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Abstract

Background: Soil temperature and moisture are sensitive indicators in soil organic matter decomposition because
they control global carbon and water cycles and their potential feedback to climatic variations. Although the
Biome-Biogeochemical Cycles (Biome-BGC) model is broadly applied in simulating forest carbon and water fluxes,
its single-layer soil module cannot represent vertical variations in soil moisture. This study introduces the
Biome-BGC MuSo model, which is composed of a multi-layer soil module and new modules pertaining to
phenology and management for simulations of carbon and water fluxes. Although this model considers soil
processes among active layers, estimates of soil-related variables might be biased, leading to inaccurate estimates of
carbon and water fluxes.

Methods: To improve the estimations of soil-related processes in Biome-BGC MuSo, this study assimilates ground-
measured multi-layer daily soil temperature and moisture at the Changbai Mountains forest flux site by using the
Ensemble Kalman Filter algorithm. The modeled estimates of water and carbon fluxes were evaluated with
measurements using determination coefficient (R2) and root mean square error (RMSE). The differences in the
RMSEs from Biome-BGC MuSo and the assimilated Biome-BGC MuSo were calculated (ΔRMSE), and the relationships
between ΔRMSE and the climatic and biophysical factors were analyzed.

Results: Compared with the original Biome-BGC model, Biome-BGC MuSo improved the simulations of ecosystem
respiration (ER), net ecosystem exchange (NEE) and evapotranspiration (ET). Data assimilation of the soil-
related variables into Biome-BGC MuSo in real time improved the accuracies of the simulated carbon
and water fluxes (ET: R2 = 0.81, RMSE = 0.70 mm·d− 1; ER: R2 = 0.85, RMSE = 1.97 gC·m− 2·d− 1; NEE: R2 = 0.70,
RMSE = 1.16 gC·m− 2·d− 1).

Conclusions: This study proved that seasonal simulation of carbon and water fluxes are more accurate when
using Biome-BGC MuSo with a multi-layer soil module than using Biome-BGC with a single-layer soil module.
Moreover, assimilating the observed soil temperature and moisture data into Biome-BGC MuSo improved the
modeled estimates of water and carbon fluxes via calibrated soil-related simulations. The assimilation strategy
is applicable to various climatic and biophysical conditions, particularly densely forested areas, and for local or
regional simulation.
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Background
Observations and model simulations are two complemen-
tary tools used to describe ecosystem processes. The
process-based biogeochemical model (i.e., Biome-BGC) is
a diagnostic and predictive tool for quantifying carbon
and water fluxes in forest ecosystems and for assessing the
effects of changing atmospheric/climatic environments on
terrestrial ecosystems (Running and Coughlan 1988;
Thornton and Rosenbloom 2005; Barcza et al. 2009). The
global terrestrial carbon stock in vegetation and soil
amounts to 2500 Gt (Hairiah et al. 2011). As a major car-
bon reserve in terrestrial ecosystems, forest carbon in-
cludes living trees above and below the ground, standing
dead trees, woody debris and litter, and soil (IPCC 2006;
Pukkala 2018). Among them, soil accounts for 60% to 80%
of the forest ecosystem carbon (Asseffa et al. 2013); there-
fore, a better understanding of soil carbon fluxes is essen-
tial for forest management and global climatic variation
mitigation (Davidson and Janssens 2006).
As one of the most important modules in biogeochem-

ical models, the soil module simulates the composition of
dead plant material and soil organic matter (SOM) as well
as nitrogen (N) mineralization and balance (Running and
Gower 1991). As reported by Meentemeyer (1984) and Ise
and Moorcroft (2006), soil-related processes are con-
trolled mainly by soil temperature and moisture, which
are key process variables in biogeochemical models and
are linked through coupled carbon and water balances.
Soil temperature is the most important factor regulating
belowground respiration, which integrates both auto-
trophic and heterotrophic respiration (HR) processes
(Hursh et al. 2017). The effects of soil moisture on soil
respiration are more complicated, and are chiefly deter-
mined by root and litter mass as well as soil organic car-
bon, density, and porosity. Soil hydrological and carbon
cycles of ecosystems are coupled owing to the interactions
among soil temperature, soil moisture and soil respiration
(Hidy et al. 2016a, 2016b). Therefore, accurate estimation
of soil temperature and moisture is a crucial requirement
in biogeochemical models.
However, most soil modules in biogeochemical models

(e.g., Biome-BGC) are based on a one-layer bucket model
that considers only plant uptake, canopy interception,
snowmelt, outflow, and soil transpiration among the vari-
ous soil hydrological processes. Several studies have indi-
cated the need for improvement to the soil module. For
example, Pietsch et al. (2003) extended the applicability of
Biome-BGC to consider the effect of water infiltration
from groundwater and seasonal flooding in forest areas.
Wang et al. (2014) coupled Biome-BGC with a multi-layer
hydrological model (SHAW) through the exchange of key
variables (e.g., leaf area index (LAI), soil temperature, and
moisture). Validation with eddy covariance (EC) flux mea-
surements proved that the integration of the two models

could enhance the performance of carbon and water
fluxes.
The Biome-BGC process-based biogeochemical model

