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Abstract

Background: Decisions on forest management are made under risk and uncertainty because the stand
development cannot be predicted exactly and future timber prices are unknown. Deterministic calculations may
lead to biased advice on optimal forest management. The study optimized continuous cover management of
boreal forest in a situation where tree growth, regeneration, and timber prices include uncertainty.

Methods: Both anticipatory and adaptive optimization approaches were used. The adaptive approach optimized
the reservation price function instead of fixed cutting years. The future prices of different timber assortments were
described by cross-correlated auto-regressive models. The high variation around ingrowth model was simulated
using a model that describes the cross- and autocorrelations of the regeneration results of different species and
years. Tree growth was predicted with individual tree models, the predictions of which were adjusted on the basis
of a climate-induced growth trend, which was stochastic. Residuals of the deterministic diameter growth model
were also simulated. They consisted of random tree factors and cross- and autocorrelated temporal terms.

Results: Of the analyzed factors, timber price caused most uncertainty in the calculation of the net present value of
a certain management schedule. Ingrowth and climate trend were less significant sources of risk and uncertainty
than tree growth. Stochastic anticipatory optimization led to more diverse post-cutting stand structures than
obtained in deterministic optimization. Cutting interval was shorter when risk and uncertainty were included in the
analyses.

Conclusions: Adaptive optimization and management led to 6%–14% higher net present values than obtained in
management that was based on anticipatory optimization. Increasing risk aversion of the forest landowner led to
earlier cuttings in a mature stand. The effect of risk attitude on optimization results was small.

Keywords: Adaptive optimization; Anticipatory optimization; Stochastic optimization; Risk preferences; Risk;
Uncertainty; Reservation price
Background
Maximizing the economic benefits from timber produc-
tion is equal to maximizing the net present value of fu-
ture net incomes. Unfortunately, the future net incomes
are unknown at the moment when management deci-
sion should be made. Future net incomes depend on fu-
ture timber prices, which show substantial temporal
variation (Leskinen and Kangas 1998).
Also the growth and development of trees and stands

are poorly known. Deterministic models explain only a
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part of the growth variation between years, stands and
trees. Measurements of past growth show that there are
periods of good growth while in other years or during
longer periods trees grow less than the long-term aver-
age (e.g. Pasanen 1998). In addition to these weather-
related seasonal variations in annual growth, there are
also between-tree growth differences which cannot be
explained by deterministic models. Another factor caus-
ing uncertainty in growth prediction is climate change.
It is usually assumed that the growth rate will increase
in the boreal forests of North Europe (e.g. Pukkala and
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Kellomäki 2012), but the estimated growth trends repre-
sent very uncertain knowledge.
Flowering, pollination, seed production and germination

are sub-processes of the regeneration process of trees and
stands. All these sub-processes are very sensitive to wea-
ther conditions such as temperature and rainfall. In
addition, the eventual size of the seed crop depends on the
fluctuations of seed predators and seed diseases. Since
many sub-processes critical to regeneration success depend
on weather conditions, it is impossible to predict the exact
amount of regeneration in a certain year in the future, even
when there are plenty of empirical regeneration data to fit
models. The best that can be done is to predict the distri-
bution of regeneration results or the probability of success-
ful regeneration. Mortality is also hard to predict exactly.
However, the so-called regular mortality (competition-re-
lated mortality) is very low in regularly thinned managed
boreal forest. Therefore, if catastrophic events are excluded
from the analysis (like in this study) uncertainty in mortal-
ity does not add much to the total degree of uncertainty in
the prediction of stand development. For an attempt to in-
clude catastrophic events see Zhou and Buongiorno
(2006).
The above discussion shows that decisions on future

forest management must be made under risk and uncer-
tainty. Risk is usually understood to be a situation in
which the probabilities of different states of nature are
known, which makes it possible to calculate the distribu-
tion of outcomes for a certain decision alternative. Un-
certainty refers to situations in which the probabilities
are unknown. The prevailing situation is uncertainty.
However, to make analyses easier, the situation is trans-
formed from uncertainty to risk, by assuming some dis-
tributions for the uncertain factors. This allows the
analyst to calculate the probabilities of different out-
comes of decision alternatives.
Forest landowners have different attitudes toward risk

and uncertainty. Most people are risk avoiders, especially
in “big” decisions with a major potential impact on their
livelihood. A risk-averse person seeks decision alternatives,
which are at least reasonable when the states of nature de-
velop in an unfavorable way. Risk avoiders tend to select
decision alternatives for which the lower end of the distri-
bution of outcomes is as good as possible (Pukkala and
Kangas 1996). They may also minimize the “regret”, i.e. the
maximum loss compared to the best decision alternative
under certain states on nature. On the contrary, risk takers
are optimistic and favor decision alternatives that are good
under favorable states of nature, even though the probabil-
ity of such an outcome may be low.
There are two basic approaches to the optimization of

