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Abstract

Background: Increasing the use of forest harvest residues for bioenergy production reduces greenhouse emissions
from the use of fossil fuels. However, it may also reduce carbon stocks and habitats for deadwood dependent
species. Consequently, simple tools for assessing the trade-offs of alternative management practices on forest
dynamics and their services to people are needed. The objectives of this study were to combine mapping and
simulation modelling to investigate the effects of forest management on ecosystem services related to carbon
cycle in the case of bioenergy production; and to evaluate the suitability of this approach for assessing ecosystem
services at the landscape level. Stand level simulations of forest growth and carbon budget were combined with
extensive multi-source forest inventory data across a southern boreal landscape in Finland. Stochastic changes in
the stand age class distribution over the study region were simulated to mimic variation in management regimes.

Results: The mapping framework produced reasonable estimates of the effects of forest management on a set of
key ecosystem service indicators: the annual carbon stocks and fluxes of forest biomass and soil, timber and
energy-wood production and the coarse woody litter production over a simulation period 2012–2100. Regular
harvesting, affecting the stand age class distribution, was a key driver of the carbon stock changes at a landscape
level. Extracting forest harvest residues in the final felling caused carbon loss from litter and soil, particularly with
combined aboveground residue and stump harvesting. It also reduced the annual coarse woody litter production,
demonstrating negative impacts on deadwood abundance and, consequently, forest biodiversity.

Conclusions: The refined mapping framework was suitable for assessing ecosystem services at the landscape level.
The procedure contributes to bridging the gap between ecosystem service mapping and detailed simulation
modelling in boreal forests. It allows for visualizing ecosystem services as fine resolution maps to support
sustainable land use planning. In the future, more detailed models and a wider variety of ecosystem service
indicators could be added to develop the method.
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Background
Bioenergy, produced from harvest residues such as
branches, tree tops and stumps, is an increasing form of
utilising boreal and northern temperate forests (Diaz-
Yanez et al. 2013; Scarlat et al. 2015). Bioenergy reduces
fossil carbon emissions to the atmosphere. However, in-
creased biomass harvesting reduces the carbon stocks of
forest which may partly reduce the climate benefits of
forest bioenergy (Schlamadinger et al. 1995; Repo et al.
2011; Schulze et al. 2012; Zanchi et al. 2012; Mäkipää
et al. 2014). In addition, the increased biomass extrac-
tion in the boreal regions has also raised concerns about
the degradation and loss of habitats of deadwood
dependent species (Bouget et al. 2012). The volume of
deadwood is strongly correlated with the richness of
threatened species: birds (Virkkala 2016), insects (Marti-
kainen et al. 1999), and fungi (Penttilä et al. 2006), which
makes it a good biodiversity indicator.
The climate impacts of forest bioenergy have been

studied extensively in recent years using simulation
models (Wihersaari 2005; Eriksson et al. 2007; Melin
et al. 2010; Kilpeläinen et al. 2011; Repo et al. 2011,
2012). One approach has been to scale up stand level es-
timates of the CO2 emissions resulting from carbon
stock changes to the national level by assuming a uni-
form age class distribution of the forest stands (Cheru-
bini et al. 2013). This approach approximates the total
CO2 emissions from a regularly managed forested land-
scape. The age class distribution has, however, a signifi-
cant effect on the net emission estimates from energy
wood use (Routa et al. 2012). Ignoring the high variabil-
ity of forest structure and the irregular occurrence of
harvests might add inaccuracy to the landscape level es-
timates of carbon budget. The spatial resolution of the
carbon stock changes could be improved by coupling re-
mote sensing- and inventory-based observations of forest
characteristics with simulation modelling (Paulick et al.
2017). This kind of approach could be applied to illus-
trate the climate effects of alternative bioenergy produc-
tion scenarios across an actual landscape where
decisions are made. Mapping can reveal the most suit-
able areas for bioenergy production in terms of resource
availability (Verkerk et al. 2019). It could also be applied
to identify spatial trade-offs and synergies between bioe-
nergy production and other ecosystem service indicators,
such as carbon sequestration and deadwood production
(Sacchelli et al. 2013).
The present status and past changes of ecosystem

services can be mapped using remote sensing (Vauh-
konen 2018; Li et al. 2019) or readily available land
cover and land use data (Lautenbach et al. 2011;
Mononen et al. 2017). The provisioning potential of
ecosystem services is often quantified using simple
land cover -based proxies if direct mapping is not

possible (Smith et al. 2006; Nelson et al. 2009; Bur-
khard et al. 2012; Maes et al. 2012). However, the use
of land cover -based proxies may simplify the spatio-
temporal variability of climate regulation by assuming,
for instance, constant carbon stocks per land cover
class. This makes the maps prone to errors (Eigen-
brod et al. 2010). Empirical and process-based model-
ling includes more detailed description of forest
growth based on measurements or ecological theory.
Simulation modelling, in combination with remote
sensing data, has been applied to map regulating and
provisioning ecosystem services at various spatial
scales (e.g. Sitch et al. 2003; Schröter et al. 2005;
Mina et al. 2017; Holmberg et al. 2019; Verkerk et al.
2019). However, the complex structure and data re-
quirements of models might limit their use in ecosys-
tem service assessments at a fine spatial resolution
due to the lack of suitable remote sensing data
(Lavorel et al. 2017). This indicates a disparity be-
tween the scientific knowledge about carbon dynamics
and its implementation to mapping tools. Conse-
quently, simple dynamic tools are needed to evaluate
the effects of alternative forest management practices
on ecosystem services at varying spatial scales (Cross-
man et al. 2013).
To contribute to bridging the gap between proxy-

