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Abstract

smaller trees.

with thinning intervals.

Spatial growth model

Background: In economically optimal management, trees that are removed in a thinning treatment should be
selected on the basis of their value, relative value increment and the effect of removal on the growth of remaining
trees. Large valuable trees with decreased value increment should be removed, especially when they overtop

Methods: This study optimized the tree selection rule in the thinning treatments of continuous cover management
when the aim is to maximize the profitability of forest management. The weights of three criteria (stem value,
relative value increment and effect of removal on the competition of remaining trees) were optimized together

Results and conclusions: The results confirmed the hypothesis that optimal thinning involves removing
predominantly large trees. Increasing stumpage value, decreasing relative value increment, and increasing
competitive influence increased the likelihood that removal is optimal decision. However, if the spatial distribution
of trees is irregular, it is optimal to leave large trees in sparse places and remove somewhat smaller trees from
dense places. However, the benefit of optimal thinning, as compared to diameter limit cutting is not usually large
in pure one-species stands. On the contrary, removing the smallest trees from the stand may lead to significant
(30-40 %) reductions in the net present value of harvest incomes.

Keywords: Continuous cover forestry, Tree selection, High thinning, Optimal management, Spatial distribution,

Background

A tree is financially mature for cutting when its relative
value increment falls below the guiding rate of interest
(Davis and Johnson 1987; Knoke 2012). However, the
value increment may improve in the future, due to e.g.
changes in the proportions of timber assortments that
can be obtained from the tree. Therefore, Duerr et al.
(1956) advice to calculate the relative value increment
for several coming time periods and classify the tree as
financially mature if the highest projected rate of value
increase is smaller than the guiding rate of interest.

In Finland and many other countries the main timber
assortments are pulpwood and saw log, of which saw
log is more valuable. Figure 1 (bottom) shows that, in
Finnish conditions, the consequence of unequal prices of
different timber assortments is the existence of peaks in
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relative value increment when the stem attains sufficient
dimensions for pulpwood log, first saw log, second saw
log etc. At later ages, when most of the volume is already
saw log, the peaks gradually disappear and the relative
value increment decreases monotonously with increasing
tree age and size. If the tree has passed all the value jumps,
it is enough to analyze the current value increment to
judge whether the tree is financially mature for cutting. It
is noteworthy, however, that different trees of the stand do
not reach financial maturity at the same age or diameter
(Fig. 1 bottom; Knoke 2012). This is because of genetic
variation, spatial variation in site productivity, and differ-
ences in the competitive positions of the trees. The last
factor can be taken into account in financial analysis if
distance-dependent growth models are used to predict
increment.

Figure 1 (top) shows that a regular spatial distribution
of trees makes it possible to maintain sufficient value in-
crements with larger average tree diameter as compared
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Fig. 1 Top: Relative value increment of uneven-sized spruce stands
in 50-year simulations when there are no cuttings and the spatial
distribution of trees is Poisson, regular (systematic) or irregular
(aggregated). Bottom: development of relative value increments of
six trees in the Poisson distributed stand in 50-year simulation

to more aggregated spatial arrangements. This means
that, on the average, a tree reaches financial maturity at
smaller diameter in irregular spatial distribution. How-
ever, some of the trees in an aggregated spatial tree dis-
tribution, growing in sparsely populated places or being
surrounded by small trees, may grow better than a similar
tree would grow in a regular stand, which postpones the
financial maturity of these trees.

As Davis and Johnson (1987) pointed out, the effect of
tree removal on the growth of remaining trees should
also be taken into account when deciding when a tree
should be harvested and which trees should be removed.
Removing a large tree leads to improved value increment
in smaller trees. This calls for cutting large trees earlier
than their relative value increment suggests. The removal
of a large tree may improve the productivity of several
remaining trees and increase the relative value increment
of the whole residual stand.

The capital invested in wood production consists of the
value of the trees plus the value of bare land. If bare land
has a positive value this means that a tree is financially
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mature at higher relative value increment than indicated
by the guiding rate of return. This is because the value
increment must be compared to the opportunity cost of
the tree and the piece of land occupied by the tree. Bare
land value and the effect of tree removal on the growth of
remaining trees both increase the rate of value increment
at which cutting is optimal decision.

