
Chhin et al. Forest Ecosystems  (2018) 5:18 
https://doi.org/10.1186/s40663-018-0136-0
RESEARCH Open Access
Dendroclimatic analysis of white pine
(Pinus strobus L.) using long-term
provenance test sites across eastern North
America

Sophan Chhin1*, Ronald S. Zalesny Jr2, William C. Parker3 and John Brissette4
Abstract

Background: The main objective of this study was to examine the climatic sensitivity of the radial growth response
of 13 eastern white pine (Pinus strobus L.) provenances planted at seven test sites throughout the northern part of
the species’ native distribution in eastern North America.

Methods: The test sites (i.e., Wabeno, Wisconsin, USA; Manistique, Michigan, USA; Pine River, Michigan, USA; Newaygo,
Michigan, USA; Turkey Point, Ontario, Canada; Ganaraska, Ontario, Canada; and Orono, Maine, USA) examined in this
study were part of a range-wide white pine provenance trial established in the early 1960s in the eastern United States
and Canada. Principal components analysis (PCA) was used to examine the main modes of variation [first (PC1) and
second (PC2) principal component axes] in the standardized radial growth indices of the provenances at each test site.
The year scores for PC1 and PC2 were examined in relation to an array of test site climate variables using multiple
regression analysis to examine the commonality of growth response across all provenances to the climate of each test
site. Provenance loadings on PC1 and PC2 were correlated with geographic parameters (i.e., latitude, longitude,
elevation) and a suite of biophysical parameters associated with provenance origin location.

Results: The amount of variation in radial growth explained by PC1 and PC2 ranged from 43.4% to 89.6%. Dendroclimatic
models revealed that white pine radial growth responses to climate were complex and differed among sites. The key
dendroclimatic relationships observed included sensitivity to high temperature in winter and summer, cold temperature in
the spring and fall (i.e., beginning and end of the growing season), summer moisture stress, potential sensitivity to storm-
induced damage in spring and fall, and both positive and negative effects of higher winter snowfall. Separation of the
loadings of provenances on principal component axes was mainly associated with temperature-related bioclimatic
parameters of provenance origin at 5 of the 7 test sites close to the climate influence of the Great Lakes (i.e., Wabeno,
Manistique, Pine River, Newaygo, and Turkey Point). In contrast, differences in radial growth response to climate at the
Ganaraska test site, were driven more by precipitation-related bioclimatic parameters of the provenance origin location while
radial growth at the easternmost Orono test site was independent of bioclimate at the provenance origin location.

Conclusions: Study results suggest that genetic adaptation to temperature and precipitation regime may significantly
influence radial growth performance of white pine populations selected for use in assisted migration programs to better
adapt white pine to a future climate.
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Background
If fossil fuel intensive energy generation continues to grow at
current rates, atmospheric concentrations of carbon dioxide
(CO2) and other greenhouse gases will increase dramatically.
Continued high rates of emissions over the next century
could raise mean annual global surface temperature by 2.5 °C
to 6.5 °C by 2100 (IPCC 2007). The resulting projected
change in spatial and temporal temperature and precipitation
regimes, increased frequency of natural disturbance events,
and atmospheric CO2 enrichment is expected to alter the dis-
tribution, structure, function, and productivity of northern
forests (Mickler et al. 2000; Parmesan and Yohe 2003).
A critical need exists to develop ecologically sustainable

forest management approaches that incorporate climate
change adaptation to sustain carbon sequestration, fiber pro-
duction, and other ecological goods and services provided by
managed forests (Millar et al. 2007; Alexander and Perschel
2009). The success of such efforts depends in part on know-
ledge of genetic variation in climatic response of tree species
(Rehfeldt et al. 1999; Millar et al. 2007; Wang et al. 2010).
Therefore, information generated from long-term proven-
ance tests has substantial potential to improve understanding
of tree species responses and adaptability to a rapidly
changing climate (Rehfeldt et al. 1999; Wang et al. 2010).
Eastern white pine (Pinus strobus L.) is an ecologically

and economically important softwood species that occurs
throughout much of eastern North America (Wendel and
Smith 1990). White pine was a dominant component of
pre-settlement forests of eastern North America that is
highly valued for its exceptional wood properties. The
effects of large-scale exploitive logging and catastrophic
fire in the 18th and 19th centuries, coupled with more re-
cent institutional fire suppression and damage and mortal-
ity from white pine blister rust (Cronartium ribicola J.C.
Fisch.), white pine weevil (Pissodes strobi (Peck)), and root
rot fungi (Armillaria mellea (Vahl) P. Kumm) have
dramatically reduced the abundance of white pine on the
landscape (Abrams et al. 2000).
Genetic adaptation refers to genetic differences or

variation among provenances in the natural range of a tree
species that have evolved over several generations and en-
sure it is in sync with the environmental conditions of its
location (White et al. 2007; King et al. 2013; Gray et al.
2016). Examples of genetic adaptation in trees include the
link between provenance location and tree growth rate and
phenology, i.e., tree provenances from more northern lati-
tudes generally grow more slowly and start growing earlier
in spring/stop earlier in fall compared to those from more
southern latitudes. White pine typically exhibits significant
adaptive genetic variation in response to broad climatic
gradients, the product of natural selection and genetic pro-
cesses (Wright 1970; Genys 1987), and as a result is found
as a component of most upland forest types in its range.
This variation has resulted in tree species populations that
are genetically adapted to local and regional environmental
conditions. However, as the climate continues to change,
white pine may become increasingly unsynchronized with
and maladapted to the prevailing climate, resulting in
decreased vigor, productivity, and wood quality. The
geographic shifts and reductions in suitable climatic habitat
projected by climate change models (McKenney et al. 2007;
Iverson et al. 2008; Joyce and Rehfeldt 2013) represent a ser-
ious threat to white pine throughout much of eastern North
America, especially as changes in climate will also influence
other abiotic and biotic stressors (Millar et al. 2007).
A network of provenance test sites established in the