is applied in this study to estimate forest ecosystem car-
bon and water fluxes. Since research by Hidy et al.
(2016a, 2016b) was published on the newly developed
modules for Biome-BGC and their ability to manage
vegetation, various model versions of Biome-BGC MuSo,
v1.0through v4.1, have been published in quick succes-
sion. These versions extended the modules by adding
multi-layer soil processes (e.g., percolation, diffusion,
and groundwater), simulating management activities
such as harvesting, plowing, and fertilizing; and adjust-
ment of other plant-related processes such as phenology
(Hidy et al. 2016a, 2016b). In the multilayer soil module,
the soil carbon and hydrological processes of each layer
depend on soil texture, although parameterization of
these processes remains challenging, particularly over
large areas with high resolution (Lu et al. 2017). This
leads to inaccurate simulations of soil temperature and
moisture content, thereby biasing the estimates of car-
bon and water fluxes.
Errors and uncertainties inevitably exist in biogeo-

chemical modeling, depending on the inputs, model
structure, and model parameters. Data assimilation is an
effective method for integrating available multi-source
observations with models because errors in both the ob-
servations and models are considered, which improves
the estimates. The observations and model estimates
provide various types of information over different time
and spatial scales. The ensemble Kalman filter (EnKF),
an extended Kalman filter, is a popular data fusion algo-
rithm formulated by Evensen (1994, 2003). This method
is based on the Monte Carlo estimation and uses recur-
sive data processing to track the model error statistics
using an ensemble of model state variables. By updating
the state variables periodically by using observations, the
EnKF can be used to improve the performance of the
biogeochemical model without changing its original
structure.
Recently, observed soil parameters have been success-

fully assimilated into terrestrial and hydrological models,
either by updating the relevant variables in the model or
by adjusting the initialization and parameterization of the
model. Yu et al. (2014) improved the model’s performance
by assimilating observed soil temperature and Moderate
Resolution Imaging Spectroradiometer (MODIS) land sur-
face temperature into the Common Land Model using the
Ensemble Particle Filter. Zhu et al. (2017) investigated the
influences of assimilation of multi-scale soil moisture into
a hydrological model and proved that coarse-scale soil
moisture observations could also help to identify the pa-
rameters and states of the water flow model. Ines et al.
(2013) assimilated soil moisture and LAI independently
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and simultaneously into a crop model using the EnKF to
control model runs and to update model variables. The re-
sults demonstrated that crop yield prediction errors were
reduced significantly after assimilation. However, common
data assimilation schemes focus mainly on using
above-ground state variables such as LAI, land surface
moisture, and temperature and apply a one-layer soil
bucket model. This poses a structural problem and intro-
duces considerable uncertainty, as previously mentioned.
Thus far, assimilation of multi-layer soil variables into
Biome-BGC MuSo to improve the simulation of carbon
and water fluxes had not been attempted.
In this study, we provide a strategy for simulating car-

bon and water fluxes using a process-based biogeochem-
ical model and multi-source data to alleviate model
uncertainties. Specifically, considering the drawbacks of
the simple soil sub-model in Biome-BGC, the
Biome-BGC MuSo model with a multi-layer soil module
was used to estimate carbon and water fluxes at the
Changbai Mountains forest flux site between 2003 and
2007. In order to improve the simulations, we assimi-
lated daily multi-layer soil temperature and moisture
data into Biome-BGC MuSo using EnKF. Finally, the
simulated carbon fluxes based on ecosystem respiration
(ER) and net ecosystem exchange (NEE) and the water
fluxes based on evapotranspiration (ET) were evaluated
using eddy covariance (EC) flux measurements. The

credibility of this assimilation strategy was tested using
three-dimensional analysis to evaluate the differences in
root mean square error (RMSE) and related climatic and
biophysical factors.

Study area
The studied forest flux site is located in the National
Natural Conservation Park of Changbai Mountains of
Jilin Province, China (42°24′9″N, 128°05′45″E), as
shown in Fig. 1. The climate in the Changbai Mountains
is temperate and continental, and is influenced by the
monsoon. Its annual average precipitation is approxi-
mately 713 mm, and precipitation occurs mainly over
June to August. The annual average temperature is 3 .6°
C. The terrain surrounding the forest flux site is flat,
with an average elevation of 738m. According to the
average seasonal patterns shown in Fig. 2, the strong
seasonal variability experience at this site provides an
opportunity to evaluate the performance of the
proposed data assimilation under varying climatic and
biophysical conditions. Thus application of this
method to other forest ecosystems can be considered.
The forest land is covered predominantly with tem-
perate broadleaf Korean pine forest consisting mainly
of Pinus koraiensis, Tilia amurensis and Fraxinus
mandshurica (Wang et al. 2005).

Fig. 1 Location of the forest flux site
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Data
An EC system was set up on a 62-m high tower, and
sensors were fixed on a boom located at a height of 40
m that extended 3m upwind of the tower to minimize
flow distortion (Wang et al. 2005). One sensor was used
to gauge the carbon dioxide (CO2) concentration profile
and the other served to record routine meteorological
observations (Wu et al. 2005). Meteorological data were
measured continuously from 2003 to 2007 using an
open path EC system at the forest flux tower. The data-
set included air temperature (Temp), relative humidity
(RH) (Model HMP45C, Campbell Scientific Inc., Utah,
USA), precipitation (Precip) (Model 52,203, Rm Young,
Traverse City, Michigan, USA), wind speed, and direc-
tion. Photosynthesis active radiation (PAR) was mea-
sured with a quantum sensor (Model LI190SB, LI-COR
Inc., Lincoln, Nebraska, USA). Other meteorological fac-
tors, including vapor pressure deficit (VPD), incoming
shortwave radiation (Srad), and day-length (from sunrise
to sunset), were calculated using the MTCLIM 4.3 based
on measured daily maximum and minimum tempera-
tures and precipitation (Running et al. 1987; Thornton
and Running 1999).
The observed soil variables included three-layer