based mapping and detailed simulation modelling in
studies investigating the future provisioning of ecosys-
tem services, a framework for quantifying the carbon
budget of boreal forested landscapes was developed
(Akujärvi et al. 2016). It coupled simulated time-
series of carbon stocks with extensive, publicly avail-
able forest inventory data (Tomppo et al. 2014). This
relatively simple method enabled reliable mapping of
the current status of carbon budget at the landscape
level, complementing previous approaches. However,
the suitability of this framework for investigating the
effects of alternative forest management scenarios on
the availability of ecosystem services in the future re-
mains to be tested.
The first objective of this study was to apply the previ-

ously developed framework for simulating the future devel-
opment of ecosystem services related to carbon cycle,
particularly in the case of bioenergy production. The sec-
ond objective was to evaluate the suitability of this ap-
proach for assessing ecosystem services at the landscape
level. The studied ecosystem service indicators were the
carbon stocks and fluxes of forest biomass and soil, timber
and energy-wood production and the annual coarse woody
litter production, used as a proxy for deadwood abundance.
They were simulated for a boreal forested catchment in
southern Finland for the period 2012–2100. The validity of
the mapping framework was evaluated by comparing the
simulated estimates with measurement-based data.
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Methods
Study area
The study area Vanajavesi catchment in the southern
boreal forest zone belongs to the Kokemäenjoki river
basin in southern Finland (Fig. 1). It consists of 10 sub-
catchments of the second level of the Finnish watershed
division. Most of the catchment is within the region of
Kanta-Häme. The annual mean temperature was 4.2 °C
and the annual precipitation 637 mm during 1970–2012.
The total area of the catchment is 2700 km2, of which
1425 km2 is managed forest covered by the model simu-
lations of this study. The proportion of peatlands in
Kanta-Häme is 17%, of which nearly all are forested and
about three quarters drained (Natural Resources Insti-
tute Finland 2020). Despite the relatively high propor-
tion of peatland forests in the study area they were
excluded from the simulations. This was because the lit-
ter and soil carbon model Yasso operates only on min-
eral soils. The Natura 2000 protected habitats (Evans
2012) and nature conservation and wilderness areas,
protected by the Nature Conservation Act, cover
altogether 3% of the catchment area. The protected for-
ests were considered to affect the total carbon budget of
the study area little due to their small cover. They were
thus excluded from the analyses. Fertile site types, usu-
ally dominated by spruce and deciduous trees, covered
as much as 90% of the forest area on the mineral soils in

Häme-Uusimaa in 2009–2013. The average cover of
these site types is about 75% in Southern Finland. Plant-
ing or natural regeneration, regular thinning and clear-
cutting are common forest management practices in the
study area. In 2012, about 16% of the harvest removal
consisted of energy-wood, of which 30% was spruce
(Natural Resources Institute Finland 2020).

Mapping framework
A previously developed framework (Akujärvi et al. 2016)
was refined to simulate key ecosystem service indicators
related to the carbon cycle of forests: carbon stocks and
fluxes of biomass, litter and soil, timber and energy-
wood production, and coarse woody litter production.
The development of these variables was simulated over
the study area for 2012–2100 with standard forest man-
agement practices combined with varying levels of har-
vest residue extraction for bioenergy production. The
variability of actual management interventions was con-
sidered by stochastic simulations of the stand age class
distribution over the simulation period. This could im-
prove the ecosystem service estimates in comparison
with some previous studies applying fixed age class dis-
tributions (Routa et al. 2012; Frank et al. 2015; Pang
et al. 2017).
The mapping framework coupled extensive multi-

source forest inventory data with simulation modelling

Fig. 1 Land use in the southern boreal Vanajavesi catchment area in Finland in 2012. The location for the fine-scale visualisation of the results is
marked with a purple line. CORINE land cover data was provided by Finnish Environment Institute
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of forest carbon dynamics at the stand level. The carbon
stock of biomass, timber and energy-wood production
and the production of coarse woody litter were simu-
lated using the MOTTI v. 3.3 stand simulator (Hynynen
et al. 2002; Salminen et al. 2005). Coarse woody litter
production was used as proxy for deadwood abundance
and for this purpose it was defined to consist of tree tops
and stumps, not including coarse roots. It was coupled
with the litter and soil carbon model Yasso15 to esti-
mate the belowground carbon stocks and the changes in
them (Tuomi et al. 2009, 2011a, 2011b; Repo et al.
2016). The model simulations were carried out separ-
ately for altogether 18 forest site type and main tree spe-
cies combinations present in the study area (Table 1)
and generalised for the entire study area using look-up
tables and multi-source forest inventory data.
The performance of the mapping framework has been

evaluated previously at a fine spatial resolution in south-
ern Finland by Akujärvi et al. (2016). According to their
results, the method produced reliable estimates of the
current status of forest carbon stocks and changes. The
previous validity test is a sound basis for applying the
framework for scenario analysis in the present study be-
cause the model simulations and initial land cover data
were identical. However, the reliability of the simulated
ecosystem service indicators was also evaluated broadly
in this study. The simulated mean estimates for the
study area in the beginning of the simulation period in
2012 were compared with inventory-based estimates
taken previously from the same area.