early 1960s has provided insight into the adaptive genetic
variation of white pine (Wright 1970; Genys 1987; Joyce
and Rehfeldt 2013; Zalesny and Headlee 2015). This scien-
tific resource has renewed value as a long-term experiment
that can increase understanding of the effect of climate
change on white pine tree populations growing outside the
climate envelope to which they are naturally adapted
(Wang et al. 2006). For example, it is known that southern
sources of white pine grow faster but are more susceptible
to frost damage when planted farther north (Joyce and
Rehfeldt 2013). Combining such knowledge with constantly
improving global climate models and climate change sce-
narios can inform seed deployment decisions to produce
nursery stock that is best adapted to a given planting site
(Joyce and Rehfeldt 2013; Yang et al. 2015). In addition,
such knowledge can guide management of natural regener-
ation where local provenances are currently well adapted to
projected future climate conditions.
Dendrochronological methods can be effectively applied

to describe the genetic adaptation of tree provenances to
environmental conditions (e.g., Chhin 2010; McClane et al.
2011; Pluess and Weber 2012; King et al. 2013; Eilmann
et al. 2014; Chhin 2015) and to examine geographic
variation in response to climate (e.g., Chen et al. 2010). In
response to seasonal changes in climatic drivers of tree
phenology, the annual growth cycle of temperate and bor-
eal tree species in North America alternates between phases
of summer growth and winter dormancy (Fritts 1976).
Examination of the seasonal periodicity of climatic effects
on radial stem growth processes through tree-ring analysis
(dendrochronology) provides insight into the seasonal tim-
ing of radial growth–climate relationships (Fritts 1976;
Chhin et al. 2008) and therefore can be used to quantify
genetic adaption of tree provenances to environmental con-
ditions (Chhin 2010; Pluess and Weber 2012; Chhin 2015).
The primary goal of this study was to identify eastern

white pine provenances with enhanced adaptation to climate
change throughout the portion of the species’ native distribu-
tion from Wisconsin to Maine, USA, and including Ontario
and Quebec, Canada. Selection of climatically adapted
provenances for planting will help promote biologically and
economically sustainable reforestation, afforestation, and
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gene conservation throughout the region. While genetic tree
improvement studies have focused on optimizing selection
of growth traits such as maximizing tree height (Joyce et al.
2002; Lu et al. 2003b), few studies have examined the effect
of climatic sensitivity on these growth traits (Lu et al. 2003a;
Chhin 2008; Joyce and Rehfeldt 2013; Chhin 2015). Using
growth-climate models and data collected from long-term
white pine provenance tests, the specific objectives of this
study were to use a dendroclimatological approach to:

1) Examine the degree of similarity in climatic sensitivity
among the provenances planted at each of the 7 test sites.

2) Examine the influence of geographic location and
bioclimate of provenance origin on radial growth
response at each test sites.

Methods
The study was conducted at 7 field test sites belonging to a
range-wide white pine provenance trial established in the
early 1960s in the eastern United States and Canada
(Wright et al. 1970) (Fig. 1; Table 1). Thirteen white pine
provenances were evaluated at Wabeno, Wisconsin, USA;
Manistique, Michigan, USA; and Pine River, Michigan,
USA (Table 2). The Penobscot, Maine, USA provenance
was absent at the Newaygo, Michigan, USA test site. The
Fig. 1 Distribution of the white pine provenance trial test sites (denoted by s
WWI =Wabeno, WI; MMI =Manistique, MI; PMI = Pine River, MI; NMI = Newayg
Newaygo provenance was not tested at Turkey Point,
Ontario, Canada; Ganaraska, Ontario, Canada; and Orono,
Maine, USA test sites. The field sampling design varied at
each test site, with a uniform spacing of 2.13 m× 2.13 m.
The field design at the Wabeno, Manistique, and Pine River
test sites were planted in 24 blocks with one tree per
provenance per block. At the Newaygo and Ganaraska test
sites, white pine was planted in 4 blocks comprising 81
trees per provenance (arranged in 9 rows of 9 trees) per
block. The Turkey Point test site consisted of 4 blocks, each
block containing 11 rows of 11 trees per provenance. At
the Orono test site, white pine was planted in 12 blocks
and each block contained each provenance planted in 4-
tree row plots (King and Nienstaedt 1969; Zalesny and
Headlee 2015).
Two increment cores were collected at breast height (i.e.,

1.37 m) from a subset of trees that had a diameter at breast
height (dbh) at or near the median value of all living trees
measured in a plot. All increment cores used in this study
were taken at dbh in the east cardinal direction using a 5-
mm diameter borer. The number of living trees per proven-
ance available for sampling (Table 1) differed due to variable
tree mortality among test sites. The cores were permanently
mounted and sanded using standard dendrochronology pro-
cedures to prepare them for radial growth trend analysis
tars) in the United States and Canada that were assessed in this study.
o, MI; TON = Turkey Point, ON; GON = Ganaraska, ON; OME = Orono, ME



Table 1 Location, longitude, latitude, elevation (meters (m)) and
number of trees sampled for the 7 test sites

Location Longitude
(°W)

Latitude
(°N)

Elevation
(m)

Range in number
of trees sampleda

Wabeno,
Wisconsin

−88.50 45.40 438 2–10

Manistique,
Michigan

−86.40 46.00 232 5–14

Pine River,
Michigan

−85.80 44.20 268 4–18

Newaygo,
Michigan

−85.70 43.50 273 27–28

Turkey Point,
Ontario

−80.45 42.70 214 27–30

Ganaraska,
Ontario

−78.73 44.95 307 26–30

Orono,
Maine

−68.65 44.88 34 9–13

aRange in number of trees sampled is across all provenances at each test site
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(Stokes and Smiley 1996). Scanned images of individual
cores were acquired with a flatbed scanner at a resolution of
720 dpi. Cores and scanned images were visually cross-
dated. Ring-widths were measured from the scanned images
using an image analysis system (WinDENDRO, Regent In-
struments, Québec, Canada). Statistical quality control was
conducted using COFECHA software to ensure that missing
and false rings were accounted for (Holmes 1983; Grissino-
Mayer 2001). To remove non-climatic effects, cross-dated
ring-width measurements were de-trended using a conserva-
tive de-trending approach that included fitting a negative ex-
ponential curve, simple linear regression, and a line through
the mean with ARSTAN software (Cook 1985). The stan-
dardized version of the chronology was retained for each in-
dividual core sample to prevent the loss of any radial growth
Table 2 Location, longitude, latitude, elevation (meters (m)), and see
at 7 test sites