temperature and moisture data at depths of 5, 20 and
40 cm, respectively. At the Changbai Mountains forest

flux site, the top soil layer (5 cm) is dominated by litter
fall, humic substances distribute between 5 and 20 cm
depths, and an albic soil layer distributes between 20
and 40 cm depths. Soil water upward and downward
movements occur mainly among the three active layers
because of the poor penetration of the albic soil layer.
The soil layer below 40 cm is dominated by loess, the
distribution of vegetation roots over the Changbai
Mountains is negligible (Wang and Pei 2002; Zhao et al.
2013). Therefore, three layers of soil moisture were
collected using a Micrologger for data acquisition
(CR23X-TD, Campbell Scientific Inc., Utah, USA) at a
frequency of 30 min at the forest flux site. Then, these
30-min data were averaged on a daily basis.
Water vapor densities and CO2 were measured using

an open path system from 2003 onwards at the forest
flux site. The open path EC system contained a
three-dimensional sonic anemometer (CAST3, Campbell
Scientific Inc., Logan, Utah, USA) and a fast-responding
open path infrared gas analyzer (LI-7500, LI-COR Inc.,
Lincoln, Nebraska, USA). The collection frequencies for
raw flux data and climate data were 10 and 0.5 Hz, re-
spectively. The 30-min averaged values of each variable
were calculated. A series of preprocessing steps was con-
ducted, including outlier removal, coordinate rotation,
time lag analysis, frequency response calibration, and

Fig. 2 Average seasonal patterns of climatic and biophysical factors at Changbai Mountains forest flux site. a Seasonal variations of Temp; b
Seasonal variations of Precip and PAR; c Seasonal variations of LAI; d Seasonal variations of soil temperature and moisture
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Webb–Pearman–Leuning (WPL) correction (Wang et
al. 2005). Half-hourly net CO2 exchange and energy
fluxes including latent and sensible heat fluxes, were
calculated using EdiRe software. Specifically, to esti-
mate the night-time net CO2 exchange, the net CO2

exchange was regressed with the air or soil temperature
using an exponential function. The built model was then
used to calculate the ER. Then, the NEE and ER were
summed to estimate the ecosystem gross primary prod-
uctivity (GPP). The daily flux of ET can be expressed in
equivalent units of both energy (W∙m− 2) and water
(kg∙m− 2 or mm∙s− 1). The conversion from latent energy
flux (LE, W∙m− 2) to ET (mm∙s− 1) is calculated as ET =
LE/λ, where λ is the latent heat of evaporation (Mu et al.
2007, 2009).
EC measurements of carbon and heat fluxes and ob-

servations of meteorological and soil data during 2003
to 2007 were thus collected at the Changbai Mountains
forest flux site. Additionally, soil texture data were col-
lected from the soil texture map of China with a spatial
resolution of 1 km, which was downloaded from the Re-
source and Environment Data Cloud Platform website.
The time series LAI products from 2003 to 2007, with a
spatial resolution of 1 km, were provided by the Center
for Global Change Data Processing and Analysis of
Beijing Normal University. Digital elevation model
(DEM) data were obtained from Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global
Digital Elevation Model (ASTER GDEM). Latitude and
topography were calculated using the DEM at the forest
site.

Methods
First, we simulated the carbon and water fluxes using
the calibrated Biome-BGC model at the Changbai
Mountains forest flux site. Then Biome-BGC MuSo with
multi-layer soil was applied in the simulation. Third, the
daily soil temperature and moisture were assimilated
into Biome-BGC MuSo. The performances of simulated
carbon and water fluxes were evaluated by EC measure-
ments. Finally, three-dimensional relationships among
ΔRMSE and climatic and biophysical factors were ana-
lyzed. Figure 3 represents the overall methodology in
this study, the details of which are presented in subse-
quent sections.

Biome-BGC MuSo model
The Biome-BGC Multi-layer Soil Module version 4.1
(Biome-BGC MuSo v4.1) was developed to improve
its ability to simulate carbon and water cycles within
terrestrial ecosystems. Biome-BGC MuSo v4.1 im-
proved the multi-layer soil module, and introduced
the management and phenological modules. These
three modules are independent of each other in the

model. In this study, the management module was
deactivated during the spinup and normal simulation
for the forest. Hence, the logical values of planting,
thinning, mowing, grazing, harvesting, ploughing, fer-
tilizing, and irrigation were set to 0 (flag = 0). The
thicknesses of the layers from the surface to the bot-
tom were 5, 15, and 20 cm. Thus, the first, second,
and third layers were located at depths of 0–5, 5–20
and 20–40 cm, respectively.
This model runs with a daily time step and requires

four input files for execution. The first file is the
initialization file containing basic site-related informa-
tion (e. g., elevation, soil texture, CO2 concentration,
and N-decomposition data). The second file is the
daily meteorological data file and includes daily air
maximum temperature, minimum temperature, pre-
cipitation, VPD, solar radiation and day length. The
third file is the ecophysiological file and includes the
ecophysiological parameters (e.g., ratio of leaf carbon
to nitrogen, fine roots and coarse roots, fraction of
leaf N in the Rubisco catalytic enzyme, and the max-
imum stomatal conductance). In this study, the eco-
physiological parameter values in Biome-BGC MuSo
were determined by the optimized results during the
model run. The last input file is a special restart file,
which is the output of the spinup and provides inputs
for running the model under normal situations. The
spinup phase was first performed using the meteor-
ology covering the period 1981 to 2002 obtained from
the Data Center of Chinese Meteorological Bureau,
and the output endpoint is the input for normal
simulation covering the period 2003 to 2007.
In the carbon flux module of the Biome-BGC MuSo