Forest management scenarios
In the simulations, forests were assumed to be managed
according to the Finnish good practice guidance for for-
estry with adaptations related to the rotation length. The
stand regeneration method, and the timing and intensity
of thinning followed the guidelines (Sved and Koistinen
2015). After planting or natural regeneration, the stands
were thinned two to three times depending on the mean
rotation length, which varied between 65 and 120 years
(Table 1). The mean rotation lengths were determined
based on the inventory-based range of mean stand age
in the study area. They were similar to the upper range

of the recommended rotation lengths (Sved and Koisti-
nen 2015). Consequently, final felling was conducted
only on mature stands. To account for the deviations of
practical forest management from the recommended ro-
tation lengths, stochastic variation of the regeneration
age was introduced.
The effects of forest bioenergy production on the car-

bon budget were assessed by comparing the extraction
of forest harvest residues to a scenario under which they
were left on site to decompose. Harvest residues were
extracted only from the fertile Norway spruce sites
(OMaT, OMT, MT and VT site classes, see Table 1),
mimicking the national good practice guidelines for
energy-wood harvesting in Finland (Koistinen et al.
2016). Three scenarios were studied. In the reference
scenario 1, all forest harvest residues were left on site to
decompose and no bioenergy was produced. In scenario
2, 70% of the aboveground harvest residues (branches
and tree tops) were extracted for bioenergy production
from the final felling sites. In scenario 3, 70% of the
aboveground residues, stumps and roots were extracted.

Forest stand simulations
The carbon stock of biomass was estimated over the ro-
tation period using the MOTTI v.3.3 stand simulator
(Salminen et al. 2005; Hynynen et al. 2014). It is based
on empirical growth and yield models describing the
structure, growth and management of the most typical
site types and tree species in Finland (Hynynen et al.
2002). They have been compiled and validated based on
extensive forest inventories and field experiments
(Matala et al. 2003). Because the MOTTI v. 3.3 simula-
tor uses a time-step of five years, the intermediate an-
nual values were produced by linear interpolation. The
annual estimates of timber, energy-wood and coarse
woody litter production were produced by converting
the dry biomass estimates to fresh volume using a con-
version coefficient of 400 kg∙m− 3, which is a mean for
pine, spruce and birch (Alakangas et al. 2016). Coarse
woody litter production was assumed to consist of tree
tops and stumps, which represented the large-diameter
fractions of deadwood forming litter. In Finland, the
diameter of tree tops used for bioenergy production is
4–6 cm (Karttunen et al. 2016). In the output of the
MOTTI simulations, the basal-area weighed mean diam-
eter of the mature stands varied between 21 and 47 cm,
depending on site type. The diameters of different bio-
mass compartments, such as stumps, were not reported
explicitly in the model output. In managed forests, a sig-
nificant proportion of the deadwood is formed during
thinning and final felling from forest harvest residues
(Eräjää et al. 2010). In this study, the annual production
of coarse woody litter was assumed to indicate the po-
tential deadwood biomass in the future. Deadwood is a

Table 1 The mean rotation length assumed for the site type
and tree species -combinations present in the study area. The
site types were classified according to Cajander (1949)

Main tree species Site type

OMaT OMT MT VT CT ClT

Scots pine (Pinus sylvestris) 90 90 110 110 90 120

Norway spruce (Picea abies) 90 90 110 110 120 90

Silver birch (Betula pendula) 90 70 90 65 100 70

OMaT Oxalis-Maianthemum, OMT Oxalis-Myrtillus, MT Myrtillus, VT Vaccinium,
CT Calluna and ClT Cladina Type
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widely used indicator for forest biodiversity (Gao et al.
2015).
The output of MOTTI v.3.3 was used as input to

Yasso15, an improved version of the Yasso litter and soil
carbon model (Tuomi et al. 2009, 2011a, 2011b).
Yasso15 was used to estimate the soil organic carbon
stock, the annual changes in it and the heterotrophic
respiration over the rotation period. The carbon input to
soil consisted of natural mortality, forest harvest residues
and the annual litter production of living trees and
ground vegetation. They were estimated with the same
method as in the national greenhouse gas inventory of
Finland (Ortiz et al. 2013; Sievänen et al. 2014; Statistics
Finland 2018). The annual litter production of the living
trees was estimated by multiplying the biomass compart-
ments of standing trees, derived from the output of
MOTTI v. 3.3, with compartment- and species-specific
turnover rates (Liski et al. 2006). The litter production
of ground vegetation was equal to the estimates used in
the national greenhouse gas inventory (Muukkonen and
Mäkipää 2006). The carbon content of biomass was as-
sumed to be 50%.
In the Yasso15 model, soil organic carbon is divided