The above analysis suggests that it is optimal to re-
move the largest trees in a thinning treatment. However,
unequal competitive status of trees, as well as unequal
effect of tree removal on the growth of surrounding
trees, makes the decision more complicated than for
instance applying diameter limit cutting. A detailed
analysis of optimal tree selection needs a distance de-
pendent growth model, or at least the calculation of value
increments and the effects of tree removal at individual
tree level.

Although the overall principles that should determine
tree selection in thinning have been understood and de-
scribed already several decades ago (Duerr et al. 1956;
Davis and Johnson 1987) few studies have actually opti-
mized the selection of removed trees. An exception is
the study of Pukkala and Miina (1998) who optimized a
tree selection rule which was based on the effect of tree
removal on the competitive positions of remaining trees.
It was found that it was optimal to thin from above, i.e.
remove large trees.

This study proposed a more straightforward approach
to optimizing tree selection: the criteria of the cutting
rule were the tree’s stumpage value, its value increment,
and the effect of removal on the growth of surrounding
trees. It was assumed that increasing stumpage value,
decreasing relative value increment and increasing com-
petitive effect increase the likelihood of removal. Another
hypothesis was that the optimal order of tree removal is
less strongly correlated with tree diameter in irregular
spatial distributions, as compared to regular tree arrange-
ments. A third hypothesis was that, when net present
value is maximized, it is optimal to remove trees at higher
relative value increment than the discount rate that is used
to calculate net present value.

Methods

Three different sample plots of Norway spruce (50 m by
50 m) with the same diameter distribution but different
spatial distribution of trees were generated for the ana-
lyses. The first plot had a Poisson distribution of trees
(henceforth referred to as Poisson stand). The x and y
coordinates of trees were drawn from uniform distribu-
tion. The second stand was regular, and the third stand
was very irregular (aggregated). Regular spatial distribu-
tions can be easily achieved by silvicultural treatments
and the irregular distribution might be a result of re-
moving all birches from a naturally emerged mixture of
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birch and spruce. Spruces may be very irregularly distrib-
uted in such stands. The mean diameter of each initial
stand was about 22 cm, stand basal area was 17 m*ha™*
and the number of trees per hectare was 1200. The stands
were assumed to grow on mesic site in Central Finland.

The models of Pukkala et al. (2013) for diameter incre-
ment, tree survival and ingrowth were used in simula-
tion. The models are based on about 60,000 diameter
increment and survival observations in different stand
types. The models can be used in both even-sized and
uneven-sized stands. However, the models are not spatial.
When the models were used in this study, the predictors
which describe competition (stand basal area, G, and basal
area in larger trees, BAL) were calculated from trees that
were within 10 meters from the tree for which predictions
were calculated. This is justified because most of the
modelling data of Pukkala et al. (2013) were mea-
sured on plots with approximately 10-m radius. How-
ever, to make the growth simulator distance dependent,
both G and BAL were calculated as the average G
(m*ha™') or BAL (m*ha™') within 10 m, within 10/2 m
(5 m), and within 10/3 m (3.33 m). As a result, the closest
trees had a larger influence on G and BAL. This is in
accordance with several studies, which show that the
effect of neighbor trees on the growth of a subject
tree decreases with increasing distance (see e.g. Miina and
Pukkala 2000).

Mortality was simulated by comparing the tree’s survival
probability to random number distributed uniformly be-
tween 0 and 1. If the random number was larger than the
survival probability, the tree was assigned as dead. In-
growth (number of ingrowth trees) was predicted with the
unmodified model of Pukkala et al. (2013) but spatial cri-
terion was used to choose the places for ingrowth trees.
Fifty candidate positions were generated for each ingrowth
tree and the competition index proposed by Miina and
Pukkala (2000; their Equation 6b)was calculated for each
location. The tree was placed to that location which had
the lowest completion index. The procedure mimics the
observed dynamics of spruce stands (e.g. Eerikdinen et al.
2007) in which ingrowth trees appear in openings and
places with little competition by larger trees.

