Skip to main content

Table 3 Regression coefficients of the mixed-effects survival models

From: Evaluation of different approaches to individual tree growth and survival modelling using data collected at irregular intervals – a case study for Pinus patula in Kenya

Predictor Modelling approach
Regression 1 Regression 2 Optimization
Constant 2.81439 6.42965 6.42705
ln(d) 2.96858 3.35703 1.83056
d –0.08303 –0.08219 –0.02004
ln(T) –2.31578 –4.14173 –2.72766
DOM 0.78448 0.95684 1.67272
Step –0.20889
Period 1 (1974–1975) –0.61513 –0.56050 0.20351
Period 2 (1975–1976) –0.56811 –1.02784 0.58189
Period 3 (1976–1977) –0.32775 –0.25067 0.04924
Period 4 (1977–1978) 0.59064 0.85832 0.04480
Period 5 (1978–1979) –0.23147 0.19763 0.19210
Period 6 (1979–1980) 0.65382 0.66163 –0.21627
Period 7 (1979–1983) 0.49989 0.2948 0.33837
Period 8 (1980–1983) 0.57873 0.24327 0.06472
Period 9 (1983–1990) 0.43741 0.29726 –0.17157
Period 10 (1983–1991) 0.47512 0.29659 –0.42628
Period 11 (1983–1996) –0.31605 –0.16725 0.10843
Period 12 (1990–1996) –0.22321 –0.13769 0.52595
Period 13 (1991–1996) –0.95390 –0.89791 0.97645
  1. d = diameter at breast height; T = stand age; DOM = dominance; Step = length of the projection period.