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Abstract

We contrast a new continuous approach (CA) for estimating plot-level above-ground biomass (AGB) in forest
inventories with the current approach of estimating AGB exclusively from the tree-level AGB predicted for each tree
in a plot, henceforth called DA (discrete approach). With the CA, the AGB in a forest is modelled as a continuous
surface and the AGB estimate for a fixed-area plot is computed as the integral of the AGB surface taken over the
plot area. Hence with the CA, the portion of the biomass of in-plot trees that extends across the plot perimeter is
ignored while the biomass from trees outside of the plot reaching inside the plot is added. We use a sampling
simulation with data from a fully mapped two hectare area to illustrate that important differences in plot-level AGB
estimates can emerge. Ideally CA-based estimates of mean AGB should be less variable than those derived from the
DA. If realized, this difference translates to a higher precision from field sampling, or a lower required sample size. In
our case study with a target precision of 5% (i.e. relative standard error of the estimated mean AGB), the CA
required a 27.1% lower sample size for small plots of 100 m2 and a 10.4% lower sample size for larger plots of 1700
m2. We examined sampling induced errors only and did not yet consider model errors. We discuss practical issues
in implementing the CA in field inventories and the potential in applications that model biomass with remote
sensing data. The CA is a variation on a plot design for above-ground forest biomass; as such it can be applied in
combination with any forest inventory sampling design.

Keywords: Branch biomass, Foliage biomass, Stem biomass, Biomass surface plots, Sampling surfaces, Standard
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Background
Fixed-area field plots have a long history in forest inven-
tory and they are commonly used in national forest in-
ventories. In the early nineteenth century or even earlier,
fixed-area plots were used to expand values recorded
per-plot to entire stands (e.g. König 1835; Heyer 1861).
That was long before statistical sampling had been
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established, called at its time the “representative
method” (Kiaer 1895–1896).
When sampling for tree attributes, there are at least two

different views on fixed-area plots. Each carries a different
analytical approach: (1) The plot cuts out a sample area
from a population (defined as the horizontally projected
surface of a defined area of forest land) with recordings of
all variables exactly above that area; recordings may include
individual objects but also continuously distributed vari-
ables. Henceforth, we call this approach the “continuous
approach to plot-level biomass”, CA. (2) The plot serves as
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a selection tool and defines the discrete set of sample trees
to be included into this particular plot from the population
of all trees in a defined area of forest land. We will call this
approach the “discrete approach to plot-level biomass”, DA.
In the CA, the per-plot value is the sum of the target vari-
able exactly above the horizontal projection of the plot area
(for circular plots, the portion of the target variable within a
cylinder on the plot perimeter); in the DA the per-plot
value comes from the sum of the target variable over all in-
cluded sample objects (i.e. trees).
In remote sensing applications, when it is possible to

match remotely sensed data used as predictors of bio-
mass to the specific field plot location, the CA has intui-
tive appeal because the plot area is matched as
accurately as possible with the image data (i.e. pixels).
Næsset (2002) named this technique the “area-based ap-
proach” (ABA), which, in remote sensing is contrasted
to the “individual tree detection” approach. In field sam-
pling, the DA is commonly applied, in which the tree
variables for all sample trees within the plot are re-
corded, regardless of whether a sample tree has a por-
tion of its stem and crown outside of the plot area.
Both approaches, the CA and the DA, and their corre-

sponding analytical approaches have been applied in plot
design comparisons when sampling for dead wood: Gove
and Van Deusen (2011) introduced the instructive terms
“chainsaw method”, when only those parts of the dead-
wood that are exactly within the plot perimeter are re-
corded (as if cut out by a chainsaw; this corresponds to
our CA), and “stand-up method”, when all those dead-
wood pieces with their thicker end within the plot area
are included and recorded (as if these dead wood pieces
would stand up within the plot; this corresponds to our
DA). In forest inventory field sampling, both approaches
may be applied. However, they differ in the required ef-
forts and the precision of estimation; design-unbiased
estimators are available for both approaches.
To the best of our knowledge, the DA and the CA

