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Mozambican evergreen forest: a comparison of
estimates based on regression equations and
biomass expansion factors
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Abstract

Background: Biomass regression equations are claimed to yield themost accurate biomass estimates than biomass expansion
factors (BEFs). Yet, national and regional biomass estimates are generally calculated based on BEFs, especiallywhen using national
forest inventory data. Comparison of regression equations based and BEF-based biomass estimates are scarce. Thus, this studywas
intended to compare these two commonly usedmethods for estimating tree and forest biomasswith regard to errors and biases.

Methods: The datawere collected in 2012 and 2014. In 2012, a two-phase sampling designwas used to fit tree component
biomass regressionmodels and determine tree BEFs. In 2014, additional treeswere felled outside sampling plots to estimate the
biases associatedwith regression equation based and BEF-based biomass estimates; those estimateswere then compared in
terms of the following sources of error: plot selection and variability, biomassmodel,model parameter estimates, and residual
variability aroundmodel prediction.

Results: The regression equation based below-, aboveground andwhole tree biomass stockswere, approximately, 7.7, 8.5 and
8.3% larger than the BEF-based ones. For thewhole tree biomass stock, the percentage of the total error attributed to first phase
(randomplot selection and variability) was 90 and 88% for regression- and BEF-based estimates, respectively, being the remaining
attributed to biomassmodels (regression and BEFmodels, respectively). The percent bias of regression equation based and
BEF-based biomass estimates for thewhole tree biomass stockwere−2.7 and 5.4%, respectively. The errors due tomodel
parameter estimates, those due to residual variability aroundmodel prediction, and the percentage of the total error attributed to
biomassmodel were larger for BEFmodels (than for regressionmodels), except for stem and stemwood components.

Conclusions: The regression equation based biomass stockswere found to be slightly larger, associatedwith relatively smaller
errors and least biased than the BEF-based ones. For stem and stemwood, the percentages of their total errors (as total variance)
attributed to BEFmodel were considerably smaller than those attributed to biomass regression equations.

Keywords: Androstachys johnsonii Prain, Mecrusse, Root growth, Biomass additivity, Double sampling, Forest biomass
inventory, Carbon allocation

Background
Carbon dioxide sequestration and storage associated with
forest ecosystem is an important mechanism for regulat-
ing anthropogenic emissions of this gas and contribute to
the mitigation of global warming (Husch et al. 2003). The
estimation of carbon stock in forest ecosystems must in-
clude measurements in the following carbon pools (Brown

1999; Brown 2002; IPCC 2006; Pearson et al. 2007): live
aboveground biomass (AGB) (trees and non-tree vegeta-
tion), belowground biomass (BGB), dead organic matter
(dead wood and litter biomasses), and soil organic matter.
Biomass can be measured or estimated by in situ sam-

pling or remote sensing (Lu 2006; Ravindranath 2008;
GTOS 2009; Vashum and Jayakumar 2012). The in situ
sampling, in turn, is divided into destructive direct bio-
mass measurement and non-destructive biomass estima-
tion (GTOS 2009; Vashum and Jayakumar 2012).
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Non-destructive biomass estimation does not require
harvesting trees; it uses biomass equations to estimate
biomass at the tree-level and sampling weights to estimate
biomass at the forest level (Pearson et al. 2007; GTOS
2009; Soares and Tomé 2012). When biomass equations
are fitted using least squares they are called biomass re-
gression equations. Biomass regression equations are de-
veloped as linear or non-linear functions of one or more
tree-level dimensions. On other hand, when they are fitted
in such a way that specify tree component biomass as dir-
ectly proportional to stem volume, the ratios of propor-
tionality are then called component biomass expansion
factors (BEFs). However, biomass equation (either regres-
sions or BEFs) are developed from destructively sampled
trees (Carvalho and Parresol 2003; Carvalho 2003; Dutca
et al. 2010; Marková and Pokorný 2011; Sanquetta et al.
2011; Mate et al. 2014; Magalhães and Seifert 2015 a, b, c).
Biomass regression equations yield the most accurate

estimates (IPCC 2003; Jalkanen et al. 2005; Zianis et al.
2005; António et al. 2007; Soares and Tomé 2012) as
long as they are derived from a large enough number of
trees (Husch et al. 2003; GTOS 2009). Nonetheless, na-
tional and regional biomass estimates are generally cal-
culated based on BEFs (Magalhães and Seifert 2015c),
especially when using national forest inventory data
(Schroeder et al. 1997; Tobin and Nieuwenhuis 2007).
Jalkanen et al. (2005) compared regression equations

based and BEF-based biomass estimates for pine-, spruce-
and birch-dominated forests and mixed forests and con-
cluded that BEF-based biomass estimates were lower and
associated with larger error than regression equations based
biomass estimates. However, no similar studies have been
conducted for tropical natural forests.
The objective of this particular study was to compare

regression equations based and BEF-based above- and be-
lowground biomass estimates for an evergreen forest in
Mozambique with regard to the following sources of er-
rors: (1) random plot selection and variability, (2) biomass
model, (3) model parameter estimates, and (4) residual
variability around model prediction. Therefore, the preci-
sion and bias associated with those estimates were crit-
ically analysed. This study is a follow up of the study by
Magalhães and Seifert (2015b). However, unlike the study
by those authors, that considered only five tree compo-
nents, the current study is extended to 11 components
(taproot, lateral roots, root system, stem wood, stem bark,
stem, branches, foliage, crown, shoot system, and whole
tree), and to bias analyses not considered by Magalhães and
Seifert (2015b, c) for either method of estimating biomass.