stand management in a risk situation: anticipatory and adap-
tive optimization. Anticipatory optimization seeks a single
management schedule, which produces the most favorable
distribution of net present values or some other objective
function (Valsta 1992). Risk neutral decision makers select
management schedules which produce high average net
present values. Risk takers often select management sched-
ules for which the best outcomes are good whereas risk
avoiders tend to maximize the worst outcomes of alternative
management schedules.
Adaptive optimization does not try to find a single

management prescription for the stand. Instead, it aims
at finding rules that help the landowner to make right
decisions in changing environment (Lohmander 2007).
A well-known rule is the reservation price function indi-
cating the minimum price that the seller should obtain
from timber (Brazee and Mendelsohn 1988; Lohmander
1995; Gong and Yin 2004). A more general approach is
the Markov decision process model (Lembersky and
Johnson 1975; Kaya and Buongiorno 1987).
It can be assumed that reservation price decreases

with increasing financial maturity of the stand: the lower
the relative value increment of the stand, the lower is
the minimum selling price of a certain timber assort-
ment. Since the relative value increment decreases with
increasing stand density and mean tree size, it can be as-
sumed that reservation price is negatively correlated with
stand basal area and mean tree diameter (Lohmander
1995; Gong 1998; Lu and Gong 2003).
The aim of this study was to describe a system for sto-

chastic optimization of the management of boreal forests in
a situation where future timber prices, tree growth and
regeneration are not known exactly. The developed simula-
tion–optimization system was used to compare determinis-
tic and stochastic optima, as well as the results of
anticipatory and adaptive optimization approaches. Pukkala
and Kellomäki (2012) compared anticipatory and adaptive
management in even-aged forestry and Zhou et al. (2008)
compared adaptive and anticipatory policies in uneven-
aged forests. In this study, continuous cover management
of both even-and uneven-aged initial stands was optimized.
Continuous cover management refers to any sequence of
cuttings that keep a minimum post-cutting residual stand
basal area. Regeneration by planting or sowing is not used.
Based on previous studies, it was hypothesized that in a

risk situation it is optimal to grow more diverse stands
than under certainty (Rollin et al. 2005). Risk avoiders were
assumed to maintain more diverse stand structures than
risk seekers (Pukkala and Kellomäki 2012). The third hy-
pothesis was that adaptive optimization and management
results in higher average net present value than anticipa-
tory optimization (Gong 1998; Lu and Gong 2003).

Methods
Growth and yield model
The set of models that was used to simulate stand devel-
opment (Pukkala et al. 2013) consists of individual-tree
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model for diameter increment, individual-tree survival
function, and an ingrowth model (Vanclay 1994). To cal-
culate the assortment volumes of removed trees, the
height model of Pukkala et al. (2009) and the taper
models of Laasasenaho (1982) were used. The article of
Pukkala et al. (2013) reports also methods for simulating
the residual variation around the diameter increment
and ingrowth models. The deviation of diameter incre-
ment from deterministic model prediction was modelled
as follows (Miina 1993):

devit ¼ ai þ vit ð1Þ

vit ¼ ρvit−1 þ eit ð2Þ

where devit is the deviation from model prediction for
tree i and 5-year period t, ai is normally distributed ran-
dom tree factor for tree i, vit is random autocorrelated
residual for tree i and period t, ρ is correlation coeffi-
cient between the residuals of consecutive 5-year periods
and eit is normally distributed random number, var[ei] =
var[vit](1 − ρi