model, GPP is calculated using Farquhar’s photosyn-
thesis routine and data on the catalytic enzyme Rubisco
in relation to temperature (Farquhar et al. 1980). Photo-
synthesis is the only process whereby the model can pro-
vide carbon into all of the pools. Root maintenance
respiration was calculated layer-by-layer using the soil
water content (SWC) and soil temperature of each active
layer (which differs from the averaged soil water status
or soil temperature of the whole soil in the original
Biome-BGC model). Growth respiration (GR) in the
model was considered as the proportion of all new tissue
growth, which was 30% (Larcher 2003).
The net primary productivity (NPP) was calculated

using GPP, MR, and GR in the model. The carbon stor-
age of the ecosystem originates from the balance be-
tween NPP and heterotrophic respiration (HR), which
are regulated by decomposition activities. All litter and
soil pools decompose through HR. NEE represents the
difference between NPP and HR.
The soil flux module generally describes the decom-

position of dead plant material, or litter, in addition to
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SOM, N mineralization, and N balance (Schwalm et al.
2015). Soil hydrology has significant effects on many soil
processes (e.g., SOM, N mineralization, and soil evapor-
ation), and thereby on the carbon and water cycles.
Therefore, accurate description of soil hydrology is es-
sential. In the original Biome-BGC model, the soil layer
works as a “bucket”, and the soil water flux considers
only canopy, interception, snowmelt, outflow, and soil
evaporation. Therefore, runoff, percolation, diffusion,
pond water formation, and transpiration were added into
Biome-BGC MuSo.
The movement of water that occurs within the soil is

known as percolation and diffusion. Biome-BGC MuSo
implements two calculation methods for soil water
movements. The first is based on Richards’ equation
(Balsamo et al. 2009). The second, the so called “tipping
bucket method” (Ritchie 1998), is based on the
semi-empirical estimation of percolation and diffusion
fluxes and is generally used in crop modeling. Hydraulic
conductivity (K) and hydraulic diffusivity (D) are used in
diffusion and percolation calculations in the first method
based on the diffusion equation based on Darcy’s diffu-
sion law:

∂θ
∂t

¼ ∂
∂z

D θð Þ∙ ∂θ
∂z

� �
þ ∂K

∂z
þ S θð Þ

ð1Þ
where D is the hydraulic diffusivity (m2∙s− 1), K is the hy-
draulic conductivity (m∙s− 1) and S represents the source
and sinks of soil water such as precipitation, evapor-
ation, transpiration, runoff, and deep percolation. The
Clapp-Hornberger formulation (Clapp and Hornberger
1978) was used to calculate K and D. These variables
change rapidly and significantly as the SWC change. K
and D were determined for each layer; the layer-
integrated daily scale form was solved by this method of
finite differences. The Richards equation was used to in-
vestigate soil water movements in this study.
Surface runoff occurs when the rate of rainfall exceeds

the rate of water infiltrating the soil. Runoff simulation
was conducted using the semi-empirical method (Wil-
liams 1991). Under the conditions of intensive rainfall,
when not all of the precipitation can infiltrate, pond
water forms the surface. In Biome-BGC MuSo, evapor-
ation of pond water is assumed to be equal to potential
soil evaporation.

Fig. 3 Overall technique flowchart
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The soil temperature of each active layer was calcu-
lated using two methods. The first method involved
logarithmic downward dampening of temperature fluc-
tuations within the soil (Zheng et al. 1993). In this
method, the soil surface temperature is determined by
air temperature changes considering the insulating effect
of snowcover and the shading effect of vegetation. The
temperature of intermediate soil layers is calculated
under the conditions of linear temperature change be-
tween soil layer depths of 0 cm and 3m. The soil
temperature below 3m in the model is assumed to be
the mean annual air temperature. The other method,
uses DSSAT/4M (Sándor and Fodor 2012) to empiric-
ally calculate the soil temperature. Because the former
method is preferred (Zheng et al. 1993), we selected the
same in this study and compared the results with mea-
surements obtained at the Changbai Mountains forest
flux site.

Ensemble Kalman filter
The EnKF algorithm, used mainly to forecast the error
covariance of a model, is based on the Monte Carlo
method (Evensen 2003), and can integrate multi-source
observations sequentially in time. The basic assumptions
of this algorithm are that system and measurement
noises are both based on white and Gaussian distribu-
tions. It is assumed that the N ensembles first generated
from the background and observations are initialized to
time t0, and that the ensembles of the state variables are
acquired by adding noise directly (Eq. 2). Then, inde-
pendent model runs are invoked. For each model run,
each time a new observation becomes available, and the
analysis and regeneration of the state variables are con-
ducted at time t–1, i.e., before the prediction of the state
variables at time t. EnKF involves forecasting and meas-
urement updates, and comprises five steps, as given
below.

(1) Initialization of the ensemble

The N ensembles to be generated are first defined.
The state variable x is calculated at time t0 as
follows:

xt0;i ¼ xt0;i þ pi ð2Þ

pi � N 0; σð Þ ð3Þ

where xt0, i is the initialized state vector at time t0; xt0;i
is the expectation in background; pi represents the noise,
and is distributed as Gaussian values with a mean of 0
and a variance of σ.