have not been compared for their influence on AGB es-
timation, which has become a core variable in forest
monitoring. The role of forests in global carbon cycling
accentuates the importance of quantifying both the sta-
tus and trends of forest biomass (IPCC 2006) and points
to the demand for “credible” estimates.
Above-ground biomass is defined as “all living plant bio-

mass above the soil … including stem, stump, branches,
bark, seeds and foliage” (IPCC 2006, Annex 4A.1, 4.72). To
bypass issues of destructive biomass sampling, tree biomass
is predicted with models linking biomass to easy-to-
measure tree variables, namely the diameter at breast height
(dbh) given its correlation with stem basal area, and tree
height (Brown et al. 1989; Fehrmann et al. 2008; Picard
et al. 2012; Chave et al. 2015; Magnussen and Carillo
Negrete 2015).
In this study, we compare the precision of estimation
of AGB from fixed-area field inventory plots under the
two approaches CA and DA. The DA is the approach
detailed in most forest inventory textbooks in which
plot-level AGB is predicted as the sum over the sample
trees in a plot of the biomass predicted for each tree
using an appropriate model (Kershaw et al. 2016). A DA
estimate of plot-level biomass may include crown parts
of sample trees that extend outside of the plot perimeter
and biomass in oblique stems leaning outside of the plot
area.
We consider the CA with tree biomass viewed as a

variable that is continuously distributed horizontally. Its
application requires, for each inventory plot, the predic-
tion of the plot-level biomass to include all parts with a
horizontal projection within the area defined by the plot.
A continuous view is also adopted in forest monitoring
when defining an infinite population of sample elements
(i.e. plots) in an area sampling frame (Mandallaz 1991),
but applying a continuous view to the inventory variable
biomass is new and modelling the continuous horizontal
biomass distribution (HBD) to produce plot-level predic-
tions of biomass has not been reported before. Aside
from forest field inventories, a continuous view is not
uncommon, for example, for topographic variables such
as height above sea level, and remotely-sensed canopy
height models.
Figure 1 illustrates the key difference between the DA

and CA for the estimation of tree variables.
While the vertical distribution of forest biomass has

been researched intensively (e.g. Tahvanainen and Forss
2008; Ruiz-González and Álvarez-González 2011; Nemec
et al. 2012; Jiménez et al. 2013), studies that address the
horizontal forest or tree biomass distribution are sparse.
Kershaw and Maguire (1996) and Xu and Harrington
(1998) modelled the horizontal distribution of leaf bio-
mass - but not AGB. Affleck et al. (2012) noted an ab-
sence of HBDs for the modelling of fuel load where
HBDs would be required to fully utilize next-generation
fire behaviour simulators, and to improve fuel manage-
ment strategies to reduce fire hazard. Mascaro et al.
(2011) considered a uniform HBD across the crown pro-
jection area in a study on uncertainty in carbon estima-
tion. They may have been the first to integrate the DA/
CA issue in the context of airborne laser scanning (ALS)
for forest carbon. They named the approaches “stem-lo-
calized” (corresponding to our DA and Gove and Van
Deusen’s (2011) “stand-up” approach) and “crown-dis-
tributed” (corresponding to our CA and Gove and Van
Deusen’s (2011) “chainsaw” method). Mascaro et al.
(2011) investigated the issue in a remote-sensing based
modelling context. Their main finding was that the root
mean square errors (RMSE) were lower for the “crown-
distributed” approach when modelling biomass from