Provenance origin Longitude (°W) Latitude (°N) Elevation (m

Union, Georgia −84.05 34.77 876

Greene, Tennessee −82.80 36.00 625

Monroe, Pennsylvania −75.42 41.08 585

Franklin, New York −74.30 44.40 702

Penobscot, Maine −68.60 44.90 33

Ashland, Ohio −82.30 40.80 394

Allamakee, Iowa −91.50 43.30 350

Cass, Minnesota −94.50 47.40 393

Forest, Wisconsin −88.90 45.80 500

Lunenburg, Nova Scotia −64.60 44.40 95

Pontiac, Quebec −77.00 47.40 366

Algoma, Ontario −82.60 46.40 365

Newaygo, Michigan −85.70 43.50 273
signals associated with provenances at different test sites.
The standardized radial growth indices were then averaged
for individual trees of each provenance at each test site.
Chronology statistics, including mean sensitivity and the
inter-series correlation coefficient, were determined for each
provenance location at each test site.
Principal components analysis (PCA) was used to exam-

ine the main modes of variation in the standardized radial
growth indices of individual provenances at each test site
(Graumlich 1993; Legendre and Legendre 1998). The
PCA was carried out using the Factor Analysis function in
Systat (ver. 13.0, released 2009), which also included selec-
tion of a Varimax rotation to improve interpretation of the
principal component axes. Selected principal component
axes explained more variation than expected, based on a
broken stick null model (Legendre and Legendre 1998).
Year scores from 1976 to 2009 were used in dendrocli-

matic analyses to examine shared provenance radial growth
responses to test site climate. For test sites in the United
States, primary climate data were obtained from PRISM
(Daly 2008) and for test sites in Canada were obtained from
ClimateNA (Hamann et al. 2013). Climate data included
minimum, maximum, and mean monthly temperature and
total monthly precipitation. These primary variables were
used as the basis to produce a synthetic monthly climatic
moisture index (CMI) variable calculated as total monthly
precipitation minus a measure of monthly potential
evapotranspiration (Hogg 1997). Since tree radial growth
may respond more strongly when climatic variables are
expressed at a seasonal compared to a monthly scale,
monthly climatic variables were converted to seasonal 3-
month periods (i.e., quarters) by averaging across months
for temperature-related variables and summing across
months for precipitation and moisture index variables.
d source identification numbers for the 13 provenances tested

) Canada seed source # Canada population # United States
seed source #

1 272 1633

2 273 1634

3 274 1640

4 275 1639

5 276 1638

6 277 1632

7 278 1624

8 279 1622

9 280 1623

10 281 1637

11 282 1635

12 283 1636

13 345 1670
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Because climatic conditions in the previous year can influ-
ence radial growth in the following growing season, the
range of monthly and seasonal periods was examined from
April of the prior year (t-1) to October of the current year
(t) of ring formation.
Dendroclimatic analysis was conducted to examine the

relationship between year scores representing the main
modes of variation (i.e., the first (PC1) and second (PC2)
principal component axes) shared across provenances at
each test site with respect to the monthly and seasonal cli-
mate at each test site. Dendroclimatic analysis was con-
ducted using a step-wise multiple regression conducted
with R statistical analysis software for the period 1976 to
2009 (Venables and Ripley 2002; Chhin et al. 2008; R Core
Team 2014). Standardized partial regression coefficients
were also calculated to rank the relative importance of the
predictor variables in each regression model (Zar 1999).
The loadings of each provenance on the significant

principal component axes were used to examine the influ-
ence of the bioclimate of the provenance origin location on
radial growth responses at the 7 test sites. A suite of 19 bio-
climatic parameters for the climate normal period of 1971
to 2000 were obtained from McKenney et al. (2007)
(Table 3). The loadings of each provenance on PC1 and
PC2 of each test site were correlated with geographical
parameters (i.e., latitude, longitude, elevation, and distance
from test site) of each provenance origin location.
Table 3 Bioclimatic parameters (abbreviations) and their definitionsa

Bioclimatic parameter Definition

1. Annual mean temperature (AMT) The mean o

2. Mean diurnal range (MDR) The mean o
between the

3. Isothermality (ISO) MDR (param

4. Temperature seasonality (TSCV) Coefficient o

5. Max temperature of warmest period (TWP) The highest

6. Min temperature of coldest period (TCP) The lowest m

7. Temperature annual range (TAR) The differenc

8. Mean temperature of wettest quarter (TWetQ) Mean tempe

9. Mean temperature of driest quarter (TDQ) Mean tempe

10. Mean temperature of warmest quarter (TWarmQ) Mean tempe

11. Mean temperature of coldest quarter (TCQ) Mean tempe

12. Annual precipitation (AP) The sum of

13. Precipitation of wettest period (PWP) The highest

14. Precipitation of driest period (PDP) The lowest m

15. Precipitation seasonality (PSCV) Coefficient o

16. Precipitation of wettest quarter (PWetQ) Total precipi

17. Precipitation of driest quarter (PDQ) Total precipi

18. Precipitation of warmest quarter (PWarmQ) Total precipi

19. Precipitation of coldest quarter (PCQ) Total precipi
aBioclimatic variables and definitions based on Natural Resources Canada (2017)
Sensitivity of the loadings of each provenance on PC1 and
PC2 were therefore also examined in relation to the 19 bio-
climatic parameters (Table 3). Given the low number of
provenances at a site (n = 12 or 13 provenances), all correl-
ation analyses were conducted using the Spearman rank
method using Systat (ver. 13.0, released 2009).

Results
Chronology statistics, including mean sensitivity and the
inter-series correlation coefficients, are provided in Add-
itional file 1. Mean sensitivity of provenances was signifi-
cantly correlated with latitude only at the Newaygo test
site (ρ = 0.53) (results not presented). The variance in ra-
dial growth among white pine provenances captured by
PC1 was statistically significant for all test sites (Table 4).
The amount of explained variance was highest for
Ganaraska (58.8%) and lowest for Wabeno (31.9%). All
of the second principal component axes were significant,
except for Wabeno.