The optimization problem consisted of selecting the
thinning intervals and the weights of the three criteria of
the following tree selection rule:

RemovalScore = wy Value + woRelativeValuelncrement
+ w3 BALeffect
(1)

where Value is the stumpage value of the stem, Relative-
Valuelncrement is the predicted 5-year value increment
divided by the stumpage value of the stem, BALeffect is
the total reduction in the BALs of neighbor trees in case
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the tree is removed, and wy, w, and ws are optimized pa-
rameters which determine the effect of the three criteria
on the order of tree removal. The BAL effect was calcu-
lated in the same way as BALs were calculated in growth
prediction, i.e. by giving more weight to close neighbor-
hood. A removed tree affected most within 3.33 m, some-
what less within 3.33-5 m, still less within 5-10 m and
not at all beyond 10 meters.

The optimized parameters were thinning intervals and
parameters wy, wo and wy of the tree selection rule. The
problem formulations correspond to continuous cover
management since planting was not an option when
stand development was simulated. The remaining basal
area was calculated with the following model, which is
based on 20,583 optimized cuttings of 6,861 stands lo-
cated in different parts of Finland. All optimizations meet
the constraints of Finnish forestry legislation:

Gremain = €xp(8.149 — 4.656D%! + 0.0221 Gl
+ 0.211Gpine/Grotal + 0.254Gspruce/ Grotal
—0.0327Vr — 0.0333MT - 0.0992VT
—0.164CT)
(2)

where Gremain iS remaining basal area (m%ha™), D is
basal-area-weighted mean diameter of trees (cm), Giotal
is stand basal area before thinning (m%ha™), Gpine is
basal area of pine (m*ha™), Gapruce is basal area of spruce
(m*ha™), r is discount rate (%), and MT, VT and CT are
indicator variables for mesic, sub-xeric and xeric site,
respectively.

When a thinning was simulated, trees were removed
according to their removal score (Eq. 1) until the re-
maining basal area was equal to the value calculated
with Eq. 2. In another set of optimizations, also the re-
maining basal was optimized. These optimizations may
not always meet the current legal limits of Finland.

A 10-m wide buffer zone was generated around the
plot when stand development was simulated (when com-
puting the predictors of the models), and the buffer was
removed after completing a simulation time step. The
buffer was generated by assuming that the plot was sur-
rounded by similar plots on all sides. Since the models
that were used in growth simulation have five-year time
step, stand development was simulated in 5-year steps.

Computation of the removal scores of trees involved
the calculation of the stumpage value, 5-year value incre-
ment and BAL effect for every tree. To obtain the stump-
age value, taper models (Laasasenaho 1982) were used to
calculate assortment volumes, which were multiplied by
their unit prices. The assortments were saw log (50 €m >,
minimum top diameter 16 cm, minimum length 4 m),
and pulpwood (15 €m™>, minimum top diameter 9 cm,
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minimum length 2 m). To calculate value increment, the
diameter (dbh) and height of the tree were incremented
by five-year growth, and assortment volumes correspond-
ing to the incremented dimensions were calculated with
the taper model.

The obtained stumpage values, value increments and
BAL effects were used to calculate the removal scores
for all trees, and the tree with the highest score was
removed. Since a tree removal may affect the competi-
tive influences, value increments and removal scores of
remaining trees, the BAL effects and value increment
predictions of all remaining trees were updated after
every tree removal. This involved removing the buffer,
generating the buffer again, and calculating the BAL ef-
fects and value increments again. Removing and adding
the buffer after every tree removal was based on the as-
sumption that the forest that surrounds the plot is thinned
simultaneously with the plot.

Three next thinnings were optimized in the analyses
of this study. The NPV of the ending growing stock (re-
sidual stand after the third thinning) was predicted with
the model (see Pukkala 2015b). The model prediction,
once discounted to the starting year of simulation, gives
the NPV of all incomes and costs that are later than the
last optimized cutting. It has been shown (Pukkala 2015a,
2015b) that using the model for estimate the NPV of
distant cuttings has no major effect on the optimization
results for the next cuttings, as compared to a higher
number of optimized cuttings.
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Since the simulation involves stochasticity in mortality
and ingrowth, every simulation that was conducted dur-
ing the optimization run was repeated 10 times and the
mean NPV of the repeated simulations was used as the
objective function (returned to the optimization algo-
rithm). The direct search method of Hooke and Jeeves
(1961) was used in optimization. Every optimization was
repeated 5 times, each direct search starting from the
best of 100 random combinations of optimized variables.
The best solution (highest NPV) was taken as the opti-
mal solution. NPV was calculated with 3 % discount
rate.

