Skip to main content

Table 1 Local AGB equations from previous studies and their errors, when compared with our dataset

From: Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia

Model Name AGB Equations MRE MARE Intercept (SE) Slope (SE)
D Bas (Basuki et al. 2009) AGB = 0.318 D 2.196 −0.210 0.370 −305 (407) 1.865b(0.084)
D Bro Brown (1997) AGB = 42.69 − 12.8 D + 1.242 D 2 0.085 0.352 −469 (411) 1.345 (0.006)
D Bro2 (Brown 1997) AGB = exp (−2.134 + 2.53 ln D) 0.043 0.321 576 (393) 0.961 (0.045)
DG Bas (Basuki et al. 2009) AGB = 0.4975 D 2.188 G 0.832 −0.232 0.312 −602a (284) 1.885b (0.057)
Bas (Basuki et al. 2009) AGB = 0.106 D 2.03 Ĥ 0.542 −0.345 0.392 −358 (410) 2.145b (0.098)
D Has (Hashimoto et al. 2004) AGB = 0.08127 D 2.44 −0.495 0.508 353 (395) 2.196b (0.101)
DH Yam (Yamakura et al. 1986a) B s = 0.02909 (D 2 H)0.9813
B b = 0.1192 (B s )1.059
B l = 0.09146 (B s  + B b)0.7266
AGB = (0.02909 (D 2 H)0.9813 + 0.1192 (0.02909 (D 2 H)0.9813)1.059 + 0.09146 ((0.02909 (D 2 H)0.9813) + (0.1192 (0.02909 (D 2 H)0.9813)1.059))0.7266
−0.087 0.320 1185a (385) 0.933b (0.045)
DGH Cha 0.0673(D 2 GH)0.976 0.002 0.216 813a (264) 0.875b (0.027)
  1. aand bdenote significant difference to 0 and 1, respectively. AGB is in kg. D is tree diameter (cm), H is total tree height (in m), Ĥ is commercial bole height (in m) and G is wood density (in gr∙cm−3). Values in parentheses are standard errors