Shared provenance radial growth responses to climate of
each test site
Significant linear relationships were exhibited between PCI
and PC2 scores and the monthly and seasonal temperature
and precipitation regimes at several test sites. The year scores
of white pine radial growth with respect to PC1 (Fig. 2a) were
negatively associated with mean maximum temperature for
f all monthly mean temperatures.

f all monthly diurnal temperature ranges which is the difference
monthly maximum and minimum temperature.

eter 2) divided by ATR (parameter 7)

f variation of temperature expressed as a percentage.

monthly temperature.

onthly temperature.

e between the TWP (parameter 5) and the TCP (parameter 6).

rature of the wettest quarter.

rature of the driest quarter.

rature of the warmest quarter.

rature of the coldest quarter.

monthly precipitation within a year.

monthly precipitation.

onthly precipitation.

f variation of precipitation monthly precipitation expressed a percentage.

tation of the wettest quarter.

tation of the driest quarter.

tation of the warmest quarter.

tation of the coldest quarter.



Table 4 Amount of explained variance for the principal component loadings of provenances at each test site on the principal
component axes and correlation with geographical variables of provenance origin

Test site location Explained variance
PC1 (%)

Explained variance
PC2 (%)

Variables associated with PC1 Variables associated with PC2

Wabeno, WI 31.9* 11.5 NS Latitude (ρ = −0.70), Elevation (ρ = 0.63)

Manistique, MI 52.8* 32.0* Latitude (ρ = 0.63), Longitude (ρ = 0.51) Latitude (ρ = − 0.55)

Pine River, MI 46.6* 43.0* Elevation (ρ = − 0.63) Elevation (ρ = 0.72)

Newaygo, MI 52.1* 33.8* Distance (ρ = − 0.65) Latitude (ρ = 0.61)

Turkey Point, ON 41.8* 26.1* NS NS

Ganaraska, ON 58.8* 29.1* NS NS

Orono, ME 41.2* 46.7* Distance (ρ = 0.71), Longitude (ρ = − 0.69) Longitude (ρ = 0.69), Distance (ρ = − 0.68)

Note: Statistical significance of explained variance in test sites is indicated by an asterisk. NS no significant variables associated with a principal component.
Significant Spearman’s rank correlation coefficients (ρ) are provided in parentheses
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the winter seasonal period at Manistique and Newaygo [De-
cember (t-1) to February (t)], and Orono [January (t) to
March (t)] (Fig. 3). The year scores on PC1 at Pine River
were negatively related to the summer seasonal maximum
temperature [May (t) to July (t)]. At Orono, radial growth
also responded positively to the fall seasonal period of max-
imum temperature in the previous growing season [Septem-
ber (t-1) to November (t-1)]. White pine radial growth at
Wabeno, Turkey Point, and Ganaraska was not responsive to
mean maximum temperature. Relationships between the year
scores of PC2 (Fig. 2b) and maximum temperature indicated
that white pine radial growth was negatively related with Sep-
tember (t) monthly maximum temperature at Newaygo and
Turkey Point (Fig. 3), and was negatively related to summer
(t) temperature at Ganaraska and Orono. The PC2 year
scores for Wabeno and Orono indicated that growth was
positively associated with spring maximum temperature. The
PC2 year scores were also positively related with September
(t-1) maximum temperature in Manistique.
Similar to mean maximum temperature, white pine radial

growth responses to minimum temperature exhibited nega-
tive relationships of PC1 scores with the winter seasonal
period [December (t-1) to February (t)] at Manistique and
Newaygo, and Orono [January (t) to March (t)] (Fig. 4). At
these sites, the dendroclimatic regression models generally
had weaker explanatory power in connection with mean
minimum temperature (as reflected by lower R2 values)
compared to the growth response to mean maximum
temperature. The PC1 year scores at Turkey Point were
negatively related to July (t) minimum temperature and
PC1 year scores at Ganaraska were primarily negatively re-
lated with April (t-1) minimum temperature. The year
scores on PC2 indicated that radial growth at most test sites
did not respond to mean minimum temperature except for
positive responses primarily in the fall (t-1) at Manistique
and negative responses to September (t) minimum
temperature at Turkey Point (Fig. 4).
Responses of radial growth to mean temperature reflected

in the PC1 year scores showed similarities in responses to
mean maximum temperature among test sites, except at
Pine River where a secondary and positive response to fall (t-
1) mean temperature was evident (Fig. 5). Furthermore, PC1
year scores for Orono were the reverse of rankings of the
variables that were influential in the regression model, with
more explanatory power provided by mean temperature in
the winter seasonal period (t). The PC2 year scores
responded positively to mean temperature in May (t) at
Wabeno and fall (t-1) at Manistique (Fig. 5). The PC2 year
scores at Turkey Point were negatively related to mean
temperature in June (t) at Newaygo, September (t) at Turkey
Point, July (t) at Ganaraska, and August (t-1) at Orono.
The year scores of both PC1 and PC2 were significantly

related to monthly and seasonal precipitation at most test
sites (Fig. 6). The PC1 year scores were mainly positively
related with winter precipitation at Wabeno and Newaygo
[December (t-1)], and Manistique and Turkey Point
[December (t-1) to February (t)]. In contrast, the PC1 year
scores were negatively associated with May (t-1) precipita-
tion at Ganaraska. The PC2 year scores were primarily and
positively related with summer precipitation in July (t) at
Wabeno, July (t) to September (t) at Newaygo, August (t) at
Ganaraska, and July (t) to September (t) at Orono (Fig. 6).
Year scores on both the PC1 and PC2 axes were signifi-

cantly related to CMI at most of the test sites except for
Ganaraska (Fig. 7). The PC1 year scores were mainly posi-
tively related with winter CMI at Wabeno, Manistique, and
Pine River [December (t-1)], and Turkey Point [December
(t-1) to February (t)]. The PC2 year scores were positively re-
lated with CMI in February (t) at Manistique and during the
summer seasonal period (t) at Newaygo and Orono. In con-
trast, PC2 year scores were primarily negatively related to
CMI in August (t-1) at Wabeno as well as the fall seasonal
period (t-1) at Pine River and January (t) at Turkey Point.