into four chemical compound groups: ethanol soluble
(denoted with E), water soluble (W), acid hydrolysable
(A), non-soluble (N). The decomposition rate of each
compound group depends on temperature and precipita-
tion and results in the formation of more recalcitrant
humus (H). The decomposition rate of woody litter de-
pends also on its physical diameter (Tuomi et al. 2011a).
The chemical quality of non-woody and woody litter
was derived from previous studies (Ortiz et al. 2013; Sie-
vänen et al. 2014). A mean diameter of 2 cm was as-
sumed for branches and roots, and 15 cm for stems and
stumps. The litter and soil carbon stock was initialised
by first running the model to a steady state with average
climate and litter production values over one rotation
period. The model was then run for a second rotation
before the start of the actual simulation period in 2012.
Consequently, the litter and soil carbon stock in 2012
demonstrated the situation right after final felling in the
bioenergy scenarios 1–3. The average climate in 1970–
2012 (Finnish Meterological Institute 2020) and average
litter production over the rotation period were used.
The mean annual precipitation, temperature, and
temperature amplitude were calculated based on the
daily observations from the Lammi weather station lo-
cated in the study area.
To demonstrate the fine-scale spatial pattern of the

carbon fluxes, the net ecosystem production (NEP) of
forest was visualised for an 8 km2 sized subset of the
study area (Fig. 1) for 2012, 2050, and 2080 which dem-
onstrate well the temporal variation in this variable. The
NEP represents the net uptake of carbon of forest before

subtracting harvest removals. It is calculated as the dif-
ference between net primary production (NPP) and het-
erotrophic respiration (Rh). NPP consists of the annual
change in the carbon stock of biomass, litter production,
harvest removals and natural mortality. The net carbon
balance of the forest, i.e. the net biome production
(NBP), is determined by the revenues by NEP and ex-
penditures by harvests (see for example Liski et al.
2006).

Forest landscape simulation
The simulated stand-level estimates of ecosystem service
indicators were connected to spatially explicit informa-
tion on forest site type, tree species, biomass and stand
age. These data were extracted from the Multisource
National Forest Inventory (hereafter MS-NFI) dataset
representing year 2011 for the studied catchment. The
Finnish MS-NFI produces a wide suit of regularly up-
dated forest variables applicable for ecosystem service
assessments from landscape up to national scale (Vauh-
konen and Ruotsalainen 2017; Kangas et al. 2019). The
MS-NFI forest resource maps are based on extensive
NFI field plot measurements, high-resolution satellite
images and digital maps, and the non-parametric k
Nearest Neighbours estimation (Katila and Tomppo
2001; Tomppo et al. 2008a; Tomppo et al. 2008b). The
spatial resolution of the MS-NFI data was 20m × 20m.
To set the initial state of the simulated forests in 2011,

each grid cell of the stand age layer of the MS-NFI data
was classified based on the forest site type and main tree
species present in that cell. The main tree species was
determined as the species having the maximum biomass
among Scots pine (Pinus sylvestris L.), Norway spruce
(Picea abies (L.) H. Karst) and deciduous species, com-
prising mainly of Silver birch (Betula pendula Roth) and
Downy birch (Betula pubescens Ehrh.). Only one site
type and tree species combination was assigned to each
grid cell. The stand age distribution at the initial state,
based on the multisource forest inventory, was not al-
tered in the classification procedure (for more details,
see Akujärvi et al. 2016).
To project the development of ecosystem service indi-

cators at the landscape level, the stand age layer was up-
dated annually over the simulation period 2012–2100.
The site type and main tree species composition were
assumed to remain the same as in the initial state. To
mimic the variation of the regeneration age in practical
forest management, probabilities of final felling were ap-
plied for each site type and tree species combination.
This approach was chosen because the guidelines are
not usually followed strictly in practical forest manage-
ment. The probabilities were determined by assuming
each combination a normally distributed rotation length
with a mean following the guidelines (Sved and
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Koistinen 2015) and with a standard deviation of 10
years (Table 1). This deviation was considered reason-
able in comparison with typical rotation lengths in
southern Finland. For example, the mean rotation length
of a spruce stand growing on Oxalis-Myrtillus site type
was 90 years, ranging from 80 to 100 years. In other
words, the simulated rotation length within this class
varied stochastically among grid cells. On every simula-
tion year, the forest in each grid cell was either spared
or felled based on the probability of final felling that
year. This procedure resulted in a new stand age layer
representing each simulation year. The simulation
method produced regular harvesting and a steady behav-
iour of the stand age distribution yet accounting for the
stochasticity of actual management interventions (Fig.
S1). To map the simulated ecosystem service indicators,
they were joined to the annual stand age layers using
look-up tables.

Model performance
To evaluate the performance of the mapping framework,
the simulated estimates in the beginning of the study
period in 2012–2016 were compared with measurements
derived from literature and forest statistics. The litter
and soil carbon stock (Rantakari et al. 2012) was mea-
sured from permanent sampling plots in southern
Finland for the first time in 1985 and again in 2006
(Mäkipää and Heikkinen 2003). The carbon stock of bio-
mass, and its change were calculated based on the mean
sample plot estimates of the national forest inventory in
the region of Kanta-Häme in 2009–2018. Timber and
energy-wood removal were measured from Häme-Uusi-
maa forestry region in 2009–2014. The simulated results
represent a sample of forests located within these
regions.
The biomass carbon stock change was estimated based

