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Abstract

Background: Natural disturbance is a fundamental component of the functioning of tropical rainforests let to
natural dynamics, with tree mortality the driving force of forest renewal. With ongoing global (i.e. land-use and
climate) changes, tropical forests are currently facing deep and rapid modifications in disturbance regimes that may
hamper their recovering capacity so that developing robust predictive model able to predict ecosystem resilience and
recovery becomes of primary importance for decision-making: (i) Do regenerating forests recover faster than mature
forests given the same level of disturbance? (ii) Is the local topography an important predictor of the post-disturbance
forest trajectories? (iii) Is the community functional composition, assessed with community weighted-mean functional
traits, a good predictor of carbon stock recovery? (iv) How important is the climate stress (seasonal drought and/or soil
water saturation) in shaping the recovery trajectory?

Methods: Paracou is a large scale forest disturbance experiment set up in 1984 with nine 6.25 ha plots spanning on a
large disturbance gradient where 15 to 60% of the initial forest ecosystem biomass were removed. More than 70,000
trees belonging to ca. 700 tree species have then been censused every 2 years up today. Using this unique dataset,
we aim at deciphering the endogenous (forest structure and composition) and exogenous (local environment and
climate stress) drivers of ecosystem recovery in time. To do so, we disentangle carbon recovery into demographic
processes (recruitment, growth, mortality fluxes) and cohorts (recruited trees, survivors).

Results: Variations in the pre-disturbance forest structure or in local environment do not shape significantly the
ecosystem recovery rates. Variations in the pre-disturbance forest composition and in the post-disturbance climate
significantly change the forest recovery trajectory. Pioneer-rich forests have slower recovery rates than assemblages of
late-successional species. Soil water saturation during the wet season strongly impedes ecosystem recovery but not
seasonal drought. From a sensitivity analysis, we highlight the pre-disturbance forest composition and the
post-disturbance climate conditions as the primary factors controlling the recovery trajectory.

Conclusions: Highly-disturbed forests and secondary forests because they are composed of a lot of pioneer species
will be less able to cope with new disturbance. In the context of increasing tree mortality due to both (i) severe
droughts imputable to climate change and (ii) human-induced perturbations, tropical forest management should
focus on reducing disturbances by developing Reduced Impact Logging techniques.
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Background
In tropical forests, natural disturbances caused by the
death of one or more trees are the dominant forms of
forest regeneration as the creation of canopy openings
continuously reshapes forest structure (Goulamoussène
et al. 2017). The immediate increase in light inten-
sity allows the sunlight to penetrate the understorey
(Goulamoussène et al. 2016) and light-demanding trees
(Denslow et al. 1998) to establish and grow, thus con-
tributing to the maintenance of biodiversity that shapes
forest functionning (Liang et al. 2016). Another effect
of canopy gaps is the local modification of the for-
est nutrient balance due to the large amounts of dead
leaves and wood that decompose and mineralize (Brokaw
and Busing 2000) and that shapes in turn the small-
scale spatial variations in forest carbon balance (Feeley
et al. 2007; Guitet et al. 2015; Rutishauser et al. 2010).
In this way, the natural disturbance regime is a funda-
mental component of the functioning of tropical forests
(Sheil and Burslem 2003).
With ongoing global (i.e land-use and climate) changes,

tropical forests are currently facing deep and rapid
changes in disturbance regimes that may hamper their
recovering capacity (Hérault and Gourlet-Fleury 2016;
Brienen et al. 2015). Human-induced disturbances may
encompass a wide range of perturbations from long-
lasting ones such as land-cover changes for indus-
trial agriculture, slash-and-burn agriculture or mining
(Dezécache et al. 2017a,b) to more insiduous modifica-
tions such as selective logging that may not affect the
forest cover but modify forest functioning (Rutishauser
et al. 2015). An even more insiduous perturbation is cli-
mate change (Hérault and Gourlet-Fleury 2016). Global
circulation models have shown high probabilities of sig-
nificant precipitation decrease for tropical areas with a
risk of transition from short-dry-season rainforest to long-
dry- season savannah ecosystems (Davidson et al. 2012).
For instance, after the intense 2005 drought in Amazo-
nia, the forest suffered an additional mortality, leading to
a huge loss of live biomass (Phillips et al. 2009) with sim-
ilar mortality events observed in Panama (Condit 1995),
in China (Tan et al. 2013) or in South-East Asia
(Slik 2004).
To our opinion, the drivers of the post-disturbance

system trajectory may first be defined based on their
origin: endogeneous and exogeneous. (1) Endogenous
drivers refer to the internal properties of the system
that may influence its post-disturbance behavior. A sig-
nificant example for ecological systems is the species
composition that partially informs on the immediate
potential of the system to recover after disturbance. In
that respect, the species identity is far less important
than the functional signature of the species assemblage
(Kunstler et al. 2016): for example, an assemblage of light-

demanding species will respond differently to disturbance
from an assemblage of shade-tolerant understorey species
(Herault et al. 2010). Structural characteristics of the
pre-disturbance species community (stem density, aver-
age size, live biomass and so on) may also be of pri-
mary importance because they are core indicators of
the silvigenetic stage of the forest (Pillet et al. 2017).
(2) Exogenous drivers refer to external constraints or
forces that limit the possible system trajectories. They
can be grouped into two broad categories: drivers that
vary in space and those that vary in time. The local
environment, i.e. the physical characteristics of the abi-
otic environment, is here defined in space but not in
time. On the contrary, external conditions such as cli-
matic stress are here considered to vary in time but not
in space.
This study draws upon the long-term disturbance exper-