Results and discussion

Remaining basal area not optimized

Optimizations in which the remaining basal area was
not optimized suggested immediate thinning in all three
stands, another thinning after 10 years, and a third thin-
ning 10 years later (Table 1, boldface). However, there
was some variation between repeated optimizations in
the cutting intervals, especially in the irregular stand.
Looking at the NPVs of the solutions suggests that those
solutions that propose intervals other than 10 years may
be sub-optimal, i.e., the algorithm has converged to local
optimum.

The ranking of the three stands in terms of NPV was
logical. The regular stand produced the highest NPV
whereas the highly irregular stand produced clearly
smaller economic benefit than the other stands (Table 1).

Table 1 Net present values and optimal values of decision variables for Poisson, regular and irregular stand in 5 repeated
optimizations when the remaining basal area of thinning was calculated with a model (Eq. 2)

NPV (€ha™")  Years to 1st thinning  Years to 2nd thinning ~ Years to 3rd thinning  w; (stem value)  w; (value increment) w3 (BAL effect)
Poisson stand
9133 0 10 10 0.37 -0.25 0.38
9121 0 10 15 024 —047 0.29
9127 0 10 10 048 -0.50 0.02
9032 0 15 15 043 -0.27 0.29
9105 0 10 10 029 —-0.05 0.66
Regular stand
9319 0 10 10 0.35 -0.31 0.34
9237 0 10 20 049 -0.27 0.24
9304 0 15 10 0.78 -0.04 0.18
9289 0 15 15 046 -0.29 0.26
9313 0 10 15 030 -0.13 0.57
Irregular stand
8247 0 10 10 042 -0.13 045
6852 0 25 45 046 -0.27 0.26
8266 0 10 10 0.32 -0.43 0.25
7511 0 30 10 038 —-0.30 032
8238 0 10 35 0.50 0.01 0.52

Optimization result with the highest NPV is indicated with boldface
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The signs of the parameters of the removal score func-
tion were logical: high stem value and high BAL effect
(high reduction in the competition of remaining trees)
increased the score, and high relative value increment
decreased it. Valuable trees with low value increment
and strong competitive effect on other trees were the
first ones to leave. As a result, thinnings from above
were conducted, as can be seen from the maps of Fig. 2.

A closer inspection of the diameters of the removed
and remaining trees (Fig. 3) revealed that the thinnings
of the regular stand resembled diameter limit cutting.
There were only one or two diameter classes which in-
cluded both remaining and removed trees. In the first
thinning of the Poisson forest, there were 4 diameter
classes (8 c¢cm diameter range) having both remaining
and removed trees. This range was 12 c¢m in the irregular
stand. Large trees were left in sparse places and rather
small trees were removed from dense places.

The diagrams of Fig. 4 (bottom right) show that, in the
regular stand, the order of removal followed decreasing
breast height diameter fairly closely. The selection score
correlated closely with both dbh and relative value incre-
ment, suggesting that either of these variables alone could
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be used as the harvesting criterion in a regular stand. In
the other stands, the order of removal did not follow
decreasing dbh equally closely. In both Poisson and regu-
lar stands, most trees removed in the first thinning were
larger than 25 cm.

The situation was different on the irregular stand, in
which several removed trees were smaller than 25 cm.
To have a sufficient remaining basal area, some large
trees were left to continue growing (Figs. 2 and 3). In
the irregular stand, the removal score did not correlate
strongly with dbh or relative value increment. In this
stand, the BAL effect of tree removal varied much more
than in the other stands (Fig. 4 bottom left) and had a
stronger influence on the removal score than in the
other stands. This cannot be concluded from the weights
of BAL effect in Table 1 since the effect of the criterion
depends on both the weight and the range of variation
in the criterion variable in a particular stand and thinning.
As a conclusion, when thinning an irregular stand, more
importance should be given to the reduction of competi-
tion due to tree removal.