on the measured growth and removal of stems. This ap-
proach was chosen because in managed forests, the bio-
mass carbon stock change mainly depends on
harvesting, and measurements of stem biomass, growth
and removal are readily available from the study area.
The growth rate of stem biomass was assumed to be the
same as that of stem volume. The biomass carbon stock
change was then estimated by subtracting the harvest re-
moval (consisting of timber and energy-wood) from
stem growth. The standard deviation of the simulated
and measured estimates was calculated between the
simulation years and the available measurement periods,
respectively. The tree data were derived from the statis-
tical database of the Natural Resources Institute Finland
(Natural Resources Institute Finland 2020).
The estimates of annual coarse woody litter produc-

tion could not be compared with inventory-based esti-
mates of deadwood volume because of methodological

differences. The simulated estimate represents the po-
tential input or flow of coarse woody litter to the ecosys-
tem. The inventory-based deadwood volume is a stock.
Moreover, only snags and logs over 10 cm thick and 1.3
m long are measured. Deadwood, litter and soil organic
carbon (SOC) pools are not separated in the output of
the Yasso15 model (Tuomi et al. 2011b; Didion et al.
2016). A proper comparison of the simulated and
inventory-based estimates of deadwood would require
modelling the decay of large-diameter deadwood separ-
ately from the decomposition of carbon pools (Herr-
mann et al. 2015). This could be a subject of further
development of this research. To illustrate the role of
the initial age class distribution on the regional carbon
stock estimates, the simulated and measured age class
distribution in the beginning of the simulation period
were compared (Fig. S2). The simulated estimate was
based on the combination of 1) the multisource NFI data
from 2011, which is already generalized data based on
the field samples and remote sensing data and 2) the ap-
plied forest management scenarios over five first years.
The measured estimate is based only on the NFI field
plot samples.

Results
Carbon stocks and fluxes
The annual mean estimates of carbon stocks and fluxes
were presented as means over the studied landscape to
illustrate their temporal variation (Figs. 2, 4). The simu-
lated carbon stock of biomass fluctuated between 5.4
and 7.3 kg∙m− 2 over the simulation period 2012–2100,
independent of the bioenergy scenario studied (Fig. 2a).
In the beginning of the simulation period in 2012, the
simulated carbon stock of biomass was about 25% higher
than the measured mean in the surrounding region
(Table 2). The carbon stock of biomass decreased at a
mean rate of − 0.003 kg∙m− 2∙year− 1 in 2012–2100, inde-
pendent of the bioenergy scenario studied. The rate of
biomass carbon stock change varied between − 0.07 and
0.07 kg∙m− 2∙year− 1 (Fig. 2b). In 2012, the simulated bio-
mass carbon stock change was almost twice as much as
the measurement-based mean (Table 2).
The litter and soil carbon stock remained relatively

stable over the simulation period, varying between 8.5
and 8.8 kg∙m− 2 (Fig. 2c). The simulated estimates were
within the upper end of the range of the measured litter
and soil carbon stock estimates (Table 2). Forest bioe-
nergy production caused a mild decrease in the litter
and soil carbon stock compared with stem-only harvest.
In 2100, the litter and soil carbon stock was 1% and 4%
lower in scenarios 2 and 3, respectively, than in the ref-
erence scenario 1. The litter and soil carbon stock in-
creased at a mean rate of 0.007 kg∙m− 2∙year− 1, with a
range of − 0.003 − 0.017 kg∙m− 2∙year− 1 (Fig. 2d). The
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simulated estimate of the litter and soil carbon stock
change was very similar to the measured mean (Table
2).
The more biomass was extracted for bioenergy pro-

duction, the slower was the accumulation of soil carbon.
The soil carbon sink was 18% and 59% lower in scenar-
ios 2 and 3, respectively, than in scenario 1 in the begin-
ning of the simulation period in 2012 (Fig. 2d). The
differences between the scenarios levelled off towards
the end of the simulation period. This was because the

residues from the earlier harvests had mostly decom-
posed and the volume of energy-wood harvests started
to decline (Fig. 5b). The changes in the total carbon
stock of forest were mainly driven by the changes in the
carbon stock of biomass rather than the bioenergy sce-
narios. The total carbon sink was 3% and 9% lower in
scenarios 2 and 3, respectively, than in scenario 1 in the
beginning of the simulation period in 2012 (Fig. 2f).
Maps of net ecosystem production (NEP) demonstrate

the fine-scale spatial variation of carbon fluxes across a

Fig. 2 The mean simulated carbon stocks of biomass, litter and soil and the annual changes in these stocks in the study area over the simulation
period 2012–2100. The total carbon stock of forest is the sum of biomass, litter and soil carbon stocks. Positive values of carbon stock change
indicate a sink of carbon, and negative values a source. The bioenergy scenarios 1–3 represent varying level of harvest residue removal: 1) no
extraction of harvest residues, 2) extraction of branches and tree tops for bioenergy production, 3) extraction of branches, tree tops and stump-
root systems for bioenergy production
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subset of the studied landscape (Fig. 3). The mean an-
nual NEP decreased at first as a result of regular harvest-
ing and, consequently, the increasing proportion of
regeneration stands. The forest acted as a source of car-
bon to the atmosphere in the middle decades of the
simulation period because the harvest removals

exceeded NEP (Fig. 4). The spatial patches of NEP be-
came more fragmented as more grid cells were harvested
(Fig. 3).
The spatiotemporal pattern of carbon uptake reflected

the changes in stand age class distribution resulting from
regular harvesting which was simulated with a stochastic