Methods
Study area
The study was conducted in Mozambique, in an ever-
green forest type named Mecrusse. Mecrusse is a forest

type where the main species, many times the only one,
in the upper canopy is Androstachys johnsonii Prain
(Mantilla and Timane 2005). A. johnsonii is an evergreen
tree species (Molotja et al. 2011), the sole member of the
genus Androstachys in the Euphorbiaceae family. Mecrusse
woodlands are mainly found in the southmost part of
Mozambique, in Inhambane and Gaza provinces, and in
Massangena, Chicualacuala, Mabalane, Chigubo, Guijá,
Mabote, Funhalouro, Panda, Mandlakaze, and Chibuto
districts. The easternmost Mecrusse forest patches, lo-
cated in Mabote, Funhalouro, Panda, Mandlakaze, and
Chibuto districts, were defined as the study area and
encompassed 4,502,828 ha (Dinageca 1997), of which
226,013 ha (5 %) were Mecrusse woodlands. Maps show-
ing the area of natural occurrence of mecrusse in Inhnam-
bane and Gaza provinces and the study area, along with
detailed description of the species and the forest type
can be found in Magalhães and Seifert (2015c) and
Magalhães (2015).

Data collection
The data were collected in 2012 and 2014. In 2012, a
two-phase sampling design was used to determine tree
component biomass. In the first phase, diameter at breast
height (DBH) and total tree height of 3574 trees were
measured in 23 randomly located circular plots (20-m ra-
dius). Only trees with DBH ≥5 cm were considered. In the
second phase, 93 A. johnsonii trees (DBH range: 5–32 cm;
height range: 5.69–16 m) were randomly selected from
those analysed during the first phase for destructive meas-
urement of tree component biomass along with the vari-
ables from the first phase. Maps showing the distribution
of the 23 randon plots in the study area and in the differ-
ent site classes are shown by Magalhães and Seifet (2015c)
and Magalhães (2015).
In 2014, additional 37 trees (DBH range: 5.5–32 cm;

height range: 7.3–15.74 m) were felled outside sampling
plots, 21 inside and 16 outside the study area. The 93
trees collected in 2012 were used to fit tree component
biomass regression models and determine tree compo-
nent BEFs, and those collected in 2014 (37 trees) were
used to estimate the biases associated with regression
equation based and BEF-based tree component biomass
estimates.
The felled trees (both from 2012 to 2014) were di-

vided into the following components: (1) taproot +
stump; (2) lateral roots; (3) root system (1 + 2); (4) stem
wood; (5) stem bark; (6) stem (4 + 5); (7) branches; (8)
foliage; (9) crown (7 + 8); (10) shoot system (6 + 9); and
(11) whole tree (3 + 10). Tree components were sam-
pled and the dry weights estimated as desbrided by
Magalhães and Seifert (2015, a, b, c, d, e) and Magalhães
(2015).
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Data processing and analysis
Tree component biomass
The distinction between biomass regression equations (or
simply regression equations) and biomass expansion fac-
tors (BEFs) may be confusing as BEF is a biomass equation
(equation that yields biomass estimates), it is a regression
through the origin of biomass on stem volume where,
therefore, the BEF value is the slope. For clarity, in this
study, biomass regression equations refer to the biomass
equations where the regression coefficients are obtained
using least squares (Montgomery and Peck 1982) such
that the sum of squares of the difference between the ob-
served and expected value is minimum (Jayaraman 2000),
unlike BEF which is not obtained using least squares.
Biomass estimation typically requires estimation of tree

components and total tree biomass (Seifert and Seifert
2014). To ensure the additivity of minor component bio-
mass estimates into major components and whole tree
biomass estimates, minor component, major component
and whole tree biomass models were fitted using the same
regressors (Parresol 1999; Goicoa et al. 2011). For this,
first the best tree component and whole tree biomass
regression equations were selected by running various
possible linear regressions on combinations of the inde-
pendent variables (DBH, tree height) and evaluating
them using the following goodness of fit statistics: coef-
ficient of determination (R2), standard deviation of re-
siduals (Sy.x), mean residual (MR), and graphical analysis
of residuals. The mean residual and the standard deviation
of residuals were expressed as relative values, hereafter re-
ferred to as percent mean residual (MR (%)) and coeffi-
cient of variation of residuals (CVr (%)), respectively,
which are more revealing. The computation and interpret-
ation of these fit statistics were previously described by
Mayer (1941), Gadow & Hui (1999), Ruiz-Peinado et al.
(2011), and Goicoa et al. (2011).
Among the different model forms tested (Y = b0 + b1D

2,
Y = b0 + b1D

2 + b2H and Y = b0 + b1D
2H, where b0 and b1

are regression coefficients, D is the DBH and H is the tree
height), the model form Y = b0 + b1D

2H was the best for 8
tree components and for the whole tree biomass, and the
second best for the remaining tree components, as judged
by the goodness of fit statistics described above. Therefore,
to allow all tree components and whole tree biomass
models to have the same regressors, and thus achieve ad-
ditivity, this model form was generalized for all tree com-
ponents and whole tree biomass models.
Linear weighted least squares were used to address

heteroscedasticity. The weight functions were obtained
by iteratively finding the optimal weight that homogenised
the residuals and improved other fit statistics. Among the
tested weight functions (1/D, 1/D2, 1/DH, 1/D2H), the
best weight function was found to be 1/D2H for all tree
components and whole tree biomass models. Although

the selected weight function may not have been the best
one among all possible weights, it was the best approxi-
mation found.
Linear models were preferred over nonlinear models

because the procedure of enforcing additivity by using
the same regressors is only applicable for linear models
(Parresol 1999; Goicoa et al. 2011) and because the pro-
cedure of combining the error of the first and second
sampling phases in double sampling (Cunia 1986a) is lim-
ited to biomass regressions estimated by linear weighted
least squares (Cunia 1986a).
The regression equation based and the BEF-based bio-

mass of the c component of the kth tree in the hth plot
(Ŷhk) is determined by Eq. (1) and Eq. (2), respectively:

Ŷ hk ¼ b0 þ b1D
2
hkHhk ð1Þ

Ŷ hk ¼ BEFc � vhk

¼ BEFc � π

4
� D2

hk � Hhk � ff ð2Þ

where vhk, Dhkand Hhk represent stem volume, DBH and
tree height of the kth tree in the hth plot, ff and BEFc rep-
resent the average Hohenadl form factor (0.4460) and tree
component BEFs of A. johnsonii estimated by Magalhães
and Seifert (2015c).
Computing BEF-based biomass is similar to compute

the biomass with a regression equation of tree compon-
tent biomass on stem volume passing through the origin,
where, therefore, b0 = 0 and b1 = BEFc. In fact, in ratio
estimators, the ratio R (BEF value, in this case) is the re-
gression slope when the regression line passes through
the origin (Johnson 2000). Given that fact, Eqs. (1, 2)
can be presented as one, in matrix form as follows:

Ŷ hk ¼ bXhk ð3Þ

where b ¼ b0 b1½ � and Xhk ¼ 1 D2
hkHhk

� �T
if b0 ≠ 0;

and b ¼ 0 b1½ � ¼ BEFc and Xhk ¼ 0
π

4
D2

hkHhkff
h iT

¼ π
4D

2
hkHhk ff if b0 = 0. T denotes matrix transpose.

The biomass of plot h (Ŷh) is estimated by summing
the individual biomass (Ŷhk) values of the nh trees in plot
h. Dividing Ŷh by plot size a gives biomass Ŷ on an area
basis:

Ŷ ¼ Ŷ h

a
¼

b
Xnh
k¼1

Xhk

a
ð4Þ

where k = 1, 2, …, nh, and h = 1, 2, …, np, np = number of
plots in the sample, and nh = number of trees in the hth

plot.

Denoting Sh ¼

Xnh
k¼1

Xhk

a , Eq. (4) can be rewritten as:
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Ŷ ¼ bSh ð5Þ

where Sh ¼ Sh0 Sh1½ �T . Where Sh0 ¼ nh
a and Sh1 ¼

Xnh
k¼1

D2
hkHhk

a if b0≠ 0; and Sh0 = 0 and Sh1 ¼

Xnh
k¼1

π

4
D2

hkHhkff

a

if b0 = 0.
The biomass stock Ȳ (average biomass per hectare) is

estimated by summing the biomass Ŷ of each plot (area
basis) and dividing it by the number of plots np:

�Y ¼ bSh
np

ð6Þ

Now, denoting Z ¼ Sh
np
, Eq. (6) can be rewritten as

follows:

�Y ¼ bZ ð7Þ
where Z ¼ Z0 Z1½ �T if b0 ≠ 0; and Z ¼ 0 Z1½ �T ¼ Z1

if b0 = 0.
Recall that b is the row vector of the estimates from

the second sampling phase (regression coefficients or
BEF values), and Z is the column vector of the estimates
from the first phase.
Eqs. (2, 3, 4, 5, 6, 7) were applied to estimate biomass

stock of each tree component and whole tree.
Biomass stock [Eq. (7)] is estimated by combining the

estimates of the first and second phases (Z and b, respect-
ively). Two main sources of error must be accounted for
in this calculation, that resulting from plot-level variability
(first sampling phase) and that from biomass equation:
either regression or BEF equation (second phase).
Cunia (1965, 1986a, 1986b, 1990) demonstrated that the

total variance of Ȳ (mean biomass per hectare) can be esti-
mated by Eq. (8):

VARt ¼ VAR1 þ VAR2

¼ b� SZZ � bT þ Z � Sbb � ZT ð8Þ
where VAR1 and VAR2 are variance components from

the first and second sampling phases, respectively; Szz
represents the variance–covariance matrix of vector ZT;
and Sbb represents the variance–covariance matrix of
vector b. For this specific case, Sbb and Szz are given in
Eqs. (9, 10):

Sbb ¼ Sb0b0 Sb0b1
Sb0b1 Sb1b1

� �
ð9Þ

Szz ¼ Sz0z0 Sz0z1
Sz0z1 Sz1z1

� �
ð10Þ

where Sbibj = covariance of bi and bj, Sbibi = variance of

bi, Szizj ¼

Xnp
h¼1

Shi−�Sið Þ Shj−�Sj
� �

np−1ð Þnp = covariance of Zi and Zj,

and Szizi = variance of Zi .
Note that if b0 = 0 (and then b1 = BEFc), Sbibj ¼ 0 and

Szizj ¼ 0, therefore, Sbb ¼ Sb1b1 and Szz ¼ Sz1z1 . Conse-
quentely, VARt ¼ BEFc � SZ1Z1 � BEFc þ Z1 � Sb1b1 � Z1

which is equal to:

VARt ¼ BEF2
c � SZ1Z1 þ Z2

1 � Sb1b1 ð11Þ

The square roots of Eqs. (8, 11) are the total standard
errors (SE) of Ȳ, the square roots of the first compo-
nents of Eqs. (8, 11) are the SEs of the first phase, and
the square roots of the second components of the same
equations are the SEs of the second phase of the relevant
methods of estimating biomass stock.
In this study, the error of Ȳ of the first and second

sampling phases, and of both phases combined is
expressed as the percent SE of the relevant phase or both
phases combined, obtained by dividing the relevant SE by
Ȳ and multiplying by 100. However, in some cases, the
error is expressed as the variance of Ȳ, especially where
the proportional influence of a particular source of error
needs to be known, because, unlike the SEs, the variances
of the first and second phases are additive (sum to total
variance) (Cunia 1990).
As said previously, the error of the first sampling

phase results from random plot selection and variability,
and that from the second phase results from biomass
model (either regression or BEF model). McRoberts and
Westfall (2015), Henry et al. (2015), Temesgen et a.l
(2015), and Picard et al. (2014) distinguish four sources
of errors (surrogate of uncertainty) in model prediction:
(1) model misspecification (also known as statistical
model; i.e.: error due to model selection (Cunia 1986a)),
(2) uncertainty in the values of independent variables,
(3) uncertainty in the model parameter estimates, and
(4) residual variability around model prediction.
The first source of error in model prediction arises

from the fact that changing the model will generally
change the estimates. Here, this error is expected to be
negligible as, in general, the predictors explained a large
portion of the variation in biomass and because the models
were associated to a small error (CVr) (Table 1). In fact, ac-
cording to Cunia (1986a) and McRoberts and Westfall
(2015), when the statistical model used fits reasonably well
the sample data, the statistical model error is generally
small and can be ignored. The second source of error is
quantified by Magalhães and Seifert (2015b). The third
source of error is expressed by the parameter variance-
covariance matrix, Sbb. In this study, this source of error is
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expressed by the standard errors of the regression parame-
ters or of the BEF values, as they are the square roots of the
respective variances obtained from the variance-covariance
matrix, Sbb. The fourth source (residual variability around
model prediction) is here expressed as coefficient of vari-
ation of residuals (CVr), as it measures the dispersion be-
tween the observed and the estimated values of the model,
indicates the error that the model is subject to when is used
for predicting the dependent variable.
Therefore, the methods of estimating biomass under

study (regression and BEF models) were compared with
regard to the following sources of errors: (1) random plot
selection and variability, (2) biomass model, (3) model
parameter estimates, and (4) residual variability around
model prediction. The first constitutes the error of the
first sampling phase and the second constitutes the error
of the second phase which incorporates the third and
fourth source of errors.
The percent biases resulting from regression equation

based and from BEF-based estimates were determined

by Eq. (12) using an independent sample of 37 trees
(trees not included in fitting the models):

Bias %ð Þ ¼
X

PBk−
X

OBkX
PBk

� 100 ð12Þ

where PBk and OBk represent, respectively, the predicted
and observed biomass of the c compontent of the kth tree.
As described above, the regression-based biomass is

estimated by the model form Y = b0 + b1D
2H [kg] and the

BEF-based one is estimated by Y ¼ BEF � vhk ¼ π
4 � D2

H � ff [Mg], which is equal to Y ¼ π
4 � D2H � ff � 1000

[kg], where as vhk and H are expressed in m3 and m,
respectively, D must be converted to m, which makes
BEF-based biomass (in kg) to be estimated as Y ¼ π

40000 � D2

H � ff � 1000 ¼ π
40 � D2H � ff if D is expressed in cm.

From Table 1 it can be seen that 8 out of the 11 re-
gression equations have their intercepts not statistically
siginicant at α = 0.05; therefore, the regression equation

Table 1 Regression coefficients (± SE), BEF values (± SE) and the fit statistics for each tree component and for total biomass