Table 1 shows that repeated optimizations result in
different weights of the criteria of the removal score,
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F - 8 ’e ® **
c @ . o®

Regular (0—10-20)

Fig. 2 Remaining (filled circles) and removed (open circles) trees in the first (top), second (middle) and third (bottom) thinning of a Poisson-
distributed, regular and irregular stand. Ingrowth trees are shown with lighter tone (red). Thinning years are given within parentheses
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suggesting that there is much uncertainty in this re-
spect. However, since the three criteria correlate with
each other, the removal score may be fairly similar
with different weights. This means that, although
there is uncertainty about the exact weights of the re-
moval criteria, there is less uncertainty about the re-
moval order of trees. This can be seen from Fig. 5,
which shows the locations of trees removed in the
first thinning of the Poisson forest when the five different

solutions of Table 1 were used to select the trees. Al-
most the same trees were removed when using dif-
ferent values for weights w;, w, and ws. Three trees
were removed in only 1 solution and another three
trees were removed in less than five solutions. All
the other trees were removed in all solutions. There-
fore, high variation in the obtained weights of the
removal criteria bring only little uncertainty in tree
selection.
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Another simulation was done by applying the optimal
weights of the thinning rules (boldface rows in Table 1)
of the three different stands to the first thinning of the
Poisson stand (Fig. 6). The results show again that nearly
the same trees were removed from the Poisson forest

when applying the optimal tree selection rule of regular,
irregular or Poisson stand. This result implies that the
same tree selection rule could be used in all spatial dis-
tributions, which may sound counterintuitive in the light
of the diagrams of Fig. 4. However, even though the
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Fig. 5 Location of trees removed in the first thinning of the Poisson
stand when tree selection is based on five different solutions of the
optimization problem. When the symbols of different solutions
coincide, the same tree is removed in all solutions

ﬁlﬁ ® ) + Poisson rule
a ORegular rule
)
Alrregular rule
Q) ® ® ®
@
)
®
@
® ®
(O]
®
A @®
Fig. 6 Location of trees removed in the first thinning of the Poisson
stand when tree selection is based on the optimal tree selection rule
obtained for Poisson stand, regular stand and irregular stand. When
the symbols of different rules coincide, the same tree is removed with
all rules
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weight of e.g. BAL effect would be the same in all stands,
the influence of BAL effect on tree removal would be
stronger in the irregular stand, due to greater variation of
BAL effect in this stand.

Remaining basal area optimized

When the remaining basal area was optimized together
with the thinning intervals and tree selection rule, the
NPV of the optimal schedule increased by 4-5 % as
compared to optimizations in which remaining basal
area was calculated with Eq. 2 (Tables 1 and 2). The
remaining basal areas were now 6.5-8.9 m*ha~' whereas
they were 10-11 m*ha™' when calculated with the
model. The thinning intervals became longer in the
Poisson and regular stands. It can be concluded that the
requirement for a certain minimum residual basal area
decreased the profitability of forest management in the
three analyzed stands.

As a consequence of stronger thinnings, more in-
growth appeared in the stands, especially in the Poisson
and regular stands, as compared to previous optimiza-
tions (Fig. 7). The thinning was extended to smaller di-
ameters (Fig. 8), and the diameter range that had both
remaining and removed trees, became narrower. This
means that when remaining basal area was not restricted,
optimal thinning resembled more diameter limit cutting,
also in the aggregated spatial distribution.

The optimality of diameter limit cutting was further
inspected by removing the trees according to dbh, start-
ing from the largest tree (‘High thinning’ in Fig. 9). For
comparison, simulations were also conducted so that the
smallest trees were removed in the thinning treatments
(‘Low thinning’ in Fig. 9). The results show that systematic
diameter limit cutting was not much worse than optimal
tree selection. Thinning from below would be a clearly
inferior management approach.

Effect of discount rate

The previous optimizations used 3 % discount rate. When
remaining basal area was optimized in the Poisson stand
(together with thinning intervals and tree selection rule),
lower discount rate (1 %) led to clearly longer thinning
intervals, higher pre-thinning basal areas, larger mean tree
diameters, and slightly higher post-thinning basal areas
and mean diameters, compared to 3 % discount rate
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(Fig. 10). Increased discount rate (5 %) resulted in 10-year
thinning interval, lower remaining basal area and smaller
mean tree size of the residual stand. When the discount
rate was 1 %, the largest trees of the stand were 35 cm in
dbh when the thinning was conducted. With 5 % discount
rate the thinning was conducted when the largest trees
reached 25 cm breast height diameter.