iment of Paracou, French Guiana, to develop a modeling
approach in order to mechanistically link the endo- and
exogenous ecosystem drivers to the ecosystem recov-
ery trajectory after disturbance. More specifically, we
ask the following questions: (i) Do regenerating forests
recover faster than mature forests given the same level
of disturbance? (ii) Is the local topography an important
predictor of the forest recovery rates? (iii) Is the com-
munity functional composition, assessed with community
weighted-mean functional traits, a good predictor of car-
bon stock recovery? (iv) How important is the climate
stress (drought and/or soil water saturation) to shape the
rate of carbon recovery? To do so, we partition the contri-
butions to post-disturbance ACS (Aboveground Carbon
Stock) gain (from growth and recruitment of trees sup 10
cm DBH) and ACS loss (from mortality) of survivors and
recruited trees to detect the main drivers and patterns
of ACS recovery after disturbance. We model the tra-
jectory of those post-disturbance ACS changes (Piponiot
et al. 2016b) in a comprehensive Bayesian framework.
We then quantify the effect of (i) endogeneous (forest
structure and composition) and (ii) exogeneous (local
environment and climate stress) drivers on the rates at
which post-disturbance ACS changes converge to a the-
oretical steady state. Summing these ACS changes over
time gives the net post-disturbance rate of ACS accu-
mulation, an indicator of the ecosystem recovery rate.
Disentangling ACS recovery with a demographic process-
based approach, i.e. by segregating ACS changes into
cohorts (survivors and recruits) and demographic pro-
cesses (growth, recruitment, mortality), as opposed to
an all-in-one model in which only the ecosystem net
ACS change is modeled without examination of demo-
graphic processes, has been shown to be essential to reveal
mechanisms underlying ACS responses to disturbance
and to make more robust predictions of ACS recovery
(Piponiot et al. 2016b).
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Methods
Study site
The study was conducted at the Paracou experimental
site (5°18’N, 52°55’W), a lowland tropical rain forest near
Sinnamary, French Guiana. The site receives nearly two-
thirds of the annual 3041 mm of precipitation between
mid-March and mid-June, and < 50 mm per month in
September and October (Wagner et al. 2011). More than
700 woody species attaining 2 cmDBH (diameter at breast
height) have been described at the site, with 150 - 210
species of trees > 10 cm DBH per hectare. The floristic
composition is typical of Guianan rainforests with domi-
nant families including Leguminoseae, Chrysobalanaceae,
Lecythidaceae, Sapotaceae and Burseraceae (Guitet et al.
2014). In 1984, nine 6.25 ha plots, each one divided into
4 subplots of 1.56 ha each, were established for a com-
plete inventory of all trees > 10 cm DBH. From October
1986 to May 1987, the plots underwent three disturbance
treatments (details in Table 1 and in (Blanc et al. 2009)).

Input data
Aboveground Carbon Stock (ACS) computation In all
plots, diameter at breast height (DBH) of trees > 10 cm
DBH were measured every two years from 1982 to 2016
resulting in 18 forest censuses. Trees were identified to
the lowest taxonomic level. To get wood density, we
applied the following standardized protocol: (i) tree iden-
tified to the species level were assigned the corresponding
wood specific gravity value from the GlobalWoodDensity
Database (GWDD) (Chave et al. 2009); (ii) trees iden-
tified to the genus level were assigned a genus-average
wood density and (iii) trees with no botanical identifica-
tion or that were not in the GWDD were assigned the
subplot-average wood density. The aboveground biomass
(AGB) was estimated taking all uncertainties into account
using the BIOMASS package (Réjou-Méchain et al. 2017).
Biomass was assumed to be 47% carbon.

Disturbance intensity After disturbance, the subplot’s
ACS decreases rapidly until it reaches its minimum value
acsmin a few years later. This transition point determines
the beginning of the recovery period. The difference

between the averaged pre-disturbance ACS acspre and
this post-logging minimum value acsmin reached at time
t = tmin defines the disturbance intensity DIST. In other
words, the disturbance intensity is defined as the amount
of aboveground carbon lost in the forest ecosystem during
the first years during and after the disturbance.

Structure drivers The pre-disturbance forest structure
was assessed with three variables: the stem density SN
(from 483 to 727 ind·ha−1) and the basal area SBA (from
27 to 36 m2 · ha−1) of subplot j at tpre, the year preceding
the disturbance experiment.

Environment drivers Three environmental drivers were
selected from a preliminary exploratory analysis to rep-
resent independent source of variation in the local for-
est physical conditions: the proportion of bottom-lands
EBOTTOM, the average topographical slopes of the plot
ESLOPE and the standard deviation, i.e the heterogeneity,
of the altitudinal distribution EHETE .

Composition drivers The pre-disturbance forest com-
position was assessed in a functional trait space to avoid
local taxonomic variations in tree assemblages that are of
little importance for forest functioning. The four chosen
orthogonal traits FT represent key dimensions of the tree
functional strategy (Baraloto et al. 2010): wood density
TWD, seed mass TSEED, specific leaf area TSLA and max-
imum diameter TDBH95 estimated as the 95th percentile
of the species DBH distribution in the Guyafor database.
The community weighted means of these functional
traits were calculated the year preceding the disturbance
experiment.

Climate drivers We considered two main sources of cli-
mate stress: soil drought CDROUGHT and soil water sat-
uration CWATER. These variables were quantified using a
water balance model, developed and calibrated in Para-
cou (Wagner et al. 2011), that was run using precipitation
and evapotranspiration as inputs over the 1982-2016 time
period. CDROUGHT was estimated as the number of days
with REW, Relative Extractable Water, below 0.4 while
the number of days with REW equal to 1, the soil is

Table 1 Disturbance treatments (T1, T2, T3) implemented on the Paracou plots in 1986-1987

Timber logging Fuelwood logging Thinning % ACS loss

T1 DBH ≥ 50 cm, mean of 10 trees·ha−1 - - [12 − 33%]

T2 DBH ≥ 50 cm, mean of 10 trees·ha−1 - DBH ≥ 40cm, all non-valuable
species, mean of 30 trees·ha−1

[33 − 56%]

T3 DBH ≥ 50 cm, mean of 10 trees·ha−1 40 cm ≤ DBH ≤ 50 cm, all non-
valuable species, mean of 20
trees·ha−1

DBH ≥ 40cm, all non-valuable
species, mean of 15 trees·ha−1

[35 − 66%]

The percentage of Aboveground Carbon Stock loss (% ACS loss) is defined as the difference between the pre-disturbance ACS and its minimum value reached during the 4
years after the disturbance treatments
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full of water, defined CWATER. These two covariates were
computed between 2 consecutive censuses and then stan-
dardized at a yearly time-step.