Influence of location of provenance origin and bioclimate
on radial growth response at each test site
Significant correlations between radial growth response and
geographic and bioclimatic parameters of the provenances



Fig. 2 Time series chronology of the year scores of radial growth on the first principal component (PC1) (a) and second principal component
(PC2) (b) axes at each of the 7 test sites. WWI =Wabeno, WI; MMI = Manistique, MI; PMI = Pine River, MI; NMI = Newaygo, MI; TON = Turkey Point,
ON; GON = Ganaraska, ON; OME = Orono, ME
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were also observed at the test sites. The loadings of the
provenances on PC1 were positively correlated with latitude
and longitude at Manistique, negatively correlated with ele-
vation at Pine River, negatively correlated with distance
from test site at Newaygo, and negatively correlated with
longitude and positively correlated with distance from test
site at Orono (Table 4). The loadings onto PC2 were nega-
tively correlated with both latitude and elevation at
Wabeno, negatively correlated with latitude at Manistique,
positively correlated to elevation at Pine River, and posi-
tively correlated with longitude and negatively correlated
with distance from test site at Orono (Table 4). The load-
ings of each provenance on PC1 and PC2 at each test site
are provided in Table 5.
The loadings of the provenances on PC1 were not sig-

nificantly correlated with the bioclimatic parameters of
the location of provenance origin for the Wabeno and
Orono test sites (Table 6). At Manistique, of the 7 signifi-
cant relationships the provenance loadings on PC1 were
significantly and most strongly correlated with precipita-
tion of the driest quarter (+ρ) and temperature of the wet-
test quarter (−ρ). The two strongest correlations with the
PC1 loadings at Pine River included temperature of the
coldest quarter (−ρ) and precipitation of the wettest quar-
ter (−ρ). The two strongest correlations with the PC1
loadings at Turkey Point were temperature annual range
(−ρ) and mean diurnal range (+ρ). The provenance load-
ings onto PC1 at Ganaraska were significantly correlated
with precipitation of the wettest quarter (−ρ) and
temperature of the coldest quarter (−ρ).
The loadings of the provenances onto PC2 at Wabeno

were significantly correlated with 11 variables, with



Fig. 3 White pine (Pinus strobus L.) radial growth represented by the year scores on the first and second principal component axes and the
relationship with mean maximum temperature based on multiple regression analysis. Black boxes indicate a negative relationship and grey boxes
indicate a positive relationship between growth and climate. Where more than one climatic variable was significant, numbers for a given test site
indicate order of significance (1 is most important) based on standardized partial regression coefficients. All relationships shown are statistically
significant (p < 0.05). R2 is the adjusted coefficient of determination. NS indicates that no relationships were statistically significant
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temperature of the warmest quarter (+ρ) and temperature
of the wettest month (−ρ) having the strongest correla-
tions (Table 7). A total of 7 significant correlations were
present among the PC2 provenance loadings at Manis-
tique in which the highest values were for the response to
temperature of the wettest quarter (+ρ) and isothermality
(+ρ). The PC2 loadings at Pine River were correlated with
4 parameters, with the correlation being highest with
temperature of the coldest quarter (+ρ). The PC2 proven-
ance loadings at Newaygo were significantly correlated
with 6 biophysical parameters, with the 2 strongest corre-
lations with isothermality (−ρ) and temperature of the
wettest quarter (−ρ). The PC2 provenance loadings were
correlated with 11 biophysical parameters at Turkey Point,
Fig. 4 White pine (Pinus strobus L.) radial growth represented by the year s
relationship with mean minimum temperature based on multiple regressio
with temperature annual range (+ρ) and temperature of
the coldest month (−ρ) having the two strongest correla-
tions. At Ganaraska, the PC2 provenance loadings were
significantly correlated with 3 biophysical parameters,
with the correlations with precipitation of the wettest
period (+ρ) and temperature of the coldest quarter (+ρ)
being the two strongest. PC2 loadings for Orono were not
correlated with any bioclimatic parameter.

Discussion
Natural populations of white pine have been examined in
prior dendroclimatic and dendroecological studies in eastern
North America (Graumlich 1993; Abrams et al. 2000; Black
and Abrams 2005; Kilgore and Telewski 2004; Kipfmueller
cores on the first and second principal component axes and the
n analysis. Legend descriptions are provided in Fig. 3 caption



Fig. 5 White pine (Pinus strobus L.) radial growth represented by the year scores on the first and second principal component axes and the
relationship with mean temperature based on multiple regression analysis. Legend descriptions are provided in Fig. 3 caption
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et al. 2010, Chhin et al. 2013). This study represents the first
dendroclimatic assessment of a long-term range-wide prov-
enance study of white pine, which consisted of 7 test sites in
the United States and Canada and 13 provenances obtained
from across the species’ natural range. The results revealed
complex radial growth responses to climatic and geograph-
ical variables among and within provenances of white pine.

Shared provenance radial growth responses to climate of
each test site
Examination of year scores of the first and second principal
component axes provided insight into similarities in cli-
matic sensitivity shared among provenances planted at each
of the 7 test sites. The negative relationships between the
PC1 and PC2 year scores and temperature variables indi-
cated that radial growth of white pine was likely inhibited
Fig. 6 White pine (Pinus strobus L.) radial growth represented by the year s
relationship with mean total precipitation based on multiple regression ana
by higher temperature, and this was observed at all sites ex-
cept Wabeno (Figs. 3, 4 and 5). The radial growth response
to high temperature also differed in seasonality. That is, a
winter seasonal effect was evident at Manistique, Newaygo,
and Orono; a spring effect at Ganaraska, and a summer ef-
fect at 5 of the 7 sites: Pine River, Newaygo, Turkey Point,
Ganaraska, and Orono. From an ecophysiological perspec-
tive, high temperature stress can result in respiratory deple-
tion of carbohydrate reserves that might otherwise be used
to support radial growth (Fritts 1976; Kozlowski et al.
1991). During the growing season, high temperature stress
can also induce water stress by increasing evaporative water
demand (Fritts 1976). High temperature has been observed
to reduce radial growth of white pine growing in the south-
ern region of the Lower Peninsula of Michigan (Chhin
et al. 2013) and in northern Minnesota (Kipfmueller et al.
cores on the first and second principal component axes and the
lysis. Legend descriptions are provided in Fig. 3 caption