2). It was assumed that 1/3 of dev is
accounted for by the tree factors (ai) and the rest is
accounted for by autocorrelated residuals (vit). It has
been found that the correlation between the residuals of
consecutive 1-year periods is 0.4–0.7 and the correlation
between 5-year residuals is about half of it (Henttonen
1990; Miina 1993; Kangas 1997; Pasanen 1998). In this
study, the autocorrelation coefficient of residuals (ρ) was
assumed to be 0.300 for all species. The total variance of
residual was 0.254 for pine, 0.283 for spruce and 0.228
for birch (Pukkala et al. 2013). The random numbers
(eit) generated for the trees in a particular 5-year growth
period were assumed to be correlated (Pasanen 1998),
resulting in both auto- and cross-correlated time series
of growth residuals (Figure 1). In simulation, the sto-
chastic residuals were added to the predicted diameter
increment. As a result, the simulated differentiation of
tree size was faster than it would be in deterministic
simulation.
Figure 1 A diameter increment scenario. Sequences of stochastic deviat
periods. Each sequence consists of a tree factor and cross- and autocorrela
and Tree 1 is a slow-growing individual.
The diameter increments obtained from the diameter
increment model were multiplied with a multiplier that
describes the effect of climate change on tree growth
(Pukkala and Kellomäki 2012). The climate-induced
growth trend is based on a process-based model
(Kellomäki and Väisänen 1997; Ge et al. 2010) and cor-
responds to climate change scenario A1B. The effect of
changing climate on diameter increment depends on
tree species and growing site. The trends are linear and
growth will improve approximately 20% in 50 years. In
this study it was assumed that the influence of climate
change on diameter increment is not known with cer-
tainty. Therefore, the slope of the trend line was as-
sumed to be stochastic, with standard deviation equal to
0.1 times the slope coefficient.
Ingrowth was defined as the number of new trees per

hectare that reach the 1.3 m height during a 5-year
period. Pukkala et al. (2013) modelled the residuals of
the ingrowth model as follows

devs;t ¼ ρsdevs;t−1 þ seses;t ð3Þ

where devs,t is the deviation from the deterministic
logarithmic model for species s and 5-year period t, ρs is
the autocorrelation coefficient of successive 5-year pe-
riods for species s, ses is the standard deviation of the
stochastic annual component and es,t are multi-normally
distributed correlated random numbers (N(0,1)) for pine,
spruce, birch and hardwood other than birch. Correlated
random numbers (es,t) were obtained by using the
Cholesky decomposition of the covariance matrix of the
residuals of the species-specific ingrowth models
(Pukkala et al. 2013). Correlations between the residuals
of different species are not high, but for instance the un-
explained variation in the ingrowth of spruce is posi-
tively correlated with the residual for birch. On the
contrary, the correlations between successive five year
periods are rather high, 0.670 for pine, 0.577 for spruce,
0.657 for birch and 0.637 for hardwood other than birch.
The main reason for the positive autocorrelation is most
ions from deterministic model prediction for five trees and fifty 5-year
ted stochastic temporal components. Tree 2 is a fast-growing individual
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probably that a single good regeneration year (good seed
crop with low seed predation and high germination rate)
increases the ingrowth in several coming years. The
standard deviation of the stochastic annual component
(se) is 0.526 for pine, 0.990 for spruce, 1.027 for birch
and 0.938 for hardwood other than birch. Stochastic in-
growth scenarios are produced by adding the simulated
residuals to the deterministic logarithmic ingrowth
model and converting the result to a non-logarithmic
value. Figure 2 shows examples of ingrowth scenarios
when the model prediction is 10 new trees per hectare.
It can be seen that the resulting ingrowth scenarios are
very erratic, reflecting to what happens in reality.
Leskinen and Kangas (1998) described the annual vari-

ation in timber prices with a set of models where the
logarithmic price of a certain timber assortment depends
on the price of the previous year plus a stochastic annual
component

pt−�p ¼ α pt−1−�pð Þ þ et ð4Þ

where pt is the logarithmic price in year t, α is parameter
ranging from 0.45 to 0.89 for different timber assort-
ments and e is normally distributed random number.
Correlated random numbers for different assortments
were produced with the help of Cholesky decomposition.
The model has been estimated from the historical tim-
ber price statistics of Finland. Figure 3 shows an ex-
ample timber price scenario for six assortments. It can
be seen that the prices of successive years are positively
Figure 2 A stochastic ingrowth scenario. Cross- and autocorrelated loga
ingrowth prediction, which is then converted to non-logarithmic value (bo
correlated and the prices of different assortments are
also correlated.

Case study stands
Calculations were done for an uneven-aged spruce
stand, mixed stands of pine, spruce and birch, and pure
pine and spruce stands (Table 1). Each stand was as-
sumed to grow on a typical growing site for the species.
The stands represent typical and common stand struc-
tures in the managed forests of Finland. The stands were
assumed to grow in Central Finland.
Each species and canopy layer was initially described

by basal area, mean diameter, mean height and mini-
mum and maximum of the diameter distribution. Stand
basal area and the three diameters were used to predict
the diameter distribution of each stratum (species or
canopy layer) present in the stand. The predicted diam-
eter distribution was divided into 10 classes of equal
width, and 5 trees were taken to represent each class.
The random tree factors of the residuals of the diameter
increment model were generated at this point (ai of
Equation 1). As a result, each stratum of the stand was
represented by 50 “representative trees” varying in size
and inherent growth potential.
Growth, survival and ingrowth were simulated using

5-year time steps. If there was ingrowth, a new represen-
tative tree was generated for every 10 new conifers or 50
hardwoods (each new tree represented 10 or 50 trees
per hectare). The random tree factors of the residuals of
diameter growth models were drawn from normal distri-
bution for each new representative tree. Mortality was
rithmic residuals are generated (top) and added to the logarithmic
ttom).