Modeling strategy
We define two cohorts of trees. First, recruits are all the
trees (> 10 cm DBH) that have been recruited since the
perturbation. Trees that, for a given census, first went
through the 10 cm DBH are called new recruits. There-
after, they are called, for the following censuses, recruits
and may grow or may eventually die between 2 cen-
suses. Second, survivors are trees that were present in
the forest before the disturbance and that survived the
disturbance event.
For each subplot j and census k, with tk the time since

the beginning of the recovery period, we thus define 5
ACS changes : new recruits’ ACS (Rrj,k) is the ACS of
all trees < 10 cm DBH at tk−1 and ≥ 10 cm DBH at tk ;
recruits’ ACS growth (Rgj,k) is the ACS increment of liv-
ing recruits between tk−1 and tk ; recruits’ ACS loss (Rlj,k)
is the ACS in recruits that die between tk−1 and tk ; sur-
vivors’ ACS growth (Sgj,k) is the ACS increment of living
survivors between tk−1 and tk ; survivors’ ACS loss (Slj,k)
is the ACS of survivors that die between tk−1 and tk .
ACS changes are subject to large stochastic variation over
time: because we are less interested in year-to-year vari-
ations than in long-term ACS trajectories, we modeled
the cumulative ACS changes over time. Cumulative ACS
changes (Mg C·ha−1) were defined as follows:

cChangej,k =
k∑

m=0
(Changej,m × (tk − tk−1)) (1)

where j is the subplot, k is the census number, tk the
time since t0 (yr) and Change is the annual ACS change
(Mg C·ha−1 · yr−1), either recruits’ ACS (Rr), recruits’
ACS growth (Rg), recruits’ ACS loss (Rl), survivors’ ACS
growth (Sg), or survivors’ ACS loss (Sl).

Survivors Survivors’ cumulative ACS changes are null at
t = 0 and have a finite limit, attained once survivors have
all died. We modeled survivors’ cumulative ACS growth
cSg as:

cSgj,p,k ∼ N
(

α
Sg
p ×

(
1 − exp

(
−β

Sg
j,k × tk

))
,
(
σ Sg

)2)

(2)

where j is the subplot, p the plot it belongs to, tk is the
time since t0. α

Sg
p is the finite limit of the cumulative ACS

change, βSg
j,k the rate at which the cumulative ACS change

converges to this limit and
(
σ Sg)2 the variance of the

model. By choosing an exponential kernel, we assume that

survivors’ ACS growth at tk is proportional to survivors’
ACS growth at tk−1.
Because of our nested design with subplots jwithin plots

p, we modeled the α
Sg
p values with a random plot effect of

mean α
Sg
0 and variance

(
σ
Sg
α

)2
:

α
Sg
p ∼ N

(
α
Sg
0 ,

(
σ
Sg
α

)2)
(3)

Parameter β
Sg
j,k is the rate at which survivors’ ACS

growth on plot j at time tk converges to a finite limit
after the disturbance: it reflects the response rapidity of
survivors’ ACS growth to disturbance. Because we are
interested in predicting variations in β

Sg
j,k , we expressed the

latter as a function of covariates:

β
Sg
j,k = β

Sg
0 +

13∑

l=1

(
λ
Sg
l × Vj,tk ,l

)
(4)

with β
Sg
0 the model intercept, λSgl the vector of l parame-

ters associated to the covariates Vj,k,l for which we looked
at their effects on the post-logging rate β

Sg
j,k in subplot j at

time tk . The covariates are defined above and related to
the disturbance intensity DIST, the structure of the for-
est before disturbance (SN , SDG, SBA), the functional trait
composition of the forest before disturbance (TSEED,TSLA,
TWD, TDBH95), the local environment (EBOTTOM, ESLOPE ,
EHETE) and the climate stress (CDROUGHT , CWATER). Note
that values of the two later covariates changed with times.
All covariates are centered and standardized before the
inference. When all survivors in plot p are dead, all the
C gained by their growth

(
cSgj,p,∞ = α

Sg
p

)
plus their ini-

tial ACS (acsminj) will have been lost
(
cSlj,∞ = αSl

j

)
. We

thus defined

αSl
j = α

Sg
p + acsminj (5)

with α
Sg
p ,αSl

j the finite limits of survivors’ cumulative ACS
growth and ACS loss respectively, and acsminj the ACS
of the subplot j at tmin = t0. Then the cumulative carbon
loss is

cSlj,p,k ∼ N
(

αSl
j ×

(
1 − exp

(
−βSl

j,t × tk
))

,
(
σ Sl

)2)

(6)

where j is the subplot, p the plot it belongs to, tk is the
time since t0. αSl

j is the finite limit of the cumulative
ACS change, βSl

j,k the rate at which the cumulative ACS

change converges to this limit and
(
σ Sl)2 the variance of

the model. And with

βSl
j,t = βSl

0 +
6∑

l=1

(
λSll × Vj,t,l

)
(7)
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with βSl
0 themodel intercept, λSll the vector of l parameters

associated to the covariates Vj,k,l for which we looked at
their effects on the post-logging rate βSl

j,k in subplot j at
time tk .