# Tree component b0 (± SE) b1 (± SE) or BEF (Mg m−3) (± SE) R2 (%) Sy.x (Kg) CVr (%) MR (%)

Regression model

1 Taproot + stump 1.3122 (±36.69 %)b 0.0045 (±4.44 %)c 87.93 7.94 33.57 1.1612

2 Lateral roots – 1.0600 (±43.02 %)a 0.0051 (±3.92 %)c 91.09 8.05 33.47 1.7376

3 Root system (1 + 2) 0.2522 (±251.15 %)ns 0.0097 (±2.06 %)c 95.00 9.59 20.10 – 0.0709

4 Stem wood 0.6616 (±173.08 %)ns 0.0251 (±1.59 %)c 97.52 19.66 15.84 0.0871

5 Stem bark 0.1895 (±186.28 %)ns 0.0028 (±3.57 %)c 84.41 4.97 34.97 0.2638

6 Stem (4 + 5) 0.8511 (±147.84 %)ns 0.0279 (±1.79 %)c 97.58 21.89 15.83 0.1029

7 Branches – 0.4569 (±332.74 %)ns 0.0114 (±5.26 %)c 82.14 27.54 49.55 0.7460

8 Foliage 0.7602 (±15.85 %)c 0.0004 (±10.00 %)c 49.41 1.86 66.21 1.5472

9 Crown (7 + 8) 0.3033 (±515.66 %)ns 0.0118 (±5.08 %)c 82.36 25.11 43.01 – 0.3190

10 Shoot system (6 + 9) 1.1544 (±149.39 %)ns 0.0398 (±1.51 %)c 97.75 31.07 15.80 – 0.0364

11 Whole tree (3 + 10) 1.4066 (±156.29 %)ns 0.0494 (±1.62 %)c 97.64 34.92 14.29 – 0.0440

BEF model

1 Taproot + stump 0.0000 0.1407 (±3.53 %)c 80.96 8.34 35.26 4.3080

2 Lateral roots 0.0000 0.1162 (±4.43 %)c 80.11 10.75 44.70 2.7686

3 Root system (1 + 2) 0.0000 0.2569 (±2.66 %)c 92.36 11.49 24.08 3.6116

4 Stem wood 0.0000 0.6569 (±1.04 %)c 98.54 16.72 13.48 0.0755

5 Stem bark 0.0000 0.0765 (±3.81 %)c 77.52 5.10 35.92 5.5460

6 Stem (4 + 5) 0.0000 0.7334 (±0.95 %)c 98.85 18.77 13.57 0.0600

7 Branches 0.0000 0.2928 (±5.20 %)c 74.54 29.10 52.35 2.7087

8 Foliage 0.0000 0.0242 (±10.60 %)c 36.17 2.93 104.21 2.7751

9 Crown (7 + 8) 0.0000 0.3170 (±5.05 %)c 76.34 28.89 49.48 2.7138

10 Shoot system (6 + 9) 0.0000 1.0504 (±1.65 %)c 95.05 36.61 18.61 4.6507

11 Whole tree (3 + 10) 0.0000 1.3072 (±1.71 %)c 95.06 45.67 18.69 4.4466

SE standard error (%), “c” = significant at α = 0.001; “b” = significant at α = 0.01; “a” = significant at α = 0.05; ns = not statistically significant at α = 0.05; the major
components and their values are indicated in bold font
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can be generelized as Y = b1D
2H [kg] and the BEF model

as Y ¼ ~b1D2H [kg], where ~b1 ¼ BEF�π�ff
40 . Thus, to esti-

mate the percentual difference between regression-based

and BEF-based biomasses at a given D2H, b1 and ~b1

were contrasted; i.e.: the percentual magnitude of ~b1 in
relation to b1 was taken as an indicative of how the dif-
ferent models (regression and BEF models) estimate bio-
mass from a given D2H. Additionally, the average b1 and
~b1 for all components at given D2H were compared
using Student’s t-test.
Furthermore, the estimation errors (defined as the per-

centual difference between predicted and observed biomass
values) of the individual trees from 2014 for each method
of estimating biomass were plotted against those trees’ D2H
to evaluate the under or overestimation associated to each
method. Farther, the average errors at given D2H per tree
(for each method) were compared using Student’s t-test. All
the statistical analyses were performed at α = 0.05.

Results
For all tree components and whole tree, except foliage,
the variation of biomass explained by predictor variable(s)
ranged 82.14 to 97.75 % for regression models and from
74.54 to 98.85 % for BEF models (Table 1). In general, the
variation of biomass explained by the predictor variable(s)
was larger in regression models than in BEF ones, except
for stem and stem wood (Table 1). Less than half of the
variation of foliage biomass was explained by the predictor
variable(s). All tree components presented non-significant
MRs. The plots of the residuals presented no particular
trend (refer to Magalhães and Seifert (2015a, b)); the clus-
ter of points was contained in a horizontal band, with the
residuals evenly distributed under and over the axis of ab-
scissas, meaning that there were not model defects.
The errors due to model parameter estimates (SE) and

those due to residual variability around model prediction

(CVr) are larger for BEF models, except for stem and
stem wood components.
The regression equation based biomass stocks estimates

were relatively larger than the BEF-based ones, except for
foliage (Table 2). For example, the regression equation
based BGB, AGB and whole tree biomass stocks were 7.7,
8.5 and 8.3 % larger than the BEF-based ones. However,
the proportion of the whole tree biomass allocated to each
tree component is similar in either method; for instance,
BGB, stem, and crown biomass accounted for 20, 56 and
24 %, respectively, to whole tree biomass for both
methods. The property of additivity is achieved in both
methods, for the whole tree biomass and for all major
tree components. This is so because for each particular
method (regression or BEF), all tree component models
used the same predictors (DBH and H for regression
and stem volume for BEF models).
Overall, the percent SEs of the first sampling phase

(error resulting from plot selection and variability) of the
BEF-based biomass estimates were slightly and some-
times nigligibly larger than those obtained using regres-
sion equations (Table 3), except for 2 tree components
(lateral roots and branches) where the percent SEs were
relatively smaller. In the second sampling phase consid-
erable differences in percent SEs were found; BEF-based
estimates exhibited smaller percent SE in 6 tree compo-
nents and larger ones in the remaining five. The total
percent SEs (both phases combined) were also negligibly
different between the two methods of estimating biomass
stocks, except for foliage where a substantial difference
was observed. Although, the average tree component bio-
masses obtained by either method were slightly different
(Table 2), they fell in the 95 % confidence interval of any
method (Table 3).
The percent SE of the first phase is a result of plot se-

lection and variability, and that of the second phase is a
result of biomass models (either regression or BEF models).

Table 2 Regression equations based and BEF-based tree component biomass

# Tree component Regression equation based biomass (Mg ha−1) BEF-based biomass (Mg ha−1)

1 Taproot + stump 16.8211 16.4818

2 Lateral roots 15.7750 13.6174

3 Root system (1 + 2) 32.5961 30.0992

4 Stem wood 84.7881 76.9789

5 Stem bark 9.7662 8.9609

6 Stem (4 + 5) 94.5543 85.9398

7 Branches 37.5688 34.3077

8 Foliage 2.3322 2.8375

9 Crown (7 + 8) 39.9010 37.1452

10 Shoot system (6 + 9) 134.4553 123.0850

11 Whole tree (3 + 10) 167.0517 153.1841

The major components and their values are indicated in bold font
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From Table 4, it is noted that for both methods, the per-
centage of the total error (as total variance) attributed to
first phase (plot selection) is larger than that attributed to
second phase (biomass models), except for the foliage,
branches and crown. The percentage of the total error
(as total variance) attributed to BEF models is larger than
that attributed to regression models in all tree compo-
nents, except for stem wood, stem bark and stem (stem
bark + stem wood). The percentage of the total error
(as total variance) attributed to BEF model for stem wood
and stem is more than twice as small as that attributed to
regression model.
The BEF-based biomass estimates were found to be