Figure 3 A stochastic timber price scenario for 100 years. The prices of different assortments are auto- and cross-correlated.
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simulated by multiplying the frequency of the represen-
tative tree by its survival probability.

Optimization
The objective variable was the net present value of all future
net incomes, calculated with 3% discount rate. The next
three cuttings were optimized for all stands. The net present
value of the remaining growing stock (after the 3rd cutting)
was calculated with species-specific models using stand
basal area, mean dbh, discount rate, site variables and timber
prices as predictors (Pukkala 2005). These models explain
90%–95% of the variation of the NPV of the optimal man-
agement schedule, depending on tree species. Because of
discounting, the value of the ending growing stock, i.e. the
discounted value of predicted net present value of all cut-
tings conducted later than the third cutting, had only a small
effect on the total NPV. Preliminary tests indicated that op-
timizing three first cuttings was enough to have a reliable es-
timate of the total NPV and to know how the stand should
be managed in the near future (Figure 4). For example,
when optimizing one to five next cuttings and using model
Table 1 Case study stands

Stand Site Strata BA Height Dmin Dmean Dmax

Uneven spruce MT Spruce 18 21 17 22 28

Spruce 7.6 6 1 8 16

Mature mixed MT Pine 6 21 13 22 28

Spruce 6 14 3 16 22

Birch 6 20 13 21 27

Young mixed MT Pine 4 17 13 18 22

Spruce 3 14 3 16 22

Birch 4 16 13 17 20

Young spruce OMT Spruce 15 11 5 12 18

Mature spruce OMT Spruce 28 21 15 23 29

Young pine VT Pine 15 11 5 12 18

Mature pine VT Pine 25 20 15 21 27

MT =mesic site; OMT = herb-rich site; VT = sub-xeric site; BA = stand basal area
(m2 · ha−1); Height = mean tree height (m); Dmin = minimum diameter (cm);
Dmean =mean diameter (cm); Dmax =maximum diameter (cm).
prediction to calculate the NPV of the residual stand, the
following total NPVs (calculated with 3% discount rate) were
obtained for an uneven-aged spruce stand: 11426 € · ha−1

(1 cutting optimized), 11897 € · ha−1 (2 cuttings optimized),
11917 € · ha−1 (3 cuttings optimized), 11884 € · ha−1 (4 cut-
tings optimized), 11879 € · ha−1 (5 cuttings optimized).
In anticipatory optimization the decision variables for

each cutting were as follows:

� Cutting year (exactly: number of years since the
start or since previous cutting)

� Parameters of the thinning intensity curve, which
was defined separately for each species present in
the initial stand

Thinning intensity was first described with the follow-
ing logistic function (Pukkala et al. 2014):

h dð Þ ¼ 1

1þ a3 � exp a1 a2−dð Þ½ �1=a3
ð5Þ

where h(d) is the proportion of harvested trees at dbh
d and a1, a2 and a3 are parameters to be optimized. This
simple function has been found to result in almost as
good solutions (in terms of NPV) as optimizing the
Figure 4 Effect of optimizing 1 to 5 next cuttings on the
optimal thinning intensity curve of the first cutting in an
uneven-aged spruce stand.



Pukkala Forest Ecosystems  (2015) 2:6 Page 6 of 13
harvest intensities of different diameter classes separ-
ately (Pukkala et al. 2014). Moreover, preliminary ana-
lyses showed that parameter a3 could be fixed to a3 = 1
(i.e. a3 could be removed) without any notable deterior-
ation of the NPV of the optimal solution. Therefore, the
following simplified thinning intensity model was used
in this study:

h dð Þ ¼ 1
1þ exp a1 a2−dð Þ½ � ð6Þ

Parameter a2 gives the diameter at which thinning in-
tensity is 0.5, and a1 defines the type of thinning. If a1 is
negative, small trees are thinned more than large ones,
resulting in low thinning. When a1 is positive, the thin-
ning represents high thinning while a1equal to 0 results
in uniform thinning. As a result, the number of opti-
mized variables was 3(1 + 2) = 9 for one-species stand
and 3(1 + 3 × 2) = 21 for a mixture of pine, spruce and
birch.
In adaptive optimization, cutting years were replaced

by a reservation price function. The following form was
assumed, based on previous research (e.g. Pukkala and
Kellomäki 2012), preliminary analyses and known rela-
tionships between stand basal area, mean tree diameter
and financial maturity:

RP ¼ exp b1 þ b2√Dþ b3√G
� � ð7Þ

where RP is the price of saw log (roadside price) that
activates a cutting treatment and b1, b2 and b3 are opti-
mized parameters that define how the reservation price
depends of stand basal area and mean tree diameter.
The same reservation price was used in all cuttings. In a
mixed stand the current timber price, which was com-
pared to the reservation price, was computed as the
Figure 5 Dependence of parameter a2 of the thinning intensity curve
circles represent xeric (dry) growing sites.
weighted average of the saw log prices of all species
present in the stand, using basal area as the weight
variable.
The intensity and type of cutting were defined with

the same logistic function that was used in anticipatory
optimization. However, in adaptive optimization cutting
may be postponed if timber price is not good enough.
Using the same thinning intensity curve with varying
cutting years may lead to situations in which the thin-
ning is too heavy or too light, depending on how much
and to which direction the cutting year is moved. To
avoid this from happening, the problem formulation was
changed so that parameter a2 (location of thinning in-
tensity curve) was calculated with a model, and only par-
ameter a1 (thinning type) was optimized. This resulted
in problem formulations containing 3 + 3 × 1 = 6 decision
variables in one-species stands, and 3 + 3 × 3 × 1 = 12 de-
cision variables in the mixture on pine, spruce and birch
(the type of thinning was optimized separately for each
species).
Several deterministic optimizations were conducted

for different species on different growing sites to find
the relationship between parameter a2 (location) of the
thinning intensity curve and the stand characteristics
(Figure 5). On the basis of these optimizations, the fol-
lowing model was fitted to the diameter at which thin-
ning intensity is 50%:

a2 ¼ 8:738−0:156G þ 0:771D−1:906CT ð8Þ

where D is basal-area-weighted mean diameter of the
trees (cm), G is stand basal area (m2 · ha−1) and CT is an
indicator variable for xeric growing sites (CT = 1 for Cal-
luna type and poorer sites, and 0 otherwise). The model
explained 82% of the variation of a2.
(Equation 5) on stand basal area and mean tree diameter. Open
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The current forestry legislation of Finland does not
allow the landowner to thin the stand below a certain
minimum residual basal area (typically around 10 m2 · ha−1).
If the minimum basal area requirement is not met, the
landowner is obliged to regenerate the stand within a cer-
tain time frame. In this study, any solution in which the
minimum basal area was not met was penalized with the
consequence that the selected schedules were better in
line with the current forestry legislation.
Each management schedule evaluated during an opti-

misation run was simulated 600 times, and the mean
NPV of the 600 stochastic outcomes was passed to the
optimization algorithm. The results therefore represent
the optimal management for risk neutral decision
makers. When the effect of risk attitude was analysed
the 10% accumulation point of the distribution of out-
comes was used as the objective variable for a risk
avoider, leading to the selection of such a management
schedule for which the worst outcomes are as good as
possible (Pukkala and Kangas 1996). The corresponding
accumulation point for a risk seeker was 90%. The used
optimization method was the direct search algorithm of
Hooke and Jeeves (1961). Afterwards, all optimal solu-
tions – also the deterministic ones – were simulated
1000 times with stochastic variation in tree growth,
growth trend, in growth and timber price. The reported
results on NPV, removals etc. are based on these
simulations.

Results and discussion
Effect of risk factors
The effect of adding different stochastic components to
simulation and anticipatory optimization was inspected
in the uneven-aged spruce stand. Management was opti-
mized without any stochasticity and with stochasticity in
growth, ingrowth or timber price. The distributions of
net present values produced by the optimal anticipatory
solution are shown in Figure 6. It can be seen that when
only ingrowth or only climate-induced growth trend is
stochastic the distribution of outcomes is very narrow,
indicating that these factors do not bring much uncer-
tainty to decision-making. Stochastic variation in tree
growth brought much more uncertainty in NPV than
stochasticity in ingrowth or climate-induced growth
trend. When timber price was stochastic the distribution
of outcomes was much wider indicating that timber
price is a more significant source of uncertainty than the
biological growth process of trees.
Deterministic optimization and simulation resulted in