Recruits When survivors are all dead, newcomers or
recruits will constitute the new forest. We made the
assumption that the recruits’ annual ACS changes will
converge to constant values, with ACS gains compensat-
ing ACS losses. Because there are no recruits yet at t0,
recruits’ annual ACS growth (Rg) and ACS loss (Rl) are
zero, and progressively increase to reach their asymptotic
values. Recruits’ annual ACS growth and ACS loss can be
modeled with the function:

f (t;α,β) = α × (1 − exp(−β × t)) (8)

where t the time since the beginning of the recovery
period. In the same logic as survivors’ cumulative ACS
changes, α is the asymptotic value of recruits’ annual ACS
change (Mg C·ha−1 · yr−1), and β is the rate at which this
asymptotic value is reached. Contrary to recruits’ annual
ACS growth and ACS loss, the ACS of new recruits (Rr,
the ACS of tree reaching the 10 cmDBH threshold) is high
at t0 because of the competition drop induced by logging,
but then progressively decreases to reach its asymptotic
value. We modeled it with the following function:

f (t;α,β) = α × (1 + exp(−β × t)) (9)

where t is the time since disturbance. As stated before, we
chose to model cumulative ACS changes instead of annual
ACS changes. The general model for recruits’ cumulative
ACS changes (ACS growth Rg, ACS loss Rl and ACS of
new recruits Rr) is obtained by mathematical integrating
from t0 to tk annual ACS changes:

cRj,p,k ∼ N

⎛

⎝αR
p ×

⎛

⎝tk + η ×
1 − exp

(
−βR

j,k × tk
)

βR
j,k

⎞

⎠ ,
(
σR

)2
⎞

⎠

(10)

where j is the subplot, p the plot, tk is the time since t0, R is
the annual ACS change, either Rr, Rg or Rl and (σR)2 the
variance of the model. When R is Rg or Rl, η = −1; when
R is Rr, η = 1. Because of our nested design with subplots
j within plots p, we modeled the αR

p values with a random
plot effect of mean αR

0 and variance
(
σR

α

)2:

αR
p ∼ N

(
αR
0 ;

(
σR

α

)2) (11)

When the dynamic equilibrium is reached, annual ACS
gain (growth and recruitment) compensates annual ACS
loss (mortality). We thus added the following constraint
for every plot p:

αRr
p + α

Rg
p + αRl

p = 0 (12)

Using the same logic as for survivors, we are interested
in predicting variation in βR as follows:

βR
j,k ∼ N

(
βR
0 +

6∑

l=1

(
λRl × Vj,k,l

)
,
(
σR

β

)2
)

(13)

with R being Rg, Rl or Rr depending on the process we
were interested in, with βR

0 the model intercept, λRl the
vector of l parameters associated to the covariatesVj,k,l for
which we looked at their effects on the post-logging rate
βR
j,k in subplot j at time tk .

Model inference
Bayesian hierarchical models were inferred through
MCMC methods using an adaptive form of the Hamilto-
nian Monte Carlo sampling (Carpenter et al. 2017). Codes
were developed using the R language and the Rstan pack-
age (Carpenter et al. 2017). A detailed list of priors is
provided in Table 2.

Identifying the key drivers of the post-disturbance system
recovery
To assess the importance of the pre- (forest structure,
environment and composition) and post- (climate stress)
disturbance forest conditions, we simulated different sce-
narios modifying the covariate values but keeping an
averaged (set to 0) disturbance intensity DIST. Note that
all model covariates Vj,t,l were standardized before mod-
eling so that, for a given covariate, a − 2, 0 or 2 value
respectively refers to a very low, average or very high
observed value.

Forest structure The effects of a regenerating (high stem
density SN = 1, low basal area SBA = −1), intermediate
(medium stem density SN = 0, medium basal area SBA =
0) and mature (low stem density SN = −1, high basal area
SBA = 1) pre-disturbance forest structure on ecosystem
recovery were compared.

Forest environment The effect of three contrasted forest
environment were compared: predominance of bottom-
lands (high proportion of bottom-lands EBOTTOM = 2,
medium slope values ESLOPE = 0, medium altitudinal het-
erogeneity EHETE = 0), predominance of slopes (medium
proportion of bottom-lands EBOTTOM = 0, high slope
values ESLOPE = 2, medium altitudinal heterogeneity
EHETE = 0) and hilly landscapes (medium proportion
of bottom-lands EBOTTOM = 0, medium slope values
ESLOPE = 0, high altitudinal heterogeneity EHETE = 2).

Forest composition The effect of pre-logging forest
community dominated by conservative tree species (high
wood density TWD = 2, high seed mass TSEED = 2,
low specific leaf area TSLA = −2, high maximal stature



Hérault and Piponiot Forest Ecosystems  (2018) 5:2 Page 6 of 15

Table 2 List of priors used to infer ACS changes in a Bayesian framework

Model Parameter Prior Justification

Sg α
Sg
p U (10, 200) Around 100 survivors/ha storing 0.1 to 2.0 MgC each

Sg β
Sg
j,t U (0, 0.25) 12 < tSg0.95

∗
< +∞

Sl βSl
j,t U (0,βSg

j,t ) tSg0.95 < tSl0.95
∗

< +∞
Rr αRr

p U (0.1, 1) TmFO observed values (Piponiot et al. 2016b)

Rr βRr
j,t U (0, 0.75) 4 < tRr0.95

∗
< +∞

Rr α
Rg
p U (0.1, 3) Amazonian values (Johnson et al. 2016)

Rr β
Rg
j,t U (0, 0.5) 6 < tRg0.95

∗
< +∞

Rr βRl
j,t U (0, 0.5) 6 < tRl0.95

∗
< +∞

All models M∗∗ λMl U (−βM
j,t ,β

M
j,t ) avoid multicollinearity problems

Models are : (Sg) survivors’ ACS growth, (Sl) survivors’ ACS loss, (Rr) new recruits’ ACS, (Rg) recruits’ ACS growth, (Rl) recruits’ ACS loss
*t0.95 is the time when the ACS change has reached 95% of its asymptotic value
**M is one of the five models, either Sg, Sl, Rr, Rg or Rl

TDBH95 = 2), by a disturbed community (low wood den-
sity TWD = −2, low seed mass TSEED = −2, high specific
leaf area TSLA = 2, low maximal stature TDBH95 = −2)
and by a true pioneer community (very low wood den-
sity TWD = −4, very low seed mass TSEED = −4,
very high specific leaf area TSLA = 4, very low maximal
stature TDBH95 = −4). The values of the last scenario may
appear extreme but note that the model was calibrated
with mature forest stands only so that covariate values
have to be set out of the calibration range to get a true
pioneer community.