The effect of discount rate was the most clear in grow-
ing stock value (Fig. 10, bottom left). When the discount
rate was 1 %, the stumpage value of the growing stock was
8000 €ha™' at the second thinning and 13 000 €ha™' at
the third thinning. With 5 % discount rate the pre-
thinning growing stock value was only about 2200 €-ha™".

When NPV was maximized with 1 % discount rate, it
was optimal to thin the stand when its relative value in-
crement was 2-3 %. With 3 % discount rate the stand
was thinned at 4.5-6 % value increment, and at with 5 %
discount rate at 8 % value increment. When the discount
rate was 3 %, in the first thinning of the Poisson stand
about half if the removed trees had a relative value in-
crement of about 2 % and the rest had 3-6 % rate of
value increment (Fig. 11, top). However, the first thin-
ning, which was immediately, was most probably later
than its optimal timing would have been. In later thin-
nings, 50 % of removed trees were removed at about 4 %
rate of value increment and the rest were removed at
higher, up to 7 % value increment.

In the second thinning of the Poisson stand, trees were
removed at 2—7 % value increments when discount rate
was 1 %, at 3-7 % increments when discount rate was
3 % and at 5-14 % value increments when discount rate
was 5 % (Fig. 11, bottom). This is in line with the hy-
pothesis of the study, according to which it is optimal to
remove a tree at higher relative value increment than
the guiding rate of interest. This is because of the op-
portunity cost of bare land and the fact that tree re-
moval improves the relative value increment of
remaining trees.

Conclusions

The results suggest that it is nearly optimal to select the
trees that are removed in a thinning treatment on the
basis of breast height diameter, starting from the largest
tree. However, in irregular spatial distributions, the com-
petition faced by the tree and the effect of removal on

Table 2 Net present values and optimal values of decision variables for Poisson, regular and irregular stand when the remaining
basal area (G) was optimized together with thinning intervals and tree selection rule

Stand NPV (€-ha™") Tst thinning 2nd thinning 3rd thinning w; (stem value) w, (value increment) ws (BAL effect)
Years G Years G Years G

Poisson 9477 0 6.9 15 89 20 74 033 -045 022

Regular 9680 0 65 15 77 20 76 0.68 -0.25 0.07

Irregular 8671 0 6.9 10 8.6 10 6.8 0.83 -0.09 0.08
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Fig. 7 Remaining (filled circles) and removed (open circles) trees in the first (top), second (middle) and third (bottom) thinning of a Poisson-
distributed, regular and irregular stand when the remaining basal area is optimized. Ingrowth trees are shown with lighter tone (red). Thinning
years are given in parentheses

the growth of surrounding trees should also be taken
into account. The degree of irregularity of the irregular
stand of this study was so high that such stands are
rarely encountered in managed forests. Therefore, diam-
eter limit cutting seems to be a sufficient approach in
most stands. However, there are other types of irregular-
ity, which are more common. For example, the stand
may have sub-areas of predominantly large trees while
other sub-areas are occupied by smaller trees. In this
case, diameter limit cutting leads to openings and unuti-
lized growing space. Since decreased competition in-
creases the dbh of financial maturity, it would most
probably be better to leave some large trees to continue
growing. This means that a tree selection rule that incor-
porates several criteria is more likely to work better
(than dbh alone) in a wide range of stand structures. In
mixed stands, relative value increment or a more com-
plicated tree selection rule is certainly better than using
only dbh to select the removed trees (Knoke 2012). This
is because of differences in the inherent growth rates, as-
sortments dimensions, and assortment prices of different
species.

Although there are very few previous studies on opti-
mal tree selection, several recent results on pre-and
post-cutting diameter distributions in economically opti-
mal uneven-aged management support the conclusion
that optimal cutting resembles diameter-limit cutting
(Tahvonen et al. 2010; Tahvonen 2011; Pukkala et al.
2014; Pukkala 2015a, 2015b). The American studies con-
ducted during the 1980s lead to similar conclusions
(Haight 1985, 1987; Haight and Getz 1987). Also long-
term silvicultural trials support the conclusion than
diameter limit cutting is more profitable than single-tree
selection. For example, in the Vessari experiment located
in Central Finland, the net present value (calculated with
3 % discount rate) of diameter limit cutting was 13750
€ha™' whereas it was only 10250 €ha™' in single tree
selection during a 40-year monitoring period. In the
nearby Honkamiki experiment the NPV of diameter
limit cutting was 10500 €ha' and the NPV of single
tree selection was 7800 €/ha (Pukkala et al. 2012).