(2) Forecasting

The state variables are predicted at time t using input
data (time t – 1) and the model operator (Biome-BGC
MuSo model):

x f
i;t ¼ xai;t−1 þ Btμi ð4Þ

where x f
i;t is the forecasted state vector at time t, with

superscript f referring to the forecasted value; Ft denotes
the model operator; xai;t−1 is the analyzed state value at
time t – 1, with superscript a representing the analyzed
value; Bt is the control matrix, which applies the effect
of each control input parameter in vector μi on the state
vector; and μi represents the model error, which follows
a Gaussian distribution.

Uncertainties of noise in EnKF are reflected by the co-
variance matrix, with consideration of the error propaga-
tion at any time (Moradkhani et al. 2005). The
covariance matrix is calculated during the entire fore-
casting process according to its properties as

P f
t ¼ FtP

a
t−1F

T
t þ Qt

ð5Þ
where P f

t is the covariance matrix at time t, and Qt is
the covariance.

(3) Calculation of the Kalman gain matrix

The core of data assimilation lies in the Kalman fil-
ter system, and it is assumed that observations are re-
lated to the true state. Therefore, the following
expression applies for adding observations to the
model at time t:

Zt ¼ Htx
f
i;t þ vt ð6Þ

where Zt is the observation vector at time t, and Ht is
the operator that maps the model variable space to the
observation space. vt is a Gaussian random error vec-
tor with mean zero and observation error covariance
R.

The Kalman gain matrix defined as

Kt ¼ P f
t H

T
t HP f

t H
T
t þ Rt

� �−1
ð7Þ

The EnKF forecast and analysis error covariance are
acquired directly from the ensemble of model simula-
tion as

P f
t ¼ E xf

i;t−x
f
t

� �
x f
i;t−x

f
t

� �T
� �

¼ 1
N−1

XN

i¼1
x f
i;t−x

f
t

� �
x f
i;t−x

f
t

� �T

ð8Þ
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HtP
f
t H

T
t ¼ 1

N−1

XN

i¼1
Ht x f

i;t

� �
−Ht x f

t

� �h i
Ht x f

i;t

� �
−Ht x f

t

� �h iT
ð9Þ

The variance is based on the uncertainty of the data.
Kalman gain at time t (Kt) is expressed in Eq. 9 and Rt is
the covariance of Zt.

(4) Analysis and update

Under the above assumptions, the estimated state and
error covariance using the Kalman gain are updated as

xai;t ¼ x f
i;t þ Kt Zt−Htx

f
i;t

� �
ð10Þ

Pa
t ¼ 1−KtHtð ÞP f

t ð11Þ

(5) Repeat of steps (2), (3) and (4)

Iterations are established when running the algorithm
from steps (1) to (5).

Data assimilation scheme
In this study, the assimilations of soil temperature and
moisture were implemented using Eq. 10, with H equal
to (1 1 1 1)T. Once the daily soil temperature and mois-
ture data were available, the model run was interrupted,
EnKF updated the Biome-BGC MuSo state variables,
and the simulation was re-initialized with the updated
states and re-run until the next update was available. All
the simulations were conducted from 2003 to 2007. An
uncertainty of 10% for model parameters was considered
and perturbed based on the Gaussian distribution
(White et al. 2000). Sequential assimilation of observed
data can be used to correct some uncertainty involved in
model parameters (Das et al. 2008). The ensemble mem-
bers were generated by randomly sampling model par-
ameter combinations from the perturbed arrays (Ines et
al. 2013). Two hundred ensemble members were se-
lected to optimize the EnKF framework’s performance in
terms of accuracy and computational time. Errors of the
soil observations were obtained from the literature
(Wang and Pei 2002).
We assimilated daily soil temperature and moisture to

increase the numbers of observations, and we update
the modeled soil respiration and transpiration. In
Biome-BGC MuSo, soil temperature (Tsoil) is a key par-
ameter for calculating root respiration. Thus,

MR ¼
Xnr
1

N root∙Mlayer∙mrpern∙Q
Tsoil layerð Þ−20

10
10

� �
ð12Þ

where nr is the number of soil layers, Nroot is the total N

content of the soil, Mlayer is the proportion of the total root
mass in the given layer, mrpern is an adjustable ecophysio-
logical parameter, Q10 is the fractional change in respiration
with a temperature change of 10 °C, and Tsoil(layer) is the soil
temperature of the given layer. The input of daily soil
temperature updated the root respiration using the updated
Eq. 10, and the updated variable was used to calculate ER
for the next step.
Soil moisture was calculated using the volumetric

water content (VWC), soil layer thickness, and water
density in Biome-BGC MuSo. Assimilation of the daily
SWC in the spinup is converted into the VWC array,
which in turn provides reliable SWC during the model
simulation phase through the restart file.
Once the daily observations were assimilated into the

model, the initialization processes were implemented, and
the soil variables were corrected on a daily basis throughout
model runtime. This study compared normal simulations
using calibrated Biome-BGC and Biome-BGC MuSo and
simulations that assimilated soil temperature and moisture.
All simulations were conducted for the period 2003–2007.