Climate stress The effects of a wetter (nor or a few sea-
sonal droughtCDROUGHT = −2, high soil water saturation
during the wet season CWET = 2), a drier (seasonal
droughts CDROUGHT = 1, medium soil water saturation
during the wet season CWET = 0) and a even drier (heavy
seasonal droughts CDROUGHT = 2, medium soil water
saturation during the wet season CWET = 0) climate on
ecosystem recovery were compared.

Sensitivity analysis
To assess the sensitivity of the ecosystem recovery process
to the pre- (forest structure, environment and composi-
tion) and post- (climate stress) disturbance forest condi-
tions, we simulated the model for an average disturbance
intensity DIST = 0 and, for each group of covariates
Vj,t,l �=DIST , varying the values within a group of covariate
while setting the other covariates to 0. In a nutshell, for
each group of covariates Climate, Composition, Environ-
ment and Structure (i) we independently sampled covari-
ate values from U(−2; 2) while the covariates from the 3
other groups are set to 0, (ii) we ran the model using the
sampled covariate values for a set of 100 parameter values
drawn from the posterior chains, (iii) we estimated, after
30 years of simulation, the net carbon balance and (iv)
we did the procedure 1000 times per group of covariates.

Doing so, the variability of the net carbon balance after 30
years reflects the sensitivity of ecosystem recovery to the
varying group of covariates.

Results
Given that all the covariates were standardized before
modeling, the absolute values of their associated param-
eters give the weight of each variable in shaping the
rates β at which the ACS changes reach their asymp-
totic state. Negative covariate values indicate slowing and
positive values indicate accelerating rates. The values of
the disturbance intensity DIST parameters always ranked
among the highest absolute values, with negative values
for Survivors′ACSgrowth and Newrecruits′ACS (Fig. 1a, c)
and positive ones for the other three cumulative fluxes
(Fig. 1b, d, e).

Pre-disturbance forest structure
The two variables chosen to describe the pre-disturbance
forest structure, i.e. basal area SBA and stem density SN ,
have contrasted behaviors. Basically, associated parame-
ters get their highest absolute values for the two growth
models, both Survivors’ and Recruits’ (Fig. 1a and d), while
being close to zero for the other three models (Fig. 1b,
c, e). Contribution of Survivors’ growth to ACS recovery
is higher but declines quicker with high pre-disturbance
SBA values and low SN values (Fig. 1a). Contribution of
Recruits’ growth to ACS recovery declines slowly with
high SN values (Fig. 1d). Mature forests (high SBA, low SN )
thus recovers faster than regenerating ones (Fig. 2). The
relative importance of the pre-disturbance forest structure
on the variability of ACS recovery rates is low, with 30 to
50 MgC·ha−1 recovered after 30 years (Fig. 6).

Local environment
Three variables inform on the forest local environ-
ment, i.e. altitudinal heterogeneity EHETE , proportion of
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a) b)

c) d) e)

Fig. 1 Effect of covariates on the rate at which post-disturbance ACS changes converge to a theoretical steady state. Covariates are the disturbance
intensity DIST (in green), the structure of the forest before disturbance (the number of individual trees SN , the basal area SBA , in pink), the functional
trait composition of the forest before disturbance (seed mass TSEED , specific leaf area TSLA , wood density TWD , maximum size TDBH95, in maroon), the
local environment (proportion of bottomlands EBOTTOM , average slope ESLOPE , altitudinal heterogeneity EHETE , in blue) and the climate stress (drought
intensity CDROUGHT , days with water saturation CWATER , in red). Covariates are centred and standardized. Posterior distribution (median and 0.95
credibility intervals) are reported. Negative covariate values indicate slowing and positive values indicate accelerating rates. a Survivors’ ACS growth.
b Survivors’ ACS loss. c New recruits’ ACS. d Recruits’ ACS growth. e Recruits’ ACS loss

bottomlands EBOTTOM and the average slope ESLOPE .
The latter never significantly contributes to the β

variability (Fig. 1). EBOTTOM is important in defining
recruits ACS fluxes, with positive parameter values for
New recruits’ ACS and negative ones for growth and
loss (Fig. 1c, d, e). All fluxes together, recovery rates
do not differ markedly with environmental conditions
(Fig. 3) so that the importance of the local forest envi-
ronment on the variability of ACS recovery rates is
quite low, with 30 to 50 MgC·ha−1 recovered after
30 years (Fig. 6).