Fig. 3 A fine-scale visualisation of the simulated net ecosystem production (NEP) of forest for a subset of the study area in scenario 1 (no
extraction of harvest residues for bioenergy production). The results represent the potential annual carbon uptake of forest before subtracting
harvest removals. Positive values indicate that the ecosystem is a sink of carbon and negative values that it is a source

Table 2 The simulated mean ecosystem service indicators for the study area in 2012–2016 compared with measurements taken
from the surrounding regions (SF stands for Southern Finland, KH for Kanta-Häme and HU for Häme-Uusimaa, respectively). The litter
and soil carbon estimates from the BioSoil (BS) data were derived from Rantakari et al. (2012) and those of the National Forest
Inventory (NFI) from the statistical database of the Natural Resources Institute Finland (2020)

Variable Simulated Measured

Mean SD Mean SD Period Area Source

Soil carbon stock (kg C∙m−2) 8.5 0.02 6.7 3 2006 SF BS

Soil carbon change (kg C∙m−2∙year−1) 0.013 0.001 0.012 0.06 1985–2006 SF BS

Biomass carbon stock (kg C∙m−2) 6.7 0.11 5.9 0.42 2009–2018 KH NFI

Biomass carbon stock change (kg C∙m−2∙year −1) 0.071 0.004 0.041 0.005 2009–2018 KH NFI

Timber harvest, all tree species (m3∙ha−1∙year − 1) 5.2 0.12 4.9 0.55 2009–2014 HU NFI

Energy-wood harvest, spruce (m3∙ha−1∙year − 1) 0.141, 0.402 0.011, 0.032 0.27 0.04 2009–2014 HU NFI
1 Scenario 2 (only branches and tree tops), 2 Scenario 3 (branches, tree tops and stumps)
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algorithm. As a result of continued harvesting, the pro-
portion of fast growing, middle-age stands declined lead-
ing to reduced NPP and, consequently, reduced
accumulation of the biomass and soil carbon stocks. The
carbon uptake of forest recovered along with the in-
creasing proportion of fast-growing intermediate-aged
stands (Fig. S1). The simulated and measured age class
distribution differed to some extent in the beginning of
the simulation period because they were based on differ-
ent methods (Fig. S2). The measurements showed a
higher proportion of very young and old stands and a
lower proportion of intermediate aged stands than the
simulations.

Wood production and coarse woody litter
The provisioning ecosystem services were shown as an-
nual sums for the studied landscape (Fig. 5). The simu-
lated mean annual timber production from the thinning
and final felling sites was 0.91 mill. m3∙year− 1 in 2012–
2100, with a range of 0.73–1.1 mill. m3∙year− 1 (Fig. 5a).
The simulated estimate of timber harvest in 2012 was
quite similar to the measured mean (Table 2). Both tim-
ber and energy-wood production peaked in the late
2050s, as more stands reached maturity, and decreased
thereafter (Fig. 5a, b). In scenarios 2 and 3, the annual
energy-wood potential from the final felling sites varied
between 0.018 and 0.052 mill. m3 and 0.052 and 0.15
mill. m3, respectively (Fig. 5b). In other words, the ex-
traction of stumps multiplied the energy-wood potential
nearly three-fold compared with the extraction of only

branches and tree tops. The simulated estimates of
energy-wood removal in 2012 were comparable with the
reported mean (Table 2).
The annual production of coarse woody litter from the

thinning and final felling sites remained at a stable level
in the study area in 2012–2100 (Fig. 5c). It followed the
development of the total harvest removal in the study
area because harvest residues were extracted only from
the fertile spruce sites (Fig. 5a). In scenarios 1 and 2, the
annual mean of coarse woody litter production was 0.18
mill. m3, with a range of 0.16–0.20 mill. m3. These two
scenarios produced the same estimates because only tree
tops and stumps were classified as coarse woody litter
and the simulated amount of tree tops was negligible.
The extraction of stumps in scenario 3 reduced the an-
nual production of coarse woody litter on average by
4.6% (Fig. 5c). The simulated estimates correspond to
the mean annual input of 0.23–0.25 t C∙ha− 1∙year− 1 de-
pending on the scenario.

Discussion
Effects of bioenergy production on ecosystem services
A refined framework to simulate ecosystem services re-
lated to carbon cycle was applied across a boreal for-
ested landscape. Regular harvesting was the primary
driver of the spatiotemporal variation of the ecosystem
service estimates because it affected the forest age class
distribution. The forests in the studied landscape acted
first as a sink of carbon. However, they started to release
carbon to the atmosphere when the harvest removals
exceeded growth. The net carbon balance turned

