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Abstract

Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty.
Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, there is a
growing body of work focused on developing best practices for natural hazard modeling and to create structured
evaluation criteria for complex environmental models. However, to our knowledge there has been less focus on the
conditions where decision makers can confidently rely on results from these models. In this review we propose a
preliminary set of conditions necessary for the appropriate application of modeled results to natural hazard decision
making and provide relevant examples within US wildfire management programs.

Introduction

Improving the quality of natural resource decision mak-
ing under risk and uncertainty is a fundamental goal of
the research described in this special issue. However, it
is critical to recognize the appropriate role of system
modeling in improving natural resource management
decision making, particularly under conditions of high
uncertainty. In 2009, Daniel Kahneman and Gary Klein
authored an interesting paper: ‘Conditions for intuitive
expertise: A failure to disagree’ (Kahneman and Klein
2009). Gary Klein’s research highlights the ability of
experts to make high quality decisions in challenging
environments, such as chess masters. Daniel Kahneman,
along with Amos Tversky, are considered the founders
of behavioral economics, the focus of which is on under-
standing the conditions and cognitive biases present in
situations where humans consistently fail to make ra-
tional decisions in the face of uncertainty. Despite these
diametrically opposed world views the individuals were
able to come together to define the set of conditions
where decisions by qualified experts are likely to result
in high quality outcomes. The decision situation requires
that cues must be stable or consistent (that is capable of
being consistently interpreted) and that the decision
maker must be competent enough to interpret those
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cues correctly. In the absence of these conditions it is
likely that decision quality will likely be poor.

Similar to the Kahneman and Klein proposal we would
like to suggest that decision makers consider the con-
ditions under which modeled results realistically repre-
sent the system to be managed when considering the
appropriate types of models and application of results.
As researchers in wildfire risk and water development
program assessment we have both observed numerous
research efforts and system models that though tech-
nically sound, simply failed to capture the key issues of
the system and whose results provide unwarranted
confidence and encourage erroneous and/or overly
simplified solutions. Under some circumstances, mod-
eled results are recognized as inconsistent with expert
understanding of the system. In these cases there is
frequently a tendency to expand the complexity of the
model to address the identified inconsistency whether
or not such adjustments are based on better representing
the reality of the system, or to simply produce results
more in line with expectations. Rarely, is there recognition
that the complexity of the system precludes the pre-
determined modeling approach that produced the
questionable results.

Within the modeling community there is growing con-
cern that the proliferation of increasingly complex envir-
onmental decision models has not led to a noticeable
improvement in predictive capability (Arhonditsis et al.
2006; Robson 2014), and that the increased complexity
may not coincide with improved structural representation
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(see for example Flynn 2005). Given these concerns there
is interest in developing best practices modeling and to
create structured evaluation criteria for complex environ-
mental models (Jakeman et al. 2006; Bennett et al. 2013).
Further, it is critical that the modeling technique be ap-
propriately selected for the problem to be addressed.
Kelly et al. (2013) developed a decision matrix to select
the appropriate integrated environmental assessment and
management modeling approach based on the intended
purpose of the model, quantitative and qualitative data
availability, level of spatio-temporal detail required, and
how uncertainty will be considered.

Scott et al. (2013) compared various wildfire modeling
systems used in the US according to the following attri-
butes: planning context and decisions supported, duration,
fires considered, simulation type, type of burn probability,
and source of variation. The authors then demonstrate a
composite wildfire risk framework that integrates land-
scape simulation models, spatially explicit identification of
values at risk, expert elicitation of wildfire effects, and
leadership ranking of the relative importance of protecting
those values to quantitatively define wildfire risk at various
spatial scales. The framework has been successfully ap-
plied across a range of geographic scales to develop local
to national scale wildfire risk assessments that support
management decisions. Although information within the
assessments may help support wildfire response, its pri-
mary focus and use is in supporting pre-wildfire season
planning.