Pre-disturbance forest composition
Four orthogonal functional traits (i.e. specific leaf area
TSLA, maximum stature TDBH95, seed mass TSLEED and
wood density TWD) have been retained to summarize
differences in pre-disturbance forest composition. All
these traits have been found to influence post-disturbance

ACS recovery rates (Fig. 1). For Survivors, the contribu-
tion of growth to ACS recovery is higher but declines
quicker with high TSLA and low TWD (Fig. 1a) while
losses declines slowly with high TSLA and high TSEED
(Fig. 1b). For Recruits, the contribution of growth to
ACS recovery is higher but declines quicker with high
TDBH95 and low TSLA and TSEED (Fig. 1d) while losses
declines slowly with low TWD (Fig. 1e). Forests, for
which the pre-disturbance composition is dominated by
conservative ecological strategies (high wood density,
seed mass, maximal stature and low specific leaf area)
recovers faster than disturbed forests dominated pioneer
species (very low wood density, very low seed mass, very
high specific leaf area and very low maximal stature)
(Fig. 4). The relative importance of the pre-disturbance
forest composition on the variability of ACS recovery
rates is high, with 0 to 100 MgC·ha−1 recovered after
30 years (Fig. 6).
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Fig. 2 Predicted contribution of annual ACS changes in three contrasted scenarios of pre-logging forest structure : Regenerating, Mature and
Intermediate are defined with standardized covariates SN and SBA respectively set to [ 1,−1, 0] and to [−1, 1, 0]. The white line is the net annual ACS
recovery, i.e. the sum of all annual ACS changes: survivors’ ACS growth Sg and loss Sl, new recruits’ ACS Rr and recruits’ ACS growth Rg and loss Rl.
Dotted lines are out of the calibration period (0–30 year). Maximum-likelihood predictions for ACS stocks (bottom-right) are projected within their
credibility intervals (areas with higher levels of transparency

Post-disturbance climate
Two variables related to climate stress occurring during
the recovery process were tested. The intensity of the dry
season CDROUGHT decelerates the decline of Survivors’
ACS changes (Fig. 1a, b) while it accelerates the decline
of all the recruits’ ACS changes (Fig. 1c, d, e). High soil
water saturation during the wet season has a similar effect
but with very high β values for recruits’ ACS loss (Fig. 1e).
The forest recovers faster in the driest climate scenar-
ios and this is mainly due to the important Survivors’
ACS losses in the wettest scenarios (Fig. 5). The effect
of climate stress on the variability of ACS recovery rates
ranks 2nd among the 4 groups of covariates, with 10 to
80 MgC·ha−1, depending on the post-disturbance climate
conditions, recovered after 30 years (Fig. 6).

Discussion
In this study, we modeled the post-disturbance ACS
fluxes in a neotropical forest and found that by testing
a few variables that are related to the main endoge-
nous (forest structure and composition) and exoge-
neous (local environment and climate stress) drivers of
ecological community dynamics, we could successfully

predict ecosystem trajectories in a wide range of pre-
and post-disturbance conditions. Modeling separately the
surviving and recruited cohorts was confirmed to be an
important methodological choice (Piponiot et al. 2016b),
given that the highlighted drivers did not overlap, whether
for the growth (Fig. 1a and d) or the loss (Fig. 1b
and e) processes. This suggests that our methodological
approach, deciphering ecosystem fluxes by demographic
processes, could be very useful to predict the long-term
trajectories in highly diverse tropical forests for which pre-
cise demographic data may be lacking, but aggregative
forest dynamic censuses are available from forest inven-
tories. In this study, the disturbance intensity gradient
was induced by combining logging to thinning operations
(Table 1). Because of its economic value and implica-
tions for forest management, selective logging experi-
ments were set up very early on, and the data gathered
by these experiments are unique in terms of experiment
duration and spatial extent. Despite the particular nature
of logging operations (focus on large and commercially-
valuable trees even though logging damage concerns all
DBH classes), we believe that our study gives clues on the
key drivers of ecosystem recovery after large ACS losses
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Fig. 3 Predicted contribution of annual ACS changes in three contrasted scenarios of forest environment : Bottomlands, Slopes and Hilly
environment are defined with standardized covariates EBOTTOM , ESLOPE and EHETE respectively set to [ 2, 0, 0], [ 0, 2, 0] and [ 0, 0, 2]. The white line is the
net annual ACS recovery, i.e. the sum of all annual ACS changes: survivors’ ACS growth Sg and loss Sl, new recruits’ ACS Rr and recruits’ ACS growth
Rg and loss Rl. Dotted lines are out of the calibration period (0–30 year). Maximum-likelihood predictions for ACS stocks (bottom-right) are projected
within their credibility intervals (areas with higher levels of transparency

induced by other disturbances (e.g. droughts, fire) that
are expected to increase in intensity with ongoing global
changes (Bonal et al. 2016).

On disturbance intensity
Disturbance intensity DIST remains, by far, the first pre-
dictor of the post-disturbance system trajectory (Fig. 1).

Survivors
High disturbance intensities obviously reduce the resid-
ual survivors’ ACS so that ACS changes from survivors’
growth is lower at the beginning but, because of the
lower competition between survivors, they tend to live
longer and reach the asymptotic state slowly (lower β ,
Fig. 1a). The positive β for Survivors’ ACS loss, mean-
ing that survivors tend to die faster after high levels
of disturbance, may look surprising because this goes
against the growth result. We believe that a high tree
mortality, due to the low survival of damaged trees in
highly disturbed systems, in the early post-disturbance
years may have resulted in increased β values. How-
ever, those losses should rapidly decrease after a decade
(Thorpe et al. 2008).

Recruits
High disturbance intensities alleviate competition, and
this is probably why recruits’ ACS growth is high just after
disturbance in the enhanced growth conditions (Herault
et al. 2010) and then quickly decrease (high βs, Fig. 1d
and e). In these disturbed forests, intense self-thinning
(Feldpausch et al. 2007) may explain the fast but limited-
in-times ACS losses from survivors’ mortality (Fig. 1e).