Fig. 1 Schematic comparison of (a) the DA and (b) the CA in determining plot-level tree variables for the same plot area, here depicted as a
cross section in two dimensions. The plot size is represented by the bold black line at ground level. For the CA depiction, the vertical dashed
lines mark the limits within which the variable is considered. The grey shaded areas represent the portions of the variable that need to be
predicted and that constitute the predicted per-plot value under the two approaches
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ALS data. As expected, the results varied with field plot
size. Packalen et al. (2015) suggested a different ap-
proach to the edge tree issue in the ABA in ALS-based
modelling; they modified the plot area so that the
crowns of in-trees were fully contained in an extended
plot while overlapping crown parts of out-trees were dis-
counted. This technique allowed them to compute the
predictor variables tree-wise, while area-based predic-
tions were still made for the original plot.
This study is a first step towards integrating the hori-

zontal distribution of forest biomass into AGB estima-
tion from forest inventory field sampling. To that end,
we provide a case study where DA estimates of AGB are
compared to CA estimates predicted by considering
AGB as a continuous variable across an area of interest.
Our case study considers the sampling induced standard
error exclusively; we are not yet dealing here with a fully
realized error propagation including measurement and
model errors. The findings of our case allow us to draw
first conclusions about the CA’s statistical performance,
and identify pathways for further developments.
Table 1 Characteristics of the 2 ha study area. N = stand density,
G = basal area, and dg = quadratic mean diameter

Total Beech Other broadleaves Conifers

N (trees·ha− 1) 183.0 169.0 9.0 5.0

G (m2·ha− 1) 25.1 23.1 0.9 1.1

dg (cm) 41.8 41.7 35.7 54.1
Materials and methods
Study area
Data for our simulations come from a two-hectare
area (100 m × 200 m) within a stand dominated by
beech (Fagus sylvatica L., 92.3% in both basal area
and number of trees) near Göttingen, Germany
(51°33′52.3“ N 9°57’53.8” E). The stand was fully enu-
merated: for each tree, the species was identified and
dbh (cm) was measured to the nearest millimeter
with a diameter tape. Tree positions were recorded
with high accuracy with an electronic theodolite.
Summary statistics are in Table 1.
Tree heights and maximum crown diameters

(CDmax = diameter of crown projection area) were pre-
dicted from dbh via local models (Guericke 2001). A cir-
cular tree crown projection was assumed.
Construction of a tree-level HBD
The cornerstone in the CA is tree-specific HBDs for all
trees in a plot, and for trees outside of the plot whose
branches and foliage extend inside the plot perimeter.
The HBD allocates a predicted tree biomass over a tree’s
crown projection area.
Mascaro et al. (2011) proposed a uniform distribution

by assigning (simply but quite unrealistically) the same
biomass density to the inner and outer parts of the tree
crown. To more closely reflect reality, we developed a
per-tree crown horizontal biomass distribution by com-
bining a simple stem biomass model with both branch-
wood models and foliage biomass models, derived from
allometry and horizontal foliage distribution.
As an approximation, we applied one single general

HBD model for all trees.
In the first step, we predicted the AGB for each tree

separately for the stem, the branches and foliage using
models provided in Bartelink (1997). In the second step,
we distributed this AGB horizontally along our model of
HBD over the crown projection area.
The compartment-wise development of our HBD is

given in Additional file 1 (Max and Burkhart 1976).
Figure 2 illustrates this HBD by giving a 2D profile of
this three-dimensional distribution.
The 3D HBD for each biomass component (stem,

branches and foliage) was generated by rotating the cor-
responding functions around the stem axis. We stan-
dardized the X-axis (distance from the tree axis in Fig. 2)
of the distribution to the CDmax/2 of each tree, and dis-
tributed the volume under the rotation solid over the



Fig. 2 Schematic profile of the horizontal distribution of stem,
branch and foliage biomass (AGB), when combined in an individual
tree and arbitrary direction. BD is the basal diameter of the stem,
derived from dbh (assuming a cone shape); CDmax is the maximum
crown diameter
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horizontal plane. Hence, we assumed for the time being
that the HBD is isotropic in the horizontal plane, and that
all trees have the same standardized distribution. Results
of an as of yet unpublished empirical study on beech trees
confirm the general shape of this distribution.
Having built the model for the individual tree HBD,

the basic difference between the