more biased than the regression-based ones in 6 out of
11 tree components (Table 5). Overall, regression equa-
tion based biomasses tended to be larger than the ob-
served biomasses and the BEF-besed ones tended to be
smaller than the observed ones. As expected, the per-
cent biases for stem wood and stem BEF-based biomass

are considerably smaller than those from regression
based ones. Recall that BEF models for stem wood and
stem were found to be associated to larger R2, smaller
percentage of total error (as variance) attributed to bio-
mass model, smaller errors due to model parameter esti-
mates and smaller errors due to residual variability around
model prediction than the regression models.
It was found that at a given D2H, the regression-based

biomass estimates tended to be considerably larger than
the BEF-based ones (Table 6), supporting the finding from
Table 2. However, it is worth mentioning that the percentual
difference between the regression-based and BEF-based bio-
mass estimates at a given D2H for taproot + stump, lateral
roots, and foliage are overestimated, as for those com-
ponents the intercepts are statistically significant and
then should not be removed from the model. For ex-
ample, it was expected the regression-based biomass
estimate at a given D2H for the taproot + stump to be
larger than the BEF-based one, therefore in accordance

Table 3 Absolute standard errors (Mg ha−1), percent standard errors, and 95 % confidence limits of the estimates of tree component
biomass stocks for each sampling phase using regression equations and BEFs

# Tree component SE1 SE2 SEt SE1 (%) SE2 (%) SEt (%) 95 % CI (Mg ha−1) 95 % CI (%)

Measures of precision for regression equations based biomass

1 Taproot + stump 0.7188 0.5592 0.9107 4.2733 1.8587 5.4139 ±1.8214 ±10.8279

2 Lateral roots 0.7837 0.5308 0.9465 4.9680 1.7861 6.0003 ±1.8931 ±12.0005

3 Root system (1 + 2) 1.4838 0.7357 1.6562 4.5520 1.6607 5.0809 ±3.3124 ±10.1618

4 Stem wood 3.8593 1.3301 4.0821 4.5517 2.0867 4.8145 ±8.1642 ±9.6289

5 Stem bark 0.4392 0.4069 0.5987 4.4976 1.6952 6.1308 ±1.1975 ±12.2616

6 Stem (4 + 5) 4.2984 1.4616 4.5401 4.5460 2.2593 4.8016 ±9.0802 ±9.6032

7 Branches 1.7476 1.7660 2.4845 4.6516 8.3019 6.6133 ±4.9691 ±13.2266

8 Foliage 0.1024 0.1399 0.1734 4.3902 0.8396 7.4346 ±0.3468 ±14.8692

9 Crown (7 + 8) 1.8166 1.8168 2.5692 4.5527 8.2723 6.4389 ±5.1383 ±12.8777

10 Shoot system (6 + 9) 6.1150 2.0033 6.4348 4.5480 2.9849 4.7858 ±12.8695 ±9.5716

11 Whole tree (3 + 10) 7.5988 2.5537 8.0164 4.5487 3.9039 4.7988 ±16.0328 ±9.5975

Measures of precision for BEF-based biomass

1 Taproot + stump 0.7565 0.5818 0.9543 4.5898 3.5300 5.7903 ±1.9087 ±11.5805

2 Lateral roots 0.6250 0.6029 0.8684 4.5898 4.4277 6.3773 ±1.7369 ±12.7546

3 Root system (1 + 2) 1.3815 0.7996 1.5962 4.5898 2.6566 5.3031 ±3.1924 ±10.6062

4 Stem wood 3.5331 0.8015 3.6229 4.5898 1.0411 4.7064 ±7.2458 ±9.4127

5 Stem bark 0.4113 0.3418 0.5348 4.5898 3.8147 5.9680 ±1.0696 ±11.9361

6 Stem (4 + 5) 3.9444 0.8141 4.0276 4.5898 0.9473 4.6865 ±8.0551 ±9.3730

7 Branches 1.5746 1.7159 2.3289 4.5898 5.0015 6.7883 ±4.6578 ±13.5766

8 Foliage 0.1302 0.3008 0.3278 4.5898 10.6013 11.5522 ±0.6556 ±23.1044

9 Crown (7 + 8) 1.7049 1.8741 2.5335 4.5898 5.0452 6.8206 ±5.0670 ±13.6412

10 Shoot system (6 + 9) 5.6493 2.0288 6.0025 4.5898 1.6483 4.8767 ±12.0051 ±9.7535

11 Whole tree (3 + 10) 7.0308 2.6231 7.5041 4.5898 1.7124 4.8988 ±15.0083 ±9.7975

Subscripts 1 and 2 indicate the first and second sampling phases, respectively; subscript t indicates the total standard error (SE) for a given component; the major
components and their values are indicated in bold font
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to the Table 2 (yielding a negative difference); however,
the exclusion of the intercept caused the BEF-based
biomass estimate at a given D2H to be larger, causing a
positive difference. Accordingly, the really differences be-
tween the regression-based and the BEF-based biomass
estimates at a given D2H for lateral roots and foliage
are smaller than those presented in the Table 6. Using
Student’s t-test the average biomass estimates by each
method at a given D2H are found to be statistically
different (p-value = 0.01).
The estimation errors per tree plotted against the re-

spective D2H values (Fig. 1) for the whole tree show that
the positive and negative errors of regression model cancel
each other, tending to average zero; in fact, the Student’s t
test showed that the average percent error (1.34 %) is not

statistical different from zero (p-value = 0.51). On the
other hand, the plot of the errors show that the BEF
model underestimates the biomass, a finding confirmed
by Student’s t-test (average error = −8.60, p-value = 0.0007).