Fig. 7 White pine (Pinus strobus L.) radial growth represented by the year scores on the first and second principal component axes and the
relationship with the mean climatic moisture index based on multiple regression analysis. Legend descriptions are provided in Fig. 3 caption
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2010). During the winter, high temperatures can interfere
with maintenance of cold hardiness leading to low
temperature injury (Havranek and Tranquillini 1995). As
well, periodic exposure to brief periods of warm tempera-
tures followed by freeze events can result in leaf tissue in-
jury and reduce the growth of coniferous tree species
(Havranek and Tranquillini 1995).
Another common relationship found between white pine

radial growth (represented by the PC1 and PC2 year scores)
and climate is that cold temperature stress either at the be-
ginning (i.e., spring) and (or) end of the growing season
(i.e., autumn) was correlated with reduced radial growth.
This relationship was observed at 5 of the 7 sites: Wabeno,
Manistique, Pine River, Ganaraska, and Orono. Conversely,
the positive growth response to warmer spring and fall
Table 5 Loadings of each provenance on the first (PC1) and second

Provenance
origin location

Test site location

Wabeno, WI Manistique, MI Pine River, MI

Union, GA (0.17, 0.97) (0.53, 0.81) (0.59, 0.71)

Greene, TN (0.32, 0.33) (0.57, 0.74) (0.31, 0.93)

Monroe, PA (0.52, 0.32) (0.81, 0.50) (0.66, 0.72)

Franklin, NY (0.76, 0.34) (0.79, 0.59) (0.49, 0.85)

Penobscot, ME (0.17, − 0.08) (0.81, 0.52) (0.76, 0.38)

Ashland, OH (0.49, 0.19) (0.74, 0.61) (0.71, 0.66)

Allamakee, IA (0.73, 0.12) (0.68, 0.65) (0.78, 0.51)

Cass, MN (0.31, −0.12) (0.75, 0.62) (0.57, 0.75)

Forest, WI (0.86, 0.14) (0.83, 0.50) (0.73, 0.64)

Lunenburg, NS (0.74, 0.25) (0.82, 0.52) (0.66, 0.69)

Pontiac, QC (0.34, 0.14) (0.90, 0.38) (0.77, 0.55)

Algoma, ON (0.71, − 0.14) (0.76, 0.51) (0.89, 0.31)

Newaygo, MI (0.59, 0.21) (0.38, 0.87) (0.74, 0.53)
temperatures indicated that warmer conditions in the
spring and (or) fall at these 5 test sites would favor radial
growth by increasing the length of the growing season
(Fritts 1976; Kozlowski et al. 1991). The timing of the start
of the growing season was found to be a factor affecting ra-
dial growth in a population of white pine growing in the
northern region of the Lower Peninsula of Michigan (Kil-
gore and Telewski 2004), as well as Wisconsin and the
Upper Peninsula Michigan (Graumlich 1993). In contrast,
Chhin et al. (2013) examined a more southern population
of white pine in Michigan’s Lower Peninsula and did not
observe any radial growth dependency on spring
temperatures.
White pine radial growth responses to precipitation

and CMI varied with test site location. Generally, the
(PC2) principal component axis for each test site

Newaygo, MI Turkey Point, ON Ganaraska, ON Orono, ME

(0.69, 0.37) (0.21, 0.96) (0.31, 0.95) (0.85, 0.37)

(0.66, 0.55) (0.75, 0.45) (0.90, 0.35) (0.65, 0.71)

(0.74, 0.56) (0.74, 0.59) (0.90, 0.39) (0.54, 0.82)

(0.66, 0.69) (0.92, 0.33) (0.59, 0.79) (0.54, 0.80)

– (0.70, 0.64) (0.88, 0.36) (0.65, 0.71)

(0.93, 0.30) (0.73, 0.52) (0.82, 0.49) (0.69, 0.65)

(0.74, 0.55) (0.88, 0.34) (0.79, 0.53) (0.79, 0.55)

(0.61, 0.69) (0.95, 0.25) (0.71, 0.64) (0.74, 0.63)

(0.86, 0.37) (0.81, 0.55) (0.93, 0.30) (0.69, 0.71)

(0.65, 0.69) (0.58, 0.72) (0.37, 0.92) (0.40, 0.90)

(0.21, 0.95) (0.83, 0.44) (0.84, 0.49) (0.71, 0.65)

(0.75, 0.60) (0.71, 0.62) (0.85, 0.39) (0.82, 0.54)

(0.89, 0.31) – – –



Table 6 Spearman rank correlation coefficients reflecting the sensitivity of the first principal component (PC1) loadings of the
provenances at each test site with bioclimatic parameters of provenance origin location

Bioclimatic parameter Wabeno, WI Manistique, MI Pine River, MI Newaygo, MI Turkey Point, ON Ganaraska, ON Orono, ME