The optimizations of this study were done for continu-
ous cover management. However, the same principles of
analyzing the financial maturity of trees also apply to
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even-aged management. Several studies have shown that
the optimal thinning of a certain stand would be rather
similar in even-aged management and continuous cover
forestry (e.g. Pukkala 2015b). In the study of Pukkala et al.
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% @ BA not optimised
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g
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z

0 L

Poisson Regular Irregular

Fig. 9 Net present value when tree selection is based on optimized
rule (BA not optimized, BA optimized) or on dbh (High thinning,
Low thinning). In high and low thinning, the stand is thinned to the
optimal remaining basal area

(2014), which optimized the cuttings of 200 different
stands representing different stand structures without the
limitation to pursue either even-aged management or
continuous cover forestry, 97-99 % of thinnings were high
thinnings similar to those that were found optimal in this
study. However, some studies (Valsta 1992; Hyytidinen
et al. 2005; Pukkala 2015b) have found that, in even-
aged management when a forced clear-felling belongs
to the management schedule, it is sometimes optimal
to remove trees from both ends of the diameter
distribution.

Tree quality, health and vigor are additional charac-
teristics which should affect tree selection. However,
these criteria are difficult to include in simulation
and optimization studies. As suggested already Moller
(1922), trees whose vigor is decreased should be removed
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in thinnings. If low-quality trees overtop smaller and
better-quality individuals, they should also be removed, as
commonly done in forestry practice. If the quality of all
trees is low (or equal), the criteria proposed in this study
can be used.

The optimal tree selection rules that were developed
in this study, all lead to thinning from above. The com-
parison of Fig. 9 also shows that thinning from below
may not be economically justified. This can also be
concluded from earlier literature that discusses financial
maturity (Duerr et al. 1956; Davis and Johnson 1987;
Knoke 2012). Also several optimization studies show
that high thinning is in most cases more profitable than
low thinning (e.g., Haight and Monserud 1990; Valsta
1992; Tahvonen et al. 2013). In fact, it is hard to find
economic arguments which would justify the use of low
thinning.

The study used a non-spatial model in spatial simula-
tion. It was justified by the fact that the area of computing
the competition variables (G and BAL) corresponds to the

area of the sample plots in the modelling data of Pukkala
et al. (2013). However, there is one difference: in the mod-
elling data, G and BAL were computed within 300-m?
plots (around 10 m radius) for all trees of the plot, not
only for trees near plot center. These values of G and BAL
may not describe the competition that edge trees face in
the best possible way because trees outside the plot also
create competition. This may be called as “sampling error”
in the calculation of G and BAL for the edge trees in
individual-tree growth modelling. Sampling error results
in weaker relationship (underestimated influence) between
growth and G or BAL in the growth model. In the current
study, this underestimation was counteracted by the
distance-dependent computation of G and BAL, which
increased their variation. As a result, the predictions may
in fact be better than when calculating G and BAL in the
same way as they were computed in the data preparation
step of growth modelling.

The simulations of this study included stochasticity in
mortality and ingrowth. Therefore, every simulation
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Fig. 11 Predicted value increments of removed trees in the first,
second and third thinning of the Poisson stand when discount
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discount rate is 1, 3 or 5 %. The relative value increments of remaining
trees have been up-dated after every tree removal (for example, the
relative value increment of the last tree removed is calculated for a
situation in which all trees of the removal, except the last, have

been removed)

was repeated 10 times and the mean NPV of the 10
simulations was used as the value of the management
schedule. Ten simulations is a small number in sto-
chastic simulation. However, few trees die in managed
forests, and dead trees are usually small. Ingrowth
begins to affect harvest removals and stand value
gradually, its effect being minimal during the first de-
cades although ingrowth is critically important for the
long-term sustainability of continuous cover forestry.
Therefore, it can be concluded that the two sources
of stochasticity (mortality and ingrowth) did not have
any significant effect on the results of this study.
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