the NPV of 11775 € · ha−1. The average NPVs of the out-
comes of stochastic anticipatory optima were almost the
same. Also the optimal cutting years of the uneven-aged
spruce stand were the same in all optimizations: the first
cutting immediately, the second after 15 years and the
third 10 years later. However, the way in which cuttings
were conducted depended on the degree of stochasticity.
The deterministic optimum advised the landowner to re-
move all trees larger than 20.2 cm in dbh. When stochastic
factors were added to simulation and optimization, more
and more trees larger than 20 cm were retained, and more
and more trees less than 20 cm in dbh were removed,
which means that stochastic optimization leads to higher
dbh-variation in the post-cutting stand (Figure 7). The
same trend was observed also in pure even-aged conifer
stands, except mature pine stand (Figure 8). However, also
in this stand the second and third thinnings showed similar
differences between deterministic and stochastic optima as
obtained for the other stands. Similar differences between
deterministic and stochastic optima were obtained also for
the mixed stands (results not shown). Rollin et al. (2005)
found that counting for risk leads to clearly more diverse
stand structures than suggested by deterministic solutions.
The total removal of the three cuttings was 6%–23%

lower in the stochastic anticipatory optima than in the
deterministic optima. The interval between the 1st and
the 3rd cutting was 5–20 years shorter in the stochastic
optima. These are indications of risk sharing behavior: in
a risky situation it is optimal to cut more often but re-
move a smaller volume at a time.
Figure 7 shows that the cutting intensity curve is located

at larger diameters in mature stands. Because the mature
stands are to be cut immediately, the result suggests that
the cutting may already be late. Another partial explanation
for the difference between young and mature stands is that
the basal area of the young stands would increase too much
without cutting, decreasing the relative value increment of
the stand (see Figure 5). Table 2 shows that the stand basal
area at cutting is larger for the young initial stands but the
mean tree diameter is smaller, suggesting that high stand
densities call for earlier cuttings, which is a logical result. In
general, the higher was the mean tree size the lower was
the pre- and post-cutting stand basal area.

Effect of risk attitude
The effect of risk attitude on optimal management was an-
alyzed in the mixed stands with the hypothesis that a risk
avoider maintains a more diverse stand structure than a
risk seeker. However, the thinning intensity curves were
very similar for both risk attitudes suggesting that the post-
cutting diameter distributions were also similar for both
attitudes. The same difference as in pure stands was ob-
served between deterministic and stochastic anticipatory
optima: the deterministic optima proposed diameter-limit
cutting with a narrower post-cutting diameter distribution
than obtained in stochastic anticipatory optimization.
The proportions of different species after the first

cutting were more uniform for risk avoider than for
risk seeker (Figure 9), i.e. risk aversion led to more



Figure 6 Distributions of net present value in the optimal solution when one factor at a time is stochastic (growth, ingrowth, growth
trend, or timber price).
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mixed stand. In the young mixed stand the risk
seeker removed all pines in the first cutting whereas
the risk avoider left all species in the residual stand.
In the mature stand the post-cutting stand was more
spruce dominated for the risk seeker, the risk
avoider maintaining more birch and slightly more
pines than the risk seeker. The differences were in
line with the hypothesis, but they were small. The
reason for the small differences may be that the
legal limits force the landowner to keep more than
species in the first cutting since otherwise the stand
balsa area would be too low. Another reason is the
fact that since pines and birches were clearly larger
than spruces, it was optimal to gradually remove
them irrespective of risk attitude. In addition, since
the prices of different tree species correlate (Figure 3),
increasing species diversity does not decrease the finan-
cial risk very much.
In the mature mixed stand, the cuttings were the

earlier the more risk-averse the decision-maker was
(Table 3). This is in line with Gong (1998) who con-
cluded that risk avoiders should have the final felling
earlier than risk-neutral forest landowners. The re-
moved volume increased towards increasing risk toler-
ance (Gong 1998; Lu and Gong 2003). In the young
mixed stand the removal was larger for the risk-neutral
decision-maker than for risk avoider, but the seeker
cuts less, most probably because the third cutting was
10 years earlier for the risk seeker than for other risk
attitudes.



Figure 7 Optimal first cutting in deterministic solution and in
stochastic anticiparoty optima with different sources of stochasticity
(Gro=growth, Ingro = ingrowth, Trend= climate-induced growth
trend, Price = timber price).
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Adaptive optima
In adaptive optimization, cutting years were replaced by
the reservation price function, resulting in cutting years
that may be different in repeated stochastic simulations,
depending on the realized stand development and tim-
ber price. To make the thinning intensity curve sensitive
to changes in cutting year, the “location” parameter of
the curve (a2, dbh at which thinning intensity is 0.5) was
calculated with a model (Equation 8) and only the type
of thinning (low, uniform or high depending on param-
eter a1 of Equation 6) was optimized.
The optimal reservation price functions were very similar