Discussion
This study compares two commonly used methods of
estimating tree and forest biomass: regression equations
and biomass expansion factors. This is a unique study
for many reasons: (1) the precision and bias associated
with each method of estimating biomass are critically com-
pared; the errors associated with biomass estimates are
rarely evaluated carefully (Chave et al. 2004); (2) the com-
parison involved 11 tree components, including BGB,
which is rarely studied (GTOS 2009); (3) in turn, BGB was
divided into 2 root components: taproot and lateral roots.
Many biomass studies include only AGB not breakdown

in further components (e.g. Overman et al. 1994; Grundy
1995; Eshete and Ståhl 1998; Pilli et al. 2006; Salis et al.
2006; Návar-Cháidez 2010; Suganuma et al. 2012; Sitoe et
al. 2014; Mason et al. 2014), ignoring the fact that different
tree components have distinguished uses and decompos-
ition rates, affecting differently the storage time of carbon
and nutrients (Magalhães and Seifert 2015a). Aware of
that, here, the AGB is divided into 6 tree components (fo-
liage, branches, crown, stem wood, stem bark, and stem).
Few studies have considered BGB (e.g. Kuyah et al.

2012; Mugasha et al. 2013; Green et al. 2007; Ryan et al.
2010; Ruiz-Peinado et al. 2011; Paul et al. 2014); in most
of those studies the root system was not fully excavated
(Green et al. 2007; Ryan et al. 2010; Ruiz-Peinado et al.
2011; Kuyah et al. 2012; and Paul et al. 2014), the exca-
vation was done to a certain predefined depth or the fine
roots were not considered; or a sort of sampling

Table 4 Percentage of total error (as variance) attributed to each sampling phase

Regression equation based biomass BEF-based biomass

# Tree component Percentage of variance attributed
to the first phase (plot selection
and variability)

Percentage of variance
attributed to the second
phase (regression model)

Percentage of variance attributed
to the first phase (plot selection
and variability)

Percentage of variance
attributed to the second
phase (BEF model)

1 Taproot + stump 62 38 63 37

2 Lateral roots 69 31 52 48

3 Root system (1 + 2) 80 20 75 25

4 Stem wood 89 11 95 5

5 Stem bark 54 46 59 41

6 Stem (4 + 5) 90 10 96 4

7 Branches 49 51 46 54

8 Foliage 35 65 16 84

9 Crown (7 + 8) 50 50 45 55

10 Shoot system (6 +
9)

90 10 89 11

11 Whole tree (3 + 10) 90 10 88 12

The major components and their values are indicated in bold font

Table 5 Comparision of bias between regression equation
based and BEF-based biomass estimates

# Tree component Bias (%)a Bias (%)b

1 Taproot + stump – 3.3436 – 5.6745

2 Lateral roots – 3.3643 13.8733

3 Root system (1 + 2) – 3.3540 4.1660

4 Stem wood 10.0738 1.3651

5 Stem bark – 9.3876 – 1.4220

6 Stem (4 + 5) 8.9983 0.3591

7 Branches – 9.4311 0.7147

8 Foliage – 23.2792 – 81.7205

9 Crown (7 + 8) – 10.0298 – 2.8493

10 Shoot system (6 + 9) – 2.5149 5.7208

11 Whole tree (3 + 10) – 2.6778 5.4193

Superscripts a and b indicate biases related to regression equations based and
BEF-based biomass estimates, respectively; the major components and their
values are indicated in bold font
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procedure was used (Kuyah et al. 2012; Mugasha et al.
2013). These procedures of estimating BGB lead to
underestimation or to less accurate estimates (Mokany
et al. 2006; Mugasha et al. 2013). Furthermore, studies
that have breakdown BGB into further root compo-
nents are limited.
The only studies available that compare regression equa-

tions based and BEF-based biomass estimates are those by
Jalkanen et al. (2005) and Petersson et al. (2012), which,
however, did not consider BGB. The finding that the whole
tree BEF-based biomass estimate was 8.3 % lower, with
slightly larger percent error than that based on regression
equation is in line with the finding by Jalkanen et al.
(2005), which found that BEF-based AGB estimate was
6.7 % lower.
It was verified here that the percentage of the total

error of biomass (as total variance) attributed to BEF
model for stem wood and stem is more than twice as
small as that attributed to regression model; and that BEF

models for those tree components (stem wood and stem)
were associated to larger R2, smaller biases, smaller errors
due to model parameter estimates and smaller errors due
to residual variability around model prediction than the
regression models. Therefore, although it has been main-
tained that biomass regression equations yield the most
accurate estimates than BEFs (IPCC 2003; Jalkanen et al.
2005; Zianis et al. 2005; António et al. 2007; Soares and
Tomé 2012), this might not be true when stem and stem
wood components are concerned. This is so because the
stem BEF value is computed by dividing the stem biomass
by stem volume, which makes the stem BEF value to be
similar to stem wood density (specific gravity) and thus
more realistic (than models using only DBH and tree
height) when using it to convert stem volume to stem bio-
mass, as biomass is a function of wood density (Ketterings
et al. 2001). As for stem wood biomass, since the differ-
ence between stem wood and stem biomass is negligible.
On the contrary, using stem volume to obtain any other

tree component biomass, through BEF value, is not realis-
tic, since the density varies from component to compo-
nent, leading to less accurate and less precise estimates.
This is aggravated for the non-woody components, where
the density value may differ greatly from the stem density
value. In fact, it has been noted here that the BEF-based
foliage biomass is associated with the largest percent error
(11.55 %), and that 84 % of that error is attributed to BEF
model (Table 4), besides being associated to the largest
error due to model parameter estimates and due to re-
sidual variability around model prediction (within and
between methods).
In this study, the average stem density value of A.john-

sonii trees was 754.42 Kg m−3 and the average stem BEF
was 0.7334 Mg m−3 (733.40 Kg m−3). The small differ-
ence of these estimates might be due to the fact that the
stem density was computed using saturated volume and
the stem BEF value was computed using green volume.