Evaluation and analysis of modeled estimates
To evaluate the simulated carbon and water fluxes, we
used the results derived from EC measurements as ground
truth observations, and we calculated R2, Eq. 13; RMSE
(Eq. 14); and relative error (RE), Eq. 15 to evaluate the ac-
curacy of each model simulation. Additionally, a signifi-
cance test (p-value) was conducted to disprove the
concept of “chance” and to reject a null hypothesis by ad-
hering to the observed patterns.

R2 ¼ 1−
Pt

i¼1 Xobs−Xmodð Þ2Pt
i¼1 Xobs−Xmod

� 	2 ð13Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt

i¼1 Xobs−Xmodj j2i
t

s
ð14Þ

RE ¼ Xmod−Xobsj j.
Xobs

ð15Þ
In these equations, Xobs is the observation made at the

forest flux site; Xmod is the simulated carbon or water
flux, and i is the day of the year. t refers to the total
number of days or day windows within one year.
We also analyzed the data assimilation performance

of by comparing the difference (ΔRMSE) between
RMSEDA and RMSEMuSo. A moving window of 15
days was used here. A positive ΔRMSE indicates that
the accuracy of the model simulation was improved
by our proposed data assimilation stratagem and vice
versa. We examined the relationships of ΔRMSE with
varying climatic forcings including Temp, Precip, and
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PAR and three biophysical factors such as soil
temperature, soil moisture, and LAI. Therefore, this ana-
lysis addressed the situations showing the most significant
improvements after assimilating soil temperature and
moisture, thereby providing insights to the application of
the proposed method to other forest ecosystems.

Results
The daily observed soil temperature and moisture from
2003 to 2007 were assimilated into the Biome-BGC MuSo
model using the EnKF with an assimilation window of one
day. When the size of the ensemble was larger than 200,
R2 and the RMSEs between the predicted carbon and
water fluxes and the EC measurements reached approxi-
mately stable values. The uncertainties in the observed soil
temperature and moisture were determined according to
(Wang et al. 2002). The variances in different soil temper-
atures of 8.03, 6.75 and 5.58 °C and moisture levels of
0.112, 0.116, and 0.049, corresponding to 5-, 20- and 40-
cm soil depth layer, respectively, were calculated using
30-min observations and were applied to the EnKF algo-
rithm. The model error was estimated simultaneously to
be − 0.32 to 0.44, with a variance of 0.616 in the EnKF.

Evaluating modeled ET with EC measurements
Overall, the original Biome-BGC model underestimated
forest ET as shown in Fig. 4a, and the annual average
value of 313.04 mm·yr.− 1 is obviously lower than that of
ET_EC, at 448.52 mm·yr.− 1. The forest ecosystem never
experienced soil saturation as per Biome-BGC; this con-
dition is incompatible with the actual conditions in win-
ter and early spring, when deep soil usually converts to
permafrost in the Changbai Mountains. According to
the coefficient analysis and T-test (Fig. 4b, c, d), ET in
Biome-BGC MuSo was improvement, particularly in the
growing seasons, with R2 = 0.72, RMSE = 0.90 mm·d− 1,
and p < 0.01, compared with the Biome-BGC values of
R2 = 0.68, RMSE = 1.15 mm·d− 1, and p < 0.01. Stomatal
closure occurred as a result of anoxic conditions, which
was not considered in the original model; heavy precipi-
tation usually occurs in the Changbai Mountains during
summer. The Biome-BGC MuSo model characterized
this aspect. After the optimal soil moisture content was
attained, the soil stress index decreased owing to satur-
ation soil stress, which is a characteristic of anoxic soil.
Furthermore, with the assimilation of observed soil mois-
ture, the simulation of soil transpiration improved, which

Fig. 4 ET results from various models. a Season variations of ET obtained from EC measurements, calibrated Biome-BGC, Biome-BGC MuSo and
assimilated Biome-BGC MuSo; b Comparison and validation of ET values from EC measurements and the calibrated Biome-BGC model; c
Comparison and validation of ET values from EC measurements and Biome-BGC MuSo model; d Comparison and validation of ET values
from EC measurements and the assimilated Biome-BGC MuSo model
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promoted the enhancement of ET compared with the
EC measurements. In this case, the variables were R2

= 0.81, RMSE = 0.70 mm·d− 1, and p < 0.01, and the an-
nual average ET, 450.48 mm·yr.− 1, was close to ET_EC
(Table 1).

Evaluating modeled carbon fluxes with EC flux
The daily EC measurements obtained during 2003–2007
were used to evaluate the simulated fluxes of the Chang-
bai Mountains forest flux site. Compared with the daily
EC measurements, the calibrated Biome-BGC (ER_Cali)
significantly overestimated the ER (Fig. 5); the annual
average ER was 1868.55 gC·m− 2·yr.− 1, which is signifi-
cantly higher than ER_EC, at 1035.55 gC·m− 2·yr.− 1

(Table 2). Furthermore, the overestimation was

particularly prominent in summer, and the average value
of ER_Cali, at 1004.88 gC·m− 2·yr.− 1, was nearly twice
that of ER_EC, at 578.43 gC·m− 2·yr.− 1. In the original
model, SOM decomposition was affected by soil
temperature, moisture, soil carbon and N content,
whereas root maintenance respiration was influenced by
soil temperature as well as the carbon and N content. In
Biome-BGC MuSo, the soil temperature and moisture
affect HR and are calculated layer-by-layer using soil
temperature and the SWC of each active layer. Accord-
ingly, the estimate for ecosystem respiration (ER_MuSo),
at R2 = 0.81, RMSE = 2.50 gC·m− 2·d− 1, and p < 0.01,
showed improvement over ER_Cali, at R2 = 0.78, RMSE
= 3.24 gC·m− 2·d− 1, and p < 0.01. Along with the inputs
of observed daily soil temperature and moisture, the

Fig. 5 ER results from various models. a Season variations of ER obtained from EC measurements, calibrated Biome-BGC, Biome-BGC MuSo and
assimilated Biome-BGC MuSo; b Comparison and validation of ER values from EC measurements and the calibrated Biome-BGC model; c
Comparison and validation of ER values from EC measurements and Biome-BGC MuSo model; d Comparison and validation of ER values
from EC measurements and the assimilated Biome-BGC MuSo model

Table 1 Annual and seasonal ET derived from EC and each model during 2003 to 2007

ET Annual average
(mm·yr.− 1)

Spring average
(mm·yr.− 1)

Summer average
(mm·yr.− 1)

Autumn average
(mm·yr.− 1)

Winter average
(mm·yr.− 1)

EC 448.52 126.13 304.43 111.02 17.58

Cali 313.04 55.78 153.09 91.09 13.08

MuSo 381.41 71.46 212.56 86.72 10.67

DA 450.48 85.05 245.31 106.39 13.74
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variations in ER_DA were constrained at both seasonal
and annual scales. In particular, the value in the sum-
mers was at 850.30 gC·m− 2·yr.− 1, and the annual value
was 1467.05 gC·m− 2·yr.− 1. This led to improvements in
the respiration estimates, at R2 = 0.85, RMSE = 1.97
gC·m− 2·d− 1, and p < 0.01 over the ER_MuSo.
According to the EC measurement, the forest site

served as a carbon sink in 2003 and 2004, with average
total NEE values in winter of 9.76 gC·m− 2·yr.− 1 and 2.13
gC·m− 2·yr.− 1, respectively. This result indicates that
photosynthesis exceeded the vegetation respiration
under low-temperature conditions. The three modes
captured the daily patterns in NEE, as indicated by the
EC measurements. The simulated carbon exchange with
the atmosphere derived from the calibrated Biome-BGC

(NEE_Cali), Biome-BGC MuSo (NEE_MuSo), and as-
similated Biome-BGC MuSo (NEE_DA) models were
evaluated against EC measurements (Fig. 6). In general,
NEE_Cali, NEE_MuSo and NEE_DA captured the same
seasonal pattern for the carbon sink and source at this
forest site (Fig. 6a). According to the R2 and T-test re-
sults shown in Fig. 6b–d, NEE_DA agreed the best with
EC flux measurements, with R2 = 0.70, RMSE = 1.16
gC·m− 2·d− 1, and p < 0.05, followed by NEE_MuSo and
NEE_Cali, at R2 = 0.67 and 0.64, RMSE = 1.23 gC·m− 2·d− 1

and 3.34 gC·m− 2·d− 1, and p < 0.05 and < 0.01, respectively.
Statistically, the annual and seasonal average NEE dur-

ing 2003–2007 obtained from EC measurements and the
three modes shown in Table 3. Additionally, REs were cal-
culated between the simulated and measured NEEs, which

Table 2 Annual and seasonal ER derived from EC and each model during 2003 to 2007

ER Annual average
(gC·m−2·yr.−1)

Spring average
(gC·m− 2·yr.− 1)

Summer average
(gC·m− 2·yr.− 1)

Autumn average
(gC·m− 2·yr.− 1)

Winter average
(gC·m− 2·yr.− 1)

EC 1035.55 148.48 578.43 255.73 52.92

Cali 1868.55 346.94 1004.88 426.59 90.14

MuSo 1613.73 222.39 925.59 362.09 103.66

DA 1467.05 200.71 850.30 332.64 83.41

Fig. 6 NEE results from various models. a Season variations of NEE obtained from EC measurements, calibrated Biome-BGC, Biome-BGC MuSo
and assimilated Biome-BGC MuSo; b Comparison and validation of NEE values from EC measurements and the calibrated Biome-BGC model; c
Comparison and validation of NEE values from EC measurements and Biome-BGC MuSo model; d Comparison and validation of NEE values from
EC measurements and the assimilated Biome-BGC MuSo model
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indicated that annual average NEE from NEE_DA, with
RE = 14.9%, outperformed those from NEE_MuSo and
NEE_Cali, with RE = 15.2% and 23.6%, respectively. NEE_
Cali presented a significant underestimate, particularly in
summer and winter, with RMSE = 1.85 gC·m− 2·d− 1 and
0.54 gC·m− 2·d− 1, respectively. However, the underestimate
for NEE was mitigated in NEE_MuSo and NEE_DA,
with RMSE = 0.52 gC·m− 2·d− 1 and 0.48 gC·m− 2·d− 1,
respectively.
The improved estimates in NEE_MuSo are attributed

to the advancements in multi-layer simulation, and those
in NEE_DA resulted in an improvement in soil

respiration optimized by the soil temperature and water
content for each given soil layer. The assimilation of
daily multi-layer soil temperature and moisture data into
Biome-BGC MuSo facilitated the daily running of the
model by correcting it in real time.