Proposed condition set

We find the increased scrutiny and drive for improved
best practices in the development of models an import-
ant effort. However, in this discussion we focus on the
application of models to the decision environment.
While Kelly et al. (2013) develop a matrix to define the
appropriate modeling technique based on system pro-
cesses of the management problem, we propose a pre-
liminary set of conditions necessary for the appropriate
application of modeled results to natural resource deci-
sion making. We highlight these conditions by providing
examples in wildfire management within the United States.
Recommended criteria include: 1) The fundamental ob-
jective is clearly identified, appropriate for the temporal
and spatial scale of the problem, and broadly accepted
by managers and stakeholders. 2) The modeled system
connections appropriately represent the system. 3) In-
put parameter estimates are known with some level of
accuracy and/or uncertainty can be handled through
appropriate techniques such as Monte Carlo simulation
or sensitivity analysis. 4) There are either historically
relevant events with which to compare model results, or
significant data points such that statistical analyses
becomes relevant. 5) It is relatively clear when shocks to
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the system make modeled results no longer relevant to
the decision problem at hand (i.e. the conditions when
the system transitions away from the modeled state is
well understood).

Wildfire management in the US provides an interest-
ing example. When an ignition is identified initial attack
(IA) suppression resources are dispatched in an attempt
to extinguish the fire in the first burn period. Once the
dispatched resources arrive they attempt to build a
fireline around the growing fire perimeter. If fireline pro-
duction exceeds the rate of perimeter growth, the fire is
successfully contained. If not the fire is declared escaped
and typically a larger management team will be assigned
to the event. A number of prescriptive models for IA
have been developed (see Fried and Fried 1996; Ntaimo
et al. 2013; Wei et al. 2014) and much of the dispatch
rule sets within the field are based on some form of ap-
plication of these models. Application of these models to
the IA management problem broadly meets the above
defined criteria. Specifically: 1) There is a clear objective
in both space and time that is agreed upon by all partici-
pants; that is, contain the fire as rapidly as possible. 2)
The system components of resource arrival time, fireline
production rates, and wildfire growth modeling are well
understood and broadly accepted. 3) The parameters are
known with some level of confidence, distribution around
fireline production rates and fire behavior at least under
conditions where initial attack is successful are generally
understood. 4) There have been extensive IA events
(approximately 10,000 per year within the US Forest
Service alone) with which to test the model components
of resource productivity and fire behavior, thus providing
the opportunity to statistically validate these models
(although we know of no empirical test of the IA dispatch
models to date). 5) There is typically a clear transition
under which fire control is recognized as infeasible given
the current set of inputs and fire behavior.

However, prescriptive models of large-fire manage-
ment pose significant challenges and in general fail to
meet the criteria we have put forth as follows: 1) Under
many situations a clear spatially and temporally defined
objective is not broadly accepted. Broadly speaking the
objective is to minimize the cost of management plus
net value change to affected resources. However, many
of the primary resource values affected by fire are non-
market in nature and relative value is not well under-
stood (Venn and Calkin 2011) and tradeoffs between
competing resource objectives are not consistently inter-
preted. 2) There are complex interactions between fire
behavior and wildfire suppression actions. For example
Finney et al. (2009) demonstrated that the primary factor
leading to containment of large wildfires was the number
of quiescent fire growth periods, and that the quantity of
suppression resources could not be demonstrated to have
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any effect on likelihood of containment. 3) There is high
parameter uncertainty around system components includ-
ing longer term fire weather predictions, extreme fire be-
havior, and suppression effectiveness (Holmes and Calkin
2013). 4) Large wildfires are highly heterogeneous events
in terms of weather, fire behavior, and management
approach. Further, the events that result in highest loss
have few historical precedents for comparison. 5) The
conditions that lead the system to dramatic fire behavior
transitions such as blow-ups and crown fire are poorly
understood and extremely hard to predict.

Thus, a critical challenge in managing large wildfire is
that both the conditions for intuitive decision making
identified by Kahneman and Klein and those conditions
for development and application of prescriptive environ-
mental management models are absent. Decision makers
are responsible for making decisions in highly uncertain
environments with limited prescriptive modeling sup-
port. Additionally fire managers, at least in the US, are
incentivized to commit additional suppression resources
and restrict potentially beneficial fire (Calkin et al. 2011).