Table 6 Comparision between regression-based and BEF-based
biomass at a given D2H

# Tree component b1 ~b1 Difference (%)

1 Taproot + stump 0.0045 0.0049 9.4855

2 Lateral roots 0.0051 0.0041 −20.1840

3 Root system (1 + 2) 0.0097 0.0090 −7.2427

4 Stem wood 0.0251 0.0230 −8.3224

5 Stem bark 0.0028 0.0027 −4.3334

6 Stem (4 + 5) 0.0279 0.0257 −7.9220

7 Branches 0.0114 0.0103 −10.0394

8 Foliage 0.0004 0.0008 112.0524

9 Crown (7 + 8) 0.0118 0.0111 −5.9007

10 Shoot system (6 + 9) 0.0398 0.0368 −7.5541

11 Whole tree (3 + 10) 0.0494 0.0458 −7.3058

The major components and their values are indicated in bold font

Fig. 1 Comparision of the estimation errors of the regression model and BEF model for the whole tree biomass
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The stem density obtained here is in line with that by
Bunster (2006) (754 Kg m−3) for the same tree species.
The errors of regression-based biomass estimates are

the same as those obtained by Magalhães and Seifert
(2015b) for the relevant tree components. However, the
errors of the BEF-based estimates were slightly different
from those obtained by Magalhães and Seifert (2015c);
these differences might be attributed to the different ap-
proaches used to compute the errors.
The regression-based biomass estimates could have

been more precise if non-linear regression models were
used instead of linear ones, as biomass is better described
by non-linear functions (Bolte et al. 2004; Ter-Mikaelian
and Korzukhin 1997; Schroeder et al. 1997; de Jong and
Klinkhmer 2005; and Salis et al. 2006). However, the ap-
proach of combining the errors from the first and second
phases developed by Cunia (1986a) is limited to linear
regression models, as using non-linear regression, the
expression of the error (as variance) may be so complex
that may become extremely cumbersome to apply (Cunia
1986a). In the meantime, the linear models used here per-
formed satisfactorily; relatively lower performance was ob-
tained for foliage biomass model (R2 = 49.41 %; CVr =
66.21 %; MR= 1.55 %). Foliage biomass models have, usu-
ally, shown relatively poor performance (Brandeis et al.
2006; Mate et al. 2014).
A combined-variable model (Y = b0 + b1 × D2H) was

used here to estimate tree component biomass. Silshi
(2014) has referred that where compound derivatives of
DBH and H are included there is no unique way to par-
tition the variance in the response. However, the Monte
Carlo error propagation approach can be applied to esti-
mate the percent contribution of each variable (DBH
and H) measurement error to the error of biomass esti-
mate as performed by Magalhães and Seifert (2015b)
and Chave et al. (2004) or using Bayesian approach as
done by Molto et al. (2012).
It has been maintained here that the error due to

model misspecification was ignored because it is expected
to be negligible as overall the models fitted reasonably well
the sample data. However, the foliage biomass models
might be associated with a large model misspecification
error as their predictors explained less than half of the
variation in biomass, especially the foliage BEF model.
The current biomass estimates disregarded smaller and

younger trees (DBH <5 cm), which may have led to under-
estimation, as those trees may have a significant contribu-
tion to forest biomass stock and are reported to be very
important in the United Nations Framework Convention
on Climate Change (UNFCCC) reporting process (Black
et al. 2004). For example, Vicent et al. (2015) found that
small trees (DBH <10 cm) accounted for 7.2 % of above-
ground live biomass, which is a considerable share. Lugo
and Brown (1992) and Chave et al. (2003) maintained that

small tree biomass (DBH <10 cm) is equivalent to 5 % of
large tree biomass. Nevertheless, in this study, the share of
small trees biomass to aboveground live biomass or to
large trees biomass is expected to be very small than that
reported by Lugo and Brown (1992), Chave et al. (2003)
and Vicent et al. (2015) as the definition of small trees
(DBH <5 cm) considered here, include only part of the
trees considered as small by those authors.

Conclusions
The regression equation based BGB and AGB stocks were,
approximately, 33.6 ± 3.3 Mg ha−1 and 134.5 ± 12.9 Mg ha−1,
respectively. The BEF-based BGB and AGB were, ap-
proximately, 30.1 ± 3.2 Mg ha−1and 123.1 ± 12.0 Mg ha−1,
respectively.
Overall, the regression equation based biomass stocks

were found to be slightly larger, associated with relatively
smaller errors and least biased than the BEF-based ones.
However, because stem BEF and stem wood BEFs are
equivalent to stem and stem wood densities (specific grav-
ities) and therefore, the equivalent biomasses computed
directely by multiplying stem volume by stem or stem wood
density, the percentages of their total errors (as total vari-
ance) attributed to BEF model were considerably smaller
than those attributed to biomass regression equations,
as regression equations were based only on DBH and
stem height and ignored the stem density.
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