Endogeneous drivers
Pre-disturbance Forest structure All else being equal,
mature forests (high SBA, low SN ) recover faster than
regenerating ones. And this is mainly due to the
higher ACS incoming fluxes from Survivors’ growth
(Fig. 2). Regenerating forests are composed of short-
living fast-growing small species. These species are poorly
efficient at carbon accumulation because of their lim-
ited growth response to canopy openings and com-
petition alleviation. Indeed, it has been shown in the
Paracou forests that species with the highest inher-
ent growth rate (in the absence of disturbance) have
the lowest growth response when a disturbance occurs
(Herault et al. 2010). On the contrary, large mature trees
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Fig. 4 Predicted contribution of annual ACS changes in three contrasted scenarios of pre-logging forest composition: Conservatists, Pioneers and
Pioneers++ communities are defined with standardized covariates TWD , TSEED , TSLA and TDBH95 respectively set to [ 2,−2,−4], [ 2,−2,−4], [−2, 2, 4]
and [ 2,−2,−4]. Pioneers++ refer to a true pioneer community (very low wood density, very low seed mass, very high specific leaf area and very low
maximal stature). The white line is the net annual ACS recovery, i.e. the sum of all annual ACS changes: survivors’ ACS growth Sg and loss Sl, new
recruits’ ACS Rr and recruits’ ACS growth Rg and loss Rl. Dotted lines are out of the calibration period (0–30 year). Maximum-likelihood predictions
for ACS stocks (bottom-right) are projected within their credibility intervals (areas with higher levels of transparency

are, despite their low numbers in many forests, key
elements of carbon storage (Lindenmayer et al. 2012)
and dynamics (Sist et al. 2014). Previously disturbed,
logged or secondary forests, for which forest structure is
characterized by low SBA, and high SN , may thus be far
less resilient to new disturbance than natural undisturbed
forests. This also means that post-logging ACS recovery
that is currently estimated from the first logging rota-
tion (Rutishauser et al. 2015) may be overestimated for
the following logging rotations (Rutishauser et al. 2016).
Finally, despite these clear outcomes, the importance of
the pre-disturbance forest structure on the variability of
ACS recovery rates, as compared to the other covariates
(forest composition, environment and climate), remains
low (Fig. 6) in the sensitivity analysis. However, we should
keep in mind that all the disturbed plots were established
in a natural undisturbed forest area so that the model
has been parameterized with low pre-disturbance forest
structure variability. We thus suggest that, in landscapes
with contrasted and tumultuous history, the role of the
forest structure in shaping the post-disturbance system
trajectory would be much higher.

Pre-disturbance Forest composition The importance
of the pre-disturbance forest composition on the vari-
ability of the post-disturbance ACS recovery rates is
unexpected, with 0 to 100 MgC·ha−1, depending on
the initial species assemblage, recovered after 30 years
(Fig. 6). All the studied functional traits are implied in
shaping one or more of the investigated ACS changes.
When comparing two typical forest composition, i.e.
an assemblage of conservative trees (high wood den-
sity, seed mass, maximal stature and low specific leaf
area) and an assemblage of pioneer trees (exact oppo-
site trait composition), the pioneer assemblage recovers
much slower. This difference is mainly due to highly con-
trasted survivors’ ACS changes. Both ACS growth and
loss increase rapidly in surviving pioneers. This result is
consistent with the acquisitive strategy of species with
a high carbon budget (Sterck et al. 2011), that are well-
known to have very fast turn-over rates (Aubry-Kientz
et al. 2013; Hérault et al. 2011; Flores et al. 2014).
Even if both survivors ACS growth and loss are boosted in
pioneer assemblages, it is quite remarkable that the ACS
balance in time is mainly under the control of survivors’
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Fig. 5 Predicted contribution of annual ACS changes in three contrasted climate scenarios: Wet, Dry and Dry++ climates are defined with
standardized covariates CDROUGHT and CWATER respectively set to [-2,1,2] and [2,0,0]. Dry++ refer to an extremely-dry climate (very high seasonal
drought in the dry season, medium soil water saturation in the rain season). The white line is the net annual ACS recovery, i.e. the sum of all annual
ACS changes: survivors’ ACS growth Sg and loss Sl, new recruits’ ACS Rr and recruits’ ACS growth Rg and loss Rl. Dotted lines are out of the
calibration period (0–30 year). Maximum-likelihood predictions for ACS stocks (bottom-right) are projected within their credibility intervals (areas
with higher levels of transparency

Fig. 6 Estimating the relative importance of the Climate stress, the
pre-disturbance forest Composition, Environment and Structure in
driving ecosystem recovery 30 years after disturbance. The violin plots
represent the variability of the distribution of the net carbon balance
when covariates within a given group are independently and
randomly drawn from U (−2; 2) while the covariates from other
groups are set to 0 (the longest the boxplot the highest the sensitivity
of ecosystem recovery to this given group of covariates)

ACS loss Sl. Survivors’ ACS loss can cancel survivors’
ACS growth in pioneer-dominated communities, result-
ing in a null ACS balance (zero is included in the simu-
lations results, see Fig. 6). Why do those pre-disturbance
pioneer communities have such high ACS losses in the
post-disturbance times? Fast-growing pioneers are gener-
ally both poor competitors and poor stress-tolerant trees
(He et al. 2013). A first possible explanation is thus that
the stress induced by disturbance may be too high for
these species that undergo, after disturbance, heavy losses.
An alternative explanation is that the higher ACS growth
mechanically induces, after a while, higher ACS losses.
If pioneers grow faster as a result of growth-stimulating
disturbance, they will pass through their natural life span
faster, resulting in a transitory gain in carbon storage
followed by a massive carbon release when these pio-
neers get older (Körner 2017). Introducing a time lag for
the ACS loss models would be the only way to test the
last hypothesis.