Fig. 4 The mean simulated carbon fluxes in the Vanajavesi catchment area over the simulation period 2012–2100 with bioenergy scenarios 1–3.
NPP stands for net primary production, Rh for heterotrophic respiration, NEP for net ecosystem production and harvest for the timber and
energy-wood removal. The bioenergy scenarios 1–3 represent varying level of harvest residue removal: 1) no extraction of harvest residues, 2)
extraction of branches and tree tops for bioenergy production, 3) extraction of branches, tree tops and stump-root systems for
bioenergy production
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negative despite the positive values of NEP. The carbon
sink recovered along with the increasing proportion of
fast-growing intermediate-aged stands towards the end
of the simulation period. A similar effect of forest age on
productivity has also been observed in previous meas-
urement (Pregitzer and Euskirchen 2004) and modelling
experiments (Kohlmaier et al. 1995; Ťupek et al. 2010),
supporting the findings of this study. It is noteworthy
that at a national scale, Finnish forests act as a sink of
carbon (Statistics Finland 2018). However, intensive har-
vests may turn a region to a temporary source of carbon
(Pussinen et al. 2009), like shown in this study.
Based on the simulations, harvest residue extraction

caused trade-offs between climate regulation, energy-
wood production and habitat provisioning for deadwood
dependent species. Extracting forest harvest residues in
the final felling caused carbon loss from litter and soil
compared with stem-only harvest. The level of harvest
residue extraction increased towards the middle of the
simulation period as more stands reached maturity. It
declined again to the original level when the stand age
class distribution approached the initial status. The an-
nual coarse woody litter input to soil declined as a result
of stump extraction in scenario 3, suggesting that con-
tinuing energy-wood harvesting reduces coarse dead-
wood formation in the long term, supporting the finding
of Repo et al. (2020). Aboveground residue extraction in
scenario 2 had a small impact on the simulated coarse
woody litter production because the proportion of tree
tops was so small.
Both fine and coarse deadwood are important for

wood-inhabiting fungi (Juutilainen et al. 2014) and bee-
tles (Jonsell et al. 2007), stressing the importance of
retaining both fractions in the forest. In addition, about
a quarter of all forest species in Fennoscandia is
dependent on the availability of deadwood (Siitonen
2001). According to field experiments, the removal of
harvest residues accelerates the breakage and disappear-
ance of coarse logs (Rabinowitsch-Jokinen and Vanha-
Majamaa 2010; Herrmann et al. 2015). Therefore, the
actual impacts of harvest residue extraction on both car-
bon sequestration and biodiversity could be more severe
than estimated in this study. The extraction of harvest
residues and stumps, together with the mechanical
breakage reduced the amount of coarse deadwood on
average 1–3.7 m3∙ha− 1 (Repo et al. 2020).

Evaluation of the mapping framework
The validity of the mapping framework was evaluated by
comparing the simulated and measurement-based eco-
system service indicators in the beginning of the simula-
tion period. Based on the results, the simulated
estimates of the biomass and soil carbon stocks were

Fig. 5 The simulated mean annual production (in fresh volume) of
timber a, energy-wood b and coarse deadwood c in the study area over
the simulation period 2012–2100. The bioenergy scenarios 1–3 represent
varying level of harvest residue removal: 1) no extraction of harvest
residues, 2) extraction of branches and tree tops for bioenergy
production, 3) extraction of branches, tree tops and stump-root systems
for bioenergy production
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generally higher than the measurement-based estimates.
The simulated biomass carbon stock change was, how-
ever, close to a previous model-based estimate (Forsius
et al. 2016). The results may reflect a deviation of the
studied sample from the larger population of forests
which the measurements were taken from. The simula-
tions produced the annual change in the total biomass
of trees and ground vegetation whereas the
measurement-based estimate included only tree growth.
Moreover, the simulated estimate of the litter and soil
carbon stock included also coarse woody litter unlike
the observations, partly explaining the difference.
The deviations between the simulated and measured

estimates of carbon stocks probably reflect differences of
the simulated and actual forest management. In the
model simulations, natural disturbances were absent,
thinning, final felling and energy-wood harvest were as-
sumed to occur always on time and only mature stands
were regenerated. As a result of these assumptions, the
estimates of stand growth, litter production and biomass
potential might have been overly optimistic as also dis-
cussed earlier by Akujärvi et al. (2016). The simulated
soil carbon stock change was very similar to the mea-
sured mean. The simulated timber and energy-wood re-
moval were also in the order of magnitude with the
inventory-based estimates, supporting the validity of the
modelling approach.
The simulated coarse woody litter production could

not be directly compared with inventory-based estimates
due to methodological issues. The litter and soil carbon
model Yasso15 does not separate the deadwood, litter
and soil organic carbon (SOC) pools (Tuomi et al.
2011b; Didion et al. 2016). Based on earlier tests of the
model, it can estimate the changes in the carbon pool of
deadwood reliably given that input estimates are avail-
able (Didion et al. 2014; Hernández et al. 2017; Ziche
et al. 2019). The simulated mean annual coarse woody
litter input of the current study, 0.23–0.25 t C∙ha− 1∙
year− 1, was in the same order of magnitude with other
modelled estimates, 0.5 t C∙ha− 1∙year− 1 from G4M and
0.08 t C∙ha− 1∙year− 1 from EFISCEN, respectively (Repo
et al. 2015). It is worth noting the definitions of coarse
wood litter differ in different studies. The estimate of
the coarse woody litter production does not compare
directly to the actual coarse woody debris in the study
area because the former is an input to deadwood pool
and the latter is the pool. Nevertheless, the results dem-
onstrate the impacts of residue extraction on the forma-
tion of coarse woody debris and therefore on the
deadwood abundance in the long term. All in all, the
simulated estimates of ecosystem services in the begin-
ning of the simulation period were comparable with
measurements, supporting the validity of the mapping
framework.