1. AMT − 0.281 −0.067 − 0.528* − 0.187 0.286 0.240 0.028

2. MDR 0.209 0.363 0.456 −0.203 0.734* 0.112 0.315

3. ISO −0.429 −0.764* − 0.154 0.441 − 0.154 0.105 0.252

4. TSCV −0.270 −0.582* − 0.396 0.308 − 0.650* −0.196 − 0.161

5. TWP 0.168 0.418 0.478 −0.182 0.664* 0.203 0.308

6. TCP 0.080 − 0.236 −0.099 0.182 0.629* 0.301 0.091

7. TAR −0.269 − 0.347 − 0.190 0.260 − 0.856* −0.225 − 0.140

8. TWetQ −0.427 − 0.768* − 0.195 0.298 − 0.182 − 0.014 0.221

9. TDQ − 0.275 − 0.538* − 0.412 0.287 − 0.650* −0.196 − 0.161

10. TWarmQ −0.179 − 0.044 − 0.462 − 0.168 −0.573* − 0.350 − 0.427

11. TCQ 0.033 −0.286 −0.648* − 0.266 −0.175 − 0.524* −0.287

12. AP −0.176 0.088 −0.407 −0.147 − 0.657* −0.287 − 0.441

13. PWP 0.052 −0.121 −0.637* − 0.301 −0.189 − 0.566* −0.308

14. PDP −0.234 0.099 −0.363 −0.147 − 0.713* −0.245 − 0.420

15. PSCV 0.003 −0.341 −0.566* − 0.119 0.140 − 0.462 −0.014

16. PWetQ −0.264 0.033 −0.418 −0.140 − 0.713* −0.189 − 0.413

17. PDQ 0.444 0.781* 0.242 −0.329 0.452 0.144 −0.161

18. PWarmQ −0.412 −0.569* − 0.344 0.210 − 0.706* −0.252 − 0.056

19. PCQ −0.327 − 0.692* −0.313 0.266 −0.587* − 0.280 0.056

Note: Full name and definitions of bioclimatic parameters are presented in Table 3. Significant Spearman rank correlation coefficients are highlighted with an
asterisk and bold font
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PC1 year scores indicated that provenances of white
pine at 4 of the test sites (i.e., Wabeno, Manistique, Pine
River, and Turkey Point) had a strong, positive response
to winter precipitation and CMI. Positive responses to
winter precipitation are usually indicative of increased
snowpack that can help insulate the soil and prevent the
development of cold soil temperatures causing root in-
jury. Furthermore, higher snowfall accumulation in-
creases ground water recharge during spring snow melt,
providing abundant soil moisture to support radial
growth early in the growing season (Fritts 1976;
Kozlowski et al. 1991). The PC2 year scores generally
showed a positive response to summer precipitation at 4
of the 7 test sites: Wabeno, Newaygo, Ganaraska, and
Orono. Radial growth was sensitive to summer drought
stress at these test sites. Reduced radial growth due to
growing season drought has been observed in white pine
in other regions of eastern North America, including
northern Minnesota (Kipfmueller et al. 2010), the south-
ern region of the Lower Peninsula of Michigan (Chhin
et al. 2013), an old growth stand of white pine in Massa-
chusetts (Abrams et al. 2000), and the southern Appa-
lachian region (Vose and Swank 1994).
The dendroclimatic regression models revealed signifi-

cant negative relationships between white pine radial
growth (i.e., PC1 but mainly PC2 year scores) and spring
and fall precipitation and (or) CMI at 5 of the 7 test
sites: Wabeno, Manistique, Pine River, Ganaraska, and
Orono. This relationship may be associated with storm
damage to tree crowns resulting from exposure to high
wind speeds (Everham and Brokaw 1996; Peterson
2000). Test sites near the Great Lakes region may have
experienced more frequent wind storms during spring
and fall (Scott and Huff 1996). Damage to tree crowns
by windstorms could lead to reduced leaf area and de-
creased photosynthetic capacity. As well, subsequent
carbohydrate allocation to crown repair would occur at
the expense of reduced allocation to radial growth. At
Wabeno and Turkey Point, the negative radial growth
responses to winter precipitation could be the result of
mechanical damage to crowns due to heavy winter
snowfall. Winter crown damage may reduce growth the
following growing season when trees prioritize crown re-
pair at the expense of stem diameter growth (Havranek
and Tranquillini 1995).

Influence of location of provenance origin and bioclimate
on radial growth response at each test site
Examination of the loadings of the provenances on the first
and second principal component axes provided an under-
standing of the primary geographic and bioclimatic param-
eters that contributed to the main separation of the



Table 7 Spearman rank correlation coefficients reflecting the sensitivity of the second principal component (PC2) loadings of the
provenances at each test site with bioclimatic parameters of provenance origin location

Bioclimatic parameter Wabeno, WI Manistique, MI Pine River, MI Newaygo, MI Turkey Point, ON Ganaraska, ON Orono, ME

1. AMT 0.367 0.156 0.544* −0.032 −0.233 − 0.286 −0.018

2. MDR −0.736* −0.324 − 0.352 0.357 − 0.664* −0.112 − 0.294

3. ISO 0.110 0.731* 0.082 −0.713* 0.028 −0.161 −0.294

4. TSCV 0.643* 0.566* 0.275 −0.552* 0.531* 0.182 0.119

5. TWP −0.780* −0.368 − 0.390 0.343 − 0.580* −0.210 − 0.280

6. TCP −0.121 0.137 0.258 −0.238 −0.699* − 0.280 −0.119

7. TAR 0.391 0.361 0.014 −0.404 0.758* 0.175 0.109

8. TWetQ 0.182 0.776* 0.116 −0.637* 0.077 −0.042 − 0.249

9. TDQ 0.654* 0.505* 0.308 −0.517* 0.531* 0.182 0.119

10.TWarmQ 0.819* 0.066 0.418 0.042 0.531* 0.385 0.427

11.TCQ 0.725* 0.335 0.643* 0.035 0.182 0.594* 0.273

12.AP 0.725* −0.082 0.346 0.091 0.636* 0.322 0.441

13.PWP 0.709* 0.198 0.637* 0.077 0.175 0.622* 0.273

14.PDP 0.676* −0.088 0.291 0.091 0.692* 0.273 0.427

15.PSCV 0.654* 0.330 0.637* −0.07 −0.182 0.524* −0.035

16.PWetQ 0.714* −0.038 0.357 0.056 0.678* 0.210 0.427

17.PDQ −0.388 − 0.721* −0.165 0.630* −0.326 − 0.130 0.186

18.PWarmQ 0.470 0.580* 0.193 −0.476 0.580* 0.217 0.028

19.PCQ 0.484 0.659* 0.203 −0.545* 0.448 0.259 −0.091

Note: Full name and definitions of bioclimatic parameters are presented in Table 3. Significant Spearman rank correlation coefficients are indicated with an
asterisk and bold font