Exogeneous drivers
Local environment The forest local environment
defined by the altitudinal heterogeneity, the proportion of
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bottomlands and the average slope, have been found to be
of low importance in shaping variability of ACS recovery
rates (Fig. 3). This result is quite surprising, given that the
local environment is very often referred to as a driver of
ecological processes in tropical forests (Grau et al. 2017),
from fine pairwise interactions between individual trees
(Kraft et al. 2008) to regional variation in community
assemblages (Fayad et al. 2016). For instance, in the
Paracou forest, the proportion of bottomlands have been
found to be of primary importance for forest dynamics:
treefall rates are twice as high as on hilltops and tree
recruitment and growth rates are higher, leading to a
lower basal area and ACS (Ferry et al. 2010). Nearly three
fourths of the Paracou taxa are locally distributed as a
function of relative elevation, with seasonally inundated
bottomlands and well-drained plateaus revealing con-
trasted species associations (Allié et al. 2015). Despite
the relative importance of EBOTTOM in defining recruits’
ACS changes, with positive β parameter values for new
recruits’ ACS and negative ones for recruits’ ACS growth
and loss (Fig. 1), all in all ACS recovery rates differ very
little from hilly or sloppy plots (Fig. 3). On the one hand,
the low-stress conditions of bottomlands (no seasonal
drought, less wind) should induce a faster ecosystem
recovery. On the other hand, the lower final ACS (Ferry
et al. 2010) may mechanically lead to lower absolute
carbon storage during recovery. All together, the two
processes could be canceling each other, explaining why
absolute carbon recovery is similar between bottomlands
and hilltops. We also should keep in mind that the distur-
bance experiment was made by logging. During logging
operations, bottomlands are avoided and logging is
preferentially conducted in easier-to-access hilltop areas,
whatever their proportion in the plot. This may have
artificially reduced the environmental difference between
logged plots and, in turn, the ACS recovery trajectories.

Post-disturbance climate stress Two seasonal climate
stresses were studied: soil water saturation in the wet
season and drought intensity in the dry season. The
importance of the post-disturbance climate stress on
the variability of ACS recovery rates was very high with,
depending on the climate scenarios, 10 to 80 MgC·ha−1

recovered after 30 years (Fig. 6). The 2 driest scenarios
recover initial ACS very quickly, i.e. in less than 60 years
while the wettest one would reach a new asymptotic
values, far below the initial system ACS (Fig. 6). The main
difference between the 3 scenarios lies in the absolute
values of the Survivors’ ACS loss, with very high val-
ues for the wet scenario. This result may look strange
given that drought has often been identified as one of
the main climate drivers of tropical forest dynamics
(Bonal et al. 2016; Wagner et al. 2012, 2013, 2014, 2016),
with large mortality events among tropical trees during

El Nino years for instance (Phillips et al. 2009) that have
not only immediate but also long-term and cumulative
impacts on the carbon cycle (Doughty et al. 2015). Those
large mortality events are associated with tree hydraulic
traits, the most susceptible species being those having
a low hydraulic safety margin (Anderegg et al. 2016).
In this context, why do the most intense dry season gen-
erate the lowest carbon losses? In our training dataset,
the natural variability of the total rainfall from 2700 to
3100 mm·yr−1 is quite low and, moreover, is far above
the 1500 mm·yr−1, the evapotranspiration threshold.
This means that our experimental forest, located in the
Guiana Shield, is not water-limited at all (Stahl et al.
2013), just like the Northern part of the Amazonian basin
(Wagner et al. 2017). One may also expect that, because
of hydraulic failure, standing death is more frequent
during the driest years but, when plotting the tree mode
of death registered at Paracou for each dead tree against
the drought estimator, no evidence was observed for a
potential trend (Aubry-Kientz et al. 2015). Our results
thus reinforce the idea that the dominant seasonal cli-
mate stress in the Paracou forest is not drought during
dry season but water saturation during wet season. This
confirms the hypothesis that waterlogged soils in space or
in time are risky for trees (Ferry et al. 2010). Moreover,
during the rainy season, strong rainfall events often
come with strong winds that may reinforce ACS losses
(Toledo et al. 2011) and we know, from the Para-
cou dataset, that the highest total precipitation
leads to the highest proportion of tree-fall deaths
(Aubry-Kientz et al. 2015). Global climate models con-
verge to simulate, at least for the Amazonian region,
a change in precipitation regime over the coming
decades (Malhi et al. 2009). Seasonal droughts are
expected to become longer and stronger in the future
(Joetzjer et al. 2013). Our simulations would suggest that
post-disturbance forest recovery would be faster with
these new climate conditions. However, we should keep
in mind that our simulations were based on a model
calibrated with data from a natural, undisturbed forest
(Fargeon et al. 2016). With increasing mortality rates
due to increasing drought occurrence and severity, the
new tree community may be richer in post-disturbance
pioneer species. And we have already seen that these new
assemblages will slowly recover (Fig. 4) so that recurrent
climate-stress in time would not lead to faster recovery
rates, but rather to pioneer-rich forest communities with
slow recovery rates.

Conclusion
More than half of the tropical forest area are cur-
rently designated by National Forests Services as produc-
tion forests (Blaser et al. 2011) and they consequently
play a key role in the tropical forest carbon balance
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(Piponiot et al. 2016a; Sist et al. 2015). In the Amazon, for-
est logging and degradation combined to climate change
would render up to 80% of the forest area susceptible to
major disturbance events in the coming decades (Asner
et al. 2010). We have shown that the pre-disturbance
forest composition and the post-disturbance climate con-
ditions are of primary importance to predict the recovery
potential of tropical forest ecosystems. From the Para-
cou long-term experiment, it becomes increasingly clear
that highly-disturbed forests, because they contain a lot
of pioneer species (Baraloto et al. 2012), will be less able
to cope with (i) new disturbance such as logging and (ii)
the drier conditions induced by climate change. In other
words, already-disturbed forests are likely to be the most
vulnerable systems in the current global change context.
Forest managers should thus (i) encourage the develop-
ment of Reduced-Impact Logging techniques in order to
minimize disturbance intensity and (ii) pay a deep atten-
tion when drawing management plans to avoid logging
pioneer-rich forest units. In the context of increasing
disturbances on tropical forests, the lower capacity of dis-
turbed forests to recover is not good news in our fight
against climate change.
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