Recommendations on model use

Proposed Requirement 1 emphasizes that the application
of natural hazards modeling requires the presence of a
clearly identified objective which will allow the primary
risk factors that lead to high consequence events to be
defined. It is critical that the objective is tiered to the
spatial and temporal scale of the management problem.
Comparison of landscape scale hazardous fuel reduction
programs to IA provides a relevant example. Mechanical
removal and prescribed burning of hazardous fuels is a
common practice across the globe. Within public land
agencies in the United States coordinated landscape
scale fuels programs are developed across relatively large
areas of public domain and may cover tens of thousands
of hectares. These treatment programs are designed to
reduce the likely spread and intensity of future wildfires,
and in many ecosystems reduced fuel loading influences
future fire behavior for 10 to 20 years post treatment.
Compare this to the localized short duration problem of
IA; contain a wildfire as small as possible within 24 hours
of ignition.

Management actions intended to reduce loss from
natural hazards need to address the core risk factors that
drive high consequence events. This can be very challen-
ging since high consequence events are dominated by
extreme conditions. Additionally, it should be clear if
risk mitigation actions are addressing the likelihood of
the hazardous event or the consequence of the event
once it has begun. For example, two very common wild-
fire risk mitigation actions are landscape fuels reduction
treatments aimed at reducing the likelihood of wildfire
spread and modification of the home and immediate
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surroundings to reduce the likelihood of home destruc-
tion if a wildfire event were proximate. Landscape fuels
treatments aim to address the likelihood of uncontrol-
lable wildfire spread whereas modification of the home
environment aims to reduce the consequence assuming
a wildfire is proximate.

When considering loss due to natural hazards, we
must focus on those extreme events that result in a ma-
jority of economic loss. Mitigation actions, such as flood
control or wildland fuels treatments, therefore, need to
be designed to reduce loss under the extreme conditions
where loss occurs, this has been defined in the wildfire
hazard literature as the reference conditions (see for
example Calkin et al. 2014). Modelling the consequences
of extreme events is a daunting challenge. However, it is
only one necessary component to modelling the impact
of specific mitigation actions designed to reduce losses
from such an event. In some cases we may be observing
a butterfly in China effect — what appears as a relatively
insignificant event such as containing a small spot fire
shortly after ignition, could in fact preclude a major fire
disaster several days or weeks into the future.

Another critical recognition is that much of the effort
in understanding natural disaster is focused on exploring
events that resulted in system failure and high loss. We
don’t typically observe when an activity aimed at redu-
cing the likelihood of a high consequence event succeeds
since it is difficult to confirm that significant loss would
have occurred in the absence of the implemented action;
thus reducing the incentive for a manager to make expen-
sive mitigation actions that may not be tested (Collins
et al. 2013). This brings up another significant challenge
in the application of natural hazard models. Those models
that confirm decision makers pre-conceived notions are
more likely to be given undue weight; the well-known
confirmation bias (Nickerson 1998). Since models are
necessarily simplifications of the real world phenomena,
and many of the phenomena being examined are highly
complex integrated systems, models may be most useful
when results challenge well held assumptions; unfortu-
nately it is human nature to discount information under
such conditions.

As system complexity and uncertainty increase engin-
eering and optimization models will require simplifying
assumptions and the selection of key parameters that
may not be known with any level of accuracy. As such,
application of such results to natural hazards is likely to
be fraught with dangers: are signals and results from the
model an accurate portrayal of the system, or cascading
errors from incorrect or overly simplistic model compo-
nents and/or uncertain parameters? Under these condi-
tions simulation models and expert opinion systems that
explore potential interactions that may lead to system
change may be more relevant than complex optimization
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models. For example, the Wildland Fire Decision Support
System in the US integrates an expert system model to
aggregate a range of qualitative factors that combine to
define wildfire complexity and a recommended incident
team type, simulation models that represent fire spread
over single burn periods to multiple weeks, along with
spatially represented values at risk and potential manage-
ment costs (Noonan-Wright et al. 2011). The individual
model components help identify component risk factors,
but the development of the fire management strategy is
left to local decision makers in consultation with incident
fire management team leadership.

As consequences from natural hazards become ever
more severe it is critical that we improve our ability to
consider and model the impacts of a range of risk factors
to forest ecosystems. Natural hazard models can be
highly valuable in supporting decision making under
uncertainty by assisting decision makers in simplifying
complex systems to better understand potential out-
comes from management actions. However, overreliance
on modeled results, particularly as systems transition to
states not considered within the model, may exacerbate
negative consequences. To achieve improved outcomes
in an increasingly hazardous world, it is critical that we
understand the appropriate role and type of models that
can best inform effective decision making to reduce loss
from unexpected environmental and societal shocks.
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