The quality of the initial data on forest characteristics
is also an important aspect of the performance of the
mapping framework. A broad spatial coverage and com-
prehensive information on forest characteristics are the
strengths of the MS-NFI data compared with coarser
land use and land cover maps (Kangas et al. 2018). How-
ever, MS-NFI is more accurate on medium and large
spatial scales rather than on individual grid cells. This is
because the k Nearest Neighbour method averages stand
volumes and site fertility classes levelling off extremes
(Katila 2006; Haakana 2017). Furthermore, errors in the
MS-NFI data are spatially autocorrelated (Katila and
Tomppo 2001). Considering these limitations, the map-
ping framework is more suitable for assessing ecosystem
services at landscape level rather than on individual for-
est management units.
The simulated stand age structure was a key determin-

ant of the landscape level projections of ecosystem ser-
vices in this study. The differences between the
simulated and measured age class distribution reflected
mainly the deviation of the MS-NFI data from the field
plot measurements. The age class distribution was ini-
tially biased by overestimating the proportion of
intermediate-aged stands because of the limitations of
the k Nearest Neighbours method (Katila 2006; Haakana
2017). In the later simulation years, the forest manage-
ment scenarios started to dominate over the initial sta-
tus. In the current study, regular harvesting reduced the
amount of fast-growing intermediate-aged stands risking
carbon sequestration temporarily. The climate impacts
of forest management depend, however, also on the life
cycle of the wood products which was outside the scope
of this study. In the future, the approach could be devel-
oped by setting a limit of harvest removal that could not
be exceeded. Another option would be to implement
knowledge of the actual harvest ages to the landscape
simulation. The mapping framework could also be re-
fined with multiple model runs to cover the potential
variation in harvest regimes.

Implications for ecosystem service assessments
The mapping framework presented in this study contrib-
utes to bridging the gap between mapping and simula-
tion modelling in the ecosystem service assessments of
boreal forests. It incorporated new features in compari-
son with some existing tools for ecosystem service as-
sessment (Nelson et al. 2009; Maes et al. 2012). Firstly,
the couplings of biomass, litter and soil carbon cycles
were accounted for by the modelling approach, like in
many process-based models (Morales et al. 2005). As a
result, the dynamics of forest carbon cycle were de-
scribed more accurately than in tools utilizing simple,
land cover -based proxies (Eigenbrod et al. 2010). Sec-
ondly, the simple structure of the mapping framework is
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an advantage compared with some detailed, computa-
tionally intensive forest simulators (e.g. Redsven et al.
2004; Schelhaas et al. 2007; Rasinmäki et al. 2009;) or
process-based models (e.g. Bayer et al. 2015; Gutsch
et al. 2018; Holmberg et al. 2019). The modular struc-
ture of the mapping framework enables its flexible devel-
opment with new data and models in the future.
Thirdly, the presented framework featured a stochastic
development of forest age structure across the landscape,
reflecting the variability of management regimes. This is
a refinement in comparison with some decision-support
systems applying fixed age classes (Frank et al. 2015).
However, it is not possible to draw conclusions about
the supremacy of the stochastic approach for age struc-
ture based on the current results.
In the future, indicators of water quality regulation

(Wade et al. 2002; Huttunen et al. 2016) or functional
diversity (Vihervaara et al. 2017) could be integrated to
the framework to study their relationships with carbon
cycle. Fine scale maps allow for investigating the spatial
trade-offs and synergies between carbon sequestration,
other ecosystem services and biodiversity. Fine scale
layers of carbon stocks and fluxes could support sustain-
able land use planning when integrated into a spatial pri-
oritisation system (e.g. Mikkonen and Moilanen 2013;
Kukkala and Moilanen 2017). The large variety of forest
types and management systems in the boreal zone sets a
challenge for applying the mapping framework at broad
spatial scales. For example, growth and yield models for
old-growth and uneven-aged forests (Pukkala 2016), as
well as litter and soil carbon models for organic soils
(Ojanen et al. 2014), are few and require more develop-
ment. It is also noteworthy that scenario-based applica-
tions alone are inadequate tools for finding optimal
solutions for land use (Mönkkönen et al. 2014). It would
require simultaneous analysis of the alternative manage-
ment regimes with multi-objective optimization tools
(Eyvindson et al. 2018).

Conclusions
The mapping framework developed in this study inte-
grated simulation modelling and spatially explicit, exten-
sive data on forest characteristics. The approach
produced reasonable estimates of the effects of bioe-
nergy production on ecosystem services related to car-
bon cycle. It was suitable for assessing ecosystem
services at the landscape level. Trade-off situations were
observed between carbon sinks, wood production and
coarse woody litter production as a result of continued
harvest residue extraction for bioenergy production. The
results demonstrated that stand age class distribution
was a key driver of the simulated ecosystem service indi-
cators across the study area. The framework contributes
to bridging the gap between ecosystem service mapping

and detailed simulation modelling in boreal forests. It al-
lows for visualizing carbon stocks and fluxes as fine
resolution maps to study their relationship with other
ecosystem services and biodiversity. Fine scale maps of
the impacts of forest management on carbon cycle could
support sustainable land use planning. Future develop-
ment of the framework includes integrating more de-
tailed models and a wider variety of ecosystem service
and biodiversity indicators to it.
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