE% given sample size and random effects
associated with cBAF and mBAF nested within cBAF

Factor Parameter

b0 b1

Fixed effects 135.06 (4.208) −0.510 (0.0006)

RE (cBAF) 22.6 0.003

RE (mBAF within cBAF) 1.1 0.005

Fixed R2 0.64

Random R2

cBAF 0.83

mBAF within cBAF 0.84

rMSE 2.13

RE() indicates the standard error associated with the random effects
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Fig. 5 Percent standard error for each sample size under a) different cBAF (2, 4, 8, 12) with mBAF = 16 and b) different mBAF (4, 8, 12, 16) with
cBAF = 2. HPS refers to the full Noonan inventory using normal horizontal point sample with a 2 M BAF

Fig. 6 Percent standard error for each sample size under different cBAF (2, 4, 8, 12) with mBAF = 16 for each carbon component a) wood, b) bark,
c) branches, and d) leaves. HPS refers to the full Noonan inventory using normal horizontal point sample with a 2 M BAF
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Fig. 7 Percent standard error for each sample size under different mBAF (4, 8, 12, 16) with cBAF = 2 for each carbon component a) wood, b)
bark, c) branches, and d) leaves. HPS refers to the full Noonan inventory using normal horizontal point sample with a 2 M BAF

Fig. 8 Costs and minimum sample size for a) fixed stand BA/ha (20.3 m2∙ha− 1) and different cBAF (2, 4, 8, 12) and b) fixed cBAF (2) with different
stand BA/ha (10, 20, 30, 40 m2∙ha− 1)
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For each cBAF, design effect decreased with increasing
mBAF up to some optimal mBAF, then increased slightly
with increasing mBAF. As observed for total costs, the
overall optimum cBAF/mBAF combination was 2/24.

Discussion
The need for accurate carbon estimates is important for
landowners wanting to enter monetized carbon markets
(Radtke et al. 2017). A variety of sample designs have
been used (Ravindranath and Ostwald 2008) and proto-
cols for verifying and monitoring carbon offset programs
established (Brown 1999). Inventory costs are often one
of the barriers for many landowners (Charnley et al.
2010). Subsampling schemes are frequently used in
forest inventories because they increase sample effi-
ciency and decrease sample costs (Bell et al. 1983; Iles
2003; Kershaw et al. 2016). BigBAF sampling has been
shown to be a very efficient sampling scheme for esti-
mating volume (Desmarais 2002; Iles 2003; Marshall et
al. 2004; Yang et al. 2017). Our results indicate that big-
BAF sampling also is an effective sampling design for es-
timating carbon. Our optimal design using a 2M cBAF
and a 24M mBAF produced a standard error of 10% at
a cost of approximately $3500 Canadian, compared to
the full Noonan inventory (the original 705 HPS plots
with complete tree measurement) which cost about
$40,000 and produced an error of just less than 2%.
The combination of cBAF and mBAF drives inventory

costs (Yang et al. 2017). Understanding these effects is
important when designing cost effective inventories.
Optimal mBAF depended upon choice of cBAF (Fig. 8).
Choosing an mBAF smaller than optimal had greater
impacts on costs than choosing one larger. Our results
indicate that the optimal sampling surface is very steep
when expressed in terms of total inventory costs (Fig. 8).
Lynch (2017) found that the cost – optimal plot size
sample surface was very flat, suggesting that there was a
lot of choice between numbers of plots and plot size that
had little influence on overall cost efficiency; however,
Yang et al. (2017) showed that optimum choice became
more critical when inventory resources were limited.
Given that we were focused on minimizing costs, our
resulting sampling surface was steeper than what was
observed in either Lynch (2017) or Yang et al. (2017).
In this study we did not consider stratified sampling be-

cause of the relatively uniform stand conditions across the
NRF. Stratification is another sampling method that can
reduce sample sizes (Iles 2003). Stratified sampling is most
effective when the variation between strata is much larger
than the variations within strata (Kershaw et al. 2016). In
forests where stand origin, silviculture history, and site
quality varies, stratified sampling can be an effective
design and should be considered. Optimizing cBAF and

mBAF by strata could further increase sample efficiency
and reduce costs.
Like Yang et al. (2017) found for CV (VBAR) (volume:

basal area ratio), we found that CV (CBAR) was not
influenced by increasing mBAF. Initially this might
imply that increasing mBAF would always decrease
costs; however, this was not what was observed (Fig. 8).
As mBAF increases, the number of plots without a meas-
ure tree increases, and, at some point, overall sample size
begins to increase in order to sample enough measure
trees, thus increasing costs.
Costs are only one consideration in the overall inven-

tory design. The results need to be accurate and free
from substantial bias. As has been demonstrated
elsewhere for volume (Marshall et al. 2004, Yang et al.
2017), bigBAF sampling for carbon produced consistent
estimates of mean carbon with little or no bias across a
wide range of cBAF, mBAF, and sample sizes (Figs. 3 and
4). When considering the components of carbon (Wood,
Bark, Branches, and Leaf ) CV (CBARS) were generally
larger than for total carbon (Fig. 2). This increase in CV
will increase inventory costs (Yang et al. 2017). For
example, in this study, the estimation of leaf carbon
would require, on average, about 4.5 times more plots
than what are required for estimating total carbon.
Estimation of the amounts of carbon in different pools is
an important component of any carbon offset plan
(Brown 2002), and can have huge impacts on the inven-
tory costs associated with establishing baselines. We
used allometric equations (Lambert et al. 2005) to obtain
estimates of biomass that were then converted to car-
bon. Component ratios (Heath et al. 2009) have been
shown to be less variable than the use of allometric
equations (however, see the recent work by Zhao et al.
(2018), which indicated that component ratio equation
did not prove to be less variable than allometric equations
for components). Incorporating a component ratio
approach into our bigBAF sampling scheme may reduce
the CVs associated with the various carbon components
and reduce the costs required to estimate these at the
accuracies required by carbon offset programs.

Conclusions
Big BAF sampling has been shown to be an effective
sampling design for volume (Corrin 1998; Desmarais
2002; Marshall et al. 2004). We show that this effi-
ciency can be extended to the estimation of carbon.
Despite the known gains in efficiency, big BAF has
only received moderate acceptance in operational for-
est inventories. The perceived efficiency already asso-
ciated with horizontal point sampling may contribute
to the slow adoption of bigBAF sampling in oper-
ational inventories (Yang et al. 2017). Our results
demonstrate the potential impacts bigBAF can have
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on overall inventory costs. Producing accurate carbon
estimates at a reduced cost minimizes one of the
existing barriers for landowners considering entry into
a carbon offset program. BigBAF sampling should be
considered by landowners seeking a cost-effective in-
ventory system for estimating carbon.
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Additional file 1: Table S1. Design effects for total inventory costs.
DE = cost of column design / row design. DE < 1 means column design
is more efficient, DE > 1 means row design is more efficient.
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