Chhin et al. Forest Ecosystems  (2018) 5:18 Page 12 of 15
individual provenances at each test site (Tables 5, 6 and 7).
Separation of the loadings of the white pine provenances
on the principle component axes at each site indicated that
radial growth was affected by differences in the latitude,
longitude, and elevation of provenance origin, depending
on test site location. This provides evidence for the exist-
ence of genetic variation of radial growth potential among
white pine provenances, likely associated with spatial vari-
ation in the temperature and precipitation regime across its
natural range. These results are consistent with earlier find-
ings for this trial (Wright et al. 1970) and the results of
other white pine provenance tests (Genys 1987). In con-
trast, results from a provenance study of European beech
(Fagus sylvatica L.) indicated that variation in radial growth
response to temperature of northerly and southerly prove-
nances were similar and primarily under environmental
control, with limited differences due to genetic background
of the provenances (Eilmann et al. 2014). In another study,
high gene flow limited local genetic adaptation resulting in
similarities in growth response to climate in both European
larch (Larix decidua Mill.) and Norway spruce (Picea abies
(L.) Karst.) provenances along an elevational gradient.
Responsiveness of provenance loadings to bioclimatic pa-

rameters also varied with test site. Separation of provenance
loadings on the PC1 axis was significantly correlated with
bioclimatic parameters at 4 of the 7 sites: Manistique, Pine
River, Turkey Point, and Ganaraska. Of these 4 sites,
temperature-related bioclimatic parameters had the strongest
correlation with the PC1 provenance loadings, while a
precipitation-related bioclimatic parameter was significant at
Ganaraska. Furthermore, Turkey Point had the most
bioclimatic parameters correlated with the PC1 provenance
loadings. All test sites, except for Orono, had significant cor-
relations among the PC2 provenance loadings. Both Wabeno
and Turkey Point had the most bioclimatic parameters asso-
ciated with the PC2 provenance loadings. Overall, to some
degree, bioclimatic parameters were significantly associated
with provenance loadings and hence differences in radial
growth responses at most of the test sites, except for Orono.
Of these 6 test sites, 5 were primarily affected by
temperature-related bioclimatic parameters while Ganaraska
was driven more by a precipitation-related bioclimatic par-
ameter. This result conforms with the general understanding
that temperature is the most important driver of adaptive
genetic variation in growth, shoot phenology, survival, and
frost hardiness of conifers (Gray et al. 2016). Our results also
suggest that at the Orono test site, differences in radial
growth were likely not affected by bioclimatic parameters of
the provenances, and based on dendroclimatic analysis of
the year scores, the provenances had similar responses to
climatic conditions. Most dendrochronological studies of
genetic variation in tree species have examined multiple
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provenances at a single test site (e.g., Eillman et al. 2014), but
our study is one of only a few that have examined radial
growth sensitivity of multiple provenances established at
multiple test sites. A combination of both site and
provenance related sensitivities of radial growth to climate
were reported for lodgepole pine (Pinus contorta Dougl. var.
latifolia Engelm.) in western Canada, with provenances with
warm climates grown at warm sites responding mainly to
summer dryness, while provenances from cold climates
planted at warm site were generally responsive to
temperature (McLane et al. 2011).
The information presented in our study could be used to

help identify climate adapted provenances of white pine for
planting in the northern portion of its natural range. For ex-
ample, focusing only on the component loadings of PC1 and
the two highest observed correlations, our results suggest
that the best radial growth in the current climate of Manis-
tique might be achieved by planting white pine provenances
with comparatively high precipitation in the driest quarter,
and relatively lower temperature during the wettest quarter.
As well, the absence of significant correlations for the Orono
test site suggests that white pine may be generally well
adapted to the maritime climate of this region, regardless of
provenance. Clearly, a more detailed, comprehensive assess-
ment of genetic variation in white pine is necessary to make
confident provenance selections to support assisted migra-
tion efforts to better adapt forests to climate change (Yang
et al. 2015). However, our results suggest that broad scale
genetic variation in white pine radial growth response does
exist across a large portion of its natural range, and this
variation is expressed when provenances are planted outside
their regional climatic habitat.

Conclusions
The future regional distribution, abundance, and product-
ivity of white pine and white pine forest types under a
changing climate have been projected using a variety of
modelling approaches and climate change scenarios
(McKenney et al. 2007; Joyce and Rehfeldt 2013; Peters
et al. 2013; Handler et al. 2014; Iverson et al. 2008, 2017),
each having a different structure, limitations, assumptions,
and levels of uncertainty (Iverson et al. 2017). Bioclimatic,
or species distribution models, have typically shown the
area of suitable climatic habitat for white pine to decrease
and/or move northward by the end of the century, with
larger changes under higher greenhouse gas emissions
scenarios, but the degree of change varies with region
(McKenney et al. 2007; Joyce and Rehfledt et al. 2013;
Iverson et al. 2008, 2017). For example, the future abun-
dance of white pine in three forest regions of the United
States was unchanged, or experienced small to large re-
ductions by the end of the century, depending on the for-
est region and the model used, with projected changes
being larger in scenarios where future greenhouse gas
emissions remain comparatively high and the climate
changes more rapidly (Iverson et al. 2017). In the northern
portion of its natural range, white pine may experience
modest increases in growth during this century under a
slightly warmer climate (Peters et al. 2013; Handler et al.
2014; Yang et al. 2015). Conversely, white pine growing
near its warmer range limit, may be poorly adapted to in-
creasing temperatures and suffer significant reductions in
growth and survival under climate change (Joyce and
Rehfeldt 2013; Yang et al. 2015).
Future climate change presents both challenges and

opportunities for management of white pine. The current
study indicates potential vulnerabilities of white pine
radial growth in the northern portion of its range to
higher temperatures, summer moisture stress, and crown
damage by high winds and heavy snowfall. Projected
future increases in temperature, summer drought stress,
and higher frequencies of storm activity (IPCC 2007) in
this region will require efforts to both adapt management
practices to the future climate and enhance conservation
of genetic resources of white pine. On the other hand, the
current study suggests that white pine radial growth at
some test site locations has been historically limited by
cold spring and fall conditions. Since future climatic
warming will likely increase the length of the growing sea-
son, increased growing season temperature could poten-
tially offset these growth limitations in colder regions of
its natural range. These results are consistent with those
of Yang et al. (2015) that reported optimal height growth
of young white pine occurs at an AMT of about 11 °C,
and that white pine in relatively colder locations may
benefit, at least initially, from modest climate warming.
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