Analysis of climatic and biophysical factors
Figures 7 and 8 provide three-dimensional graphs for
ΔRMSE, and the averaged climatic and biophysical fac-
tors with a window length (WL) of 15-d. Most of the
ΔRMSEET and ΔRMSEER values were positive, which il-
lustrated that the assimilation promoted the

Table 3 Annual and seasonal NEE derived from EC and each model during 2003 to 2007

NEE Annual average
(gC·m−2·yr.−1)

Spring average
(gC·m− 2·yr.− 1)

Summer average
(gC·m− 2·yr.− 1)

Autumn average
(gC·m− 2·yr.− 1)

Winter average
(gC·m− 2·yr.− 1)

EC 359.96 27.99 323.34 15.77 −3.67

Cali 275.01 12.44 254.19 31.48 − 23.11

MuSo 414.66 23.46 381.57 26.33 −16.69

DA 413.58 15.01 372.94 42.16 −16.52

Fig. 7 Three-dimensional representation of ΔRMSE and climatic factors: a ET, b ER, c NEE
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performances of ER and ET, even under extreme climate
conditions of low air temperature and PAR and little
precipitation. However, even under suitable climatic
conditions, negative values of ΔRMSENEE occurred fre-
quently, which demonstrates that the performances of
NEE were synthetically affected by aboveground and
underground ecological processes.
As shown in Fig. 8, the high values of ΔRMSE are re-

lated to suitable soil temperature and sufficient water
conditions. This finding also proves a direct relationship
between soil temperature and ER and between soil mois-
ture and ET. LAI is an important biophysical parameter;
its high value contributed to improvement of the assimi-
lation scheme. This assimilation strategy appeared to be
more suitable for a densely forest area. However, the ef-
fects of soil temperature, soil moisture, and LAI on
ΔRMSENEE were not significant.

Discussion
The carbon and water fluxes were quantified by inte-
grating the observations and Biome-BGC MuSo in
this study, where the original model’s structural fea-
tures were improved. For example, acclimation of
autotrophic respiration was introduced, which

facilitated more realistic modeling in terms of simula-
tions related to climate-change. Notably, the soil flux
module was improved by addition of the multi-layer
soil module, and the observed soil parameters were
assimilated into the model after using EnKF for error-
related corrections. The improvements in the simu-
lated ER, NEE, and ET were significant because the
accurate soil temperature and moisture data were able to
directly improve the soil respiration and transpiration
values in the simulations. However, underestimations in
winter remained for the carbon and water fluxes, indicat-
ing that parameter uncertainty in Biome-BGC MuSo re-
quires further investigation. Calibration of the parameters
of Biome-BGC in a previous study could serve as a refer-
ence for Biome-BGC MuSo (Yan et al. 2016).
Given the realities of global climate change, climate

warming may accelerate the decomposition of soil car-
bon, and warming-induced carbon losses from soil may
offset enhanced carbon absorption by vegetation (Yang
et al. 2010). In addition to drought, anoxic stress is also
considered in Biome-BGC MuSo. Because the study area
has a temperate and moist climate, anoxic conditions in
the Changbai Mountains caused by sufficiently high
precipitation can influence soil processes such as SOM

Fig. 8 Three-dimensional representation of ΔRMSE and biophysical factors: a ET, b ER, c NEE
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decomposition. Soil temperature is also the main deter-
minant of ecosystem fluxes in the Changbai Mountains,
although its effects usually occur within the top two
layers including litter falls and humic substances) (Wang
et al. 2016).
The integration of observed soil parameters and

models is a possible strategy for enhancing the carbon
and water fluxes. Several remote sensing soil products
have emerged in recent years that provide possible data
sources for data assimilation schemes over local and re-
gional scales. For example, passive and active satellite
microwave soil moisture products such as AMSR-E,
SMOS, and SMAP are available online.
We suggest that different forest flux sites under varied

climatic and biophysical conditions should be tested to
evaluate the credibility of the assimilation scheme pro-
posed in this study. However, the difficulties in stratified
soil data acquisition and in building flux monitoring sta-
tions limit the expansion of these experiments. By using
this assimilation strategy, analyses of climatic and bio-
physical conditions at the Changbai Mountains forest
flux site can facilitate estimation of the carbon and water
fluxes at arid or cold sites.
Thus far, we have assimilated daily remotely sensed

surface soil temperature and moisture products with a
spatial resolution of 1 km, supported by the National
Basic Research Program of China (973 Program), into
the calibrated Biome-BGC model in an attempt to
improve carbon fluxes over the Greater Khingan
range in Northeast China. The simulated annual NPPs
from 2003 to 2015 from the assimilation scheme were
then evaluated against dendrochronological regional
measurements, which were collected from the com-
prehensive field experiments of 2013 and 2016. The
above strategy highlights the possibility of regional
simulation of forest carbon and water fluxes using
soil parameters assimilation.

Conclusions
This study designed a data assimilation scheme using
EnKF to improve simulations of carbon and water fluxes
and to reduce errors by integrating observations
multi-layer soil temperature and moisture. This method
assimilated two data streams, from the observations and
the model, to ensure that the output behavior is consist-
ent with the observations. Our results proved that soil
temperature and moisture are crucial drivers for soil res-
piration and transpiration, which are closely related to
carbon and water fluxes. After the assimilation, the sim-
ulated seasonal patterns showed better matches with the
flux measurements, and the overall performance im-
proved significantly compared with those of Biome-BGC
and Biome-BGC MuSo.

The climatic and biophysical analyses demonstrated
that the assimilation scheme is appropriate for applica-
tion to various forest ecosystems, although it is more
effective in densely forested areas. Although the assimi-
lation scheme helped to improve ET and ER, it had a
marginal effect on NEE.
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