for all initial stands (examples shown in Figure 10). As ex-
pected, the mean net present values of several repeated
stochastic simulations with the optimal parameters were
clearly better for the adaptive optima (Figure 11), the ad-
vantage of adaptive optimization and management being
6%–14%. There were no systematic differences in the aver-
age cutting years or removals between anticipatory and
adaptive optima (Table 2). In mature stands, the average
Figure 8 Thinning intensity curves in the first cutting of pure conifer
optimization (solid line).
cutting year suggested by the adaptive optima was about
5 years later than in the anticipatory optima. However, the
reason for this difference is most probably technical: it was
possible to only postpone the first cutting from year zero,
not have it earlier.
The solutions of the adaptive optimization problems

were also simulated so that the optimized value of par-
ameter a1 (thinning type) of the thinning intensity curve
(Equation 6) was replaced by 1, corresponding to high
thinning. The average NPVs of 1000 simulations were
nearly the same as obtained with the optimized values of
parameter a2, except for the mature mixed stand. The
result indicates that nearly optimal adaptive manage-
ment can be found when optimizing only the reservation
price function and calculating the thinning intensity
curve with model, fixing parameter a1 to 1. The whole
management schedule can be defined and optimized
only by three decision variables, namely the parameters
of the reservation price function. In the anticipatory op-
tima for mixed stands there are 21 decision variables
and yet the expected NPV is clearly better for the adap-
tive solution defined by only 3 decision variables.
The average roadside price obtained from saw log was

about 20% higher in adaptive optima than in determinis-
tic or stochastic anticipatory optima (Table 2). The dif-
ference was smaller in the first cutting of the mature
stands, due to the high opportunity cost of the growing
stock (high financial maturity of the initial stand). The
results are in agreement with the assumptions made
about the shape of the reservation price function.

Conclusions
All the hypotheses of the study were supported by the
results. However, the effect of risk attitude on optimal
management was very small, which may be related to
the current forestry legislation which ruled out a part on
the management options. Another reason may be the
size differences of the species of mixed stands, which
stands in deterministic (dashed lines) and stochastic anticipatory



Figure 9 Proportions of different tree species in the post-cutting stands according to stochastic anticipatory optima for risk avoider
(A) and risk seeker (S). The number after A or S is the number of the cutting.

Table 2 Results calculated from 1000 stochastic simulations with the optimal values of decision variables for a risk
neutral decision maker in different problem formulations when tree growth, ingrowth and timber price are stochastic
(Det = deterministic optimization, Anti = stochastic anticipatory optimization, Ada = stochastic adaptive optimization)

Number of
the cutting

Young spruce Mature spruce Young pine Mature pine

Det Anti Ada Det Anti Ada Det Anti Ada Det Anti Ada

Cutting year

1st 20 20 21.9 0 0 4.6 20 20 25.3 0 0 5.6

2nd 35 35 42.1 20 15 19.6 35 35 47.4 15 15 21.2

3rd 55 50 62.9 55 45 30.8 55 50 70.3 45 25 39.2

Diameter before cutting (cm)

1st 19.1 19.1 19.6 23.0 23.0 24.4 17.5 17.6 18.6 21.0 21.0 22.2

2nd 19.9 19.7 21.9 28.3 26.6 27.7 17.8 18.9 20.0 23.5 23.5 23.8

3rd 23.3 22.3 25.3 31.5 30.5 29.9 19.9 19.1 21.6 24.8 24.3 23.7

Basal area before cutting (m2 · ha−1)

1st 35.7 35.7 37.1 28.1 28.1 31.3 32.1 32.2 35.8 25.1 25.1 28.1

2nd 29.5 27.1 33.6 21.6 19.8 19.7 26.7 26.6 33.2 16.4 19.4 19.5

3rd 27.6 25.7 29.0 26.7 21.6 14.9 27.6 26.0 32.0 23.9 14.1 19.6

Basal area after cutting (m2 · ha−1)

1st 14.6 12.4 14.5 9.8 10.8 11.1 13.5 13.4 14.4 9.3 11.8 11.5

2nd 10.6 12.7 12.5 6.4 5.5 9.2 10.5 12.8 12.5 7.1 9.4 8.7

3rd 10.5 12.6 10.1 11.6 7.2 5.1 11.3 12.1 11.2 9.2 6.2 9.3

Removed volume (m3 · ha−1)

1st 176 192 192 197 187 219 140 141 167 150 126 162

2nd 163 126 190 164 153 113 129 111 175 93 99 109

3rd 160 122 182 167 157 109 141 118 181 153 78 93

Total 499 440 564 528 497 441 410 370 523 396 303 364

Average roadside saw log price obtained (€ · m−3)

1st 56.8 55.8 64.6 56.1 56.3 61.9 56.7 56.4 66.8 55.7 56.3 62.9

2nd 56.2 56.5 65.0 56.5 56.4 66.2 56.1 55.8 67.0 56.2 56.5 67.5

3rd 56.5 55.6 65.1 54.5 55.1 67.4 55.6 55.8 65.2 54.5 55.7 68.1
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Table 3 Optimal cutting years in anticipatory stochastic optima for different risk attitudes

No. of
the cutting

Young mixed stand Mature mixed stand

Avoider Neutral Seeker Avoider Neutral Seeker

Cutting year

1st 20 20 20 0 5 10

2nd 35 35 35 15 20 25

3rd 65 65 55 45 50 55

Removed volume (m3 · ha−1)

1st 142 145 162 77 107 139

2nd 110 107 83 102 130 115

3rd 193 215 127 229 210 243

Total 446 467 372 408 448 497
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had a greater impact on the results than risk attitude.
Positive correlation between timber prices of different
tree species (Figure 3) also decreases the possibilities to
reduce financial risk by increased species diversity. Roes-
siger et al. (2011) concluded that the optimal manage-
ment for a cautious risk-avoiding forest landowner uses
tree species diversification, avoiding clear-cutting and
mono-species forest composition.
All thinnings of all solutions were high thinnings. The

very high stochastic variation of ingrowth did not affect
Figure 10 Examples of optimal reservation price functions obtained i
this case the minimum roadside price of saw log) which must be obtained
the expected NPV of the management schedule and it
did not bring much uncertainty in decision-making. This
is because the removals and incomes of the first three
cuttings were obtained from trees that already existed in
the initial stands. Ingrowth affects the incomes of distant
cuttings whose effect on NPV is very small when the
discount rate is 3% or higher. In addition, infrequent re-
generation and ingrowth, combined with uneven growth
rate of the ingrowth trees may provide a continuous
enough supply of trees to larger diameter classes.
n adaptive optimization. Reservation price is the minimum price (in
to sell timber.



Figure 11 Average net present values of 1000 stochastic simulations with the optimal values of decision variables obtained in
different problem formulations. “Adaptive a1 = 1” is a simulation in which the optimized value of parameter a1 of the tinning intensity curve
was replaced by a constant value (a1 = 1).
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Timber price was by far the most significant source of
risk and uncertainty.
By looking at the average NPVs of 1000 stochastic simula-

tions conducted with different optimal solutions (Figure 11)
it can be concluded that there is also some uncertainty re-
lated to the optimality of the found solutions. Theoretically,
stochastic anticipatory optima should produce better results
than 1000 stochastic simulations with the deterministic op-
tima, but this was not always the case. Correspondingly, fix-
ing parameter a1 to 1 should decrease the simulated NPVs,
compared to adaptive solutions where a1 was optimized,
but this did not happen always. The results suggest that sto-
chastic problems are more difficult to solve than the deter-
ministic ones. Simulating each schedule clearly more than
600 times in optimization (600 realizations were used in
optimization runs) would most probably partially solve the
problem, but with a high computational cost. An alternative
approach, namely the Markovian decision process model,
would be better from the computational point of view
(Kaya and Buongiorno 1987).
Corresponding to the hypotheses and previous studies

(Gong 1998; Lu and Gong 2003; Pukkala and Kellomäki
2012), adaptive optimization led to higher NPVs than
anticipatory optima. However, the differences were
smaller than what could be expected on the basis of
some earlier studies (Gong and Yin 2004; Pukkala and
Kellomäki 2012). This was partly because the growth
interval was always 5 years although the truly optimal
cutting year might be one of the years within the 5-year
time step used in simulation. This most probably de-
creased the NPVs more in adaptive optimization since it
was not possible to pick the year of the 5-year period
that had the highest timber price. Therefore, the results
of this study can be interpreted so that the benefit of
adaptive optimization is at least 6%–14% but it can be
also higher. Zhou et al. (2008) found a 17% higher NPV
for adaptive strategy compared to fixed strategy, with lit-
tle difference in length of cutting cycle.
The adaptive approach facilitates very simple manage-

ment rules. The optimal future management can be de-
scribed with only 3 parameters, namely the coefficients
of the reservation price function. A thinning treatment
should be conducted when the actual price is higher
than the reservation price. The thinning intensity of dif-
ferent diameter classes is calculated with Equation 6.
Parameter a1 of the equation can be taken as 1, and par-
ameter a2 is calculated with Equation 8. If the use of
equations is difficult to the forest manager, the equations
can be converted to diagrams that show the optimal
management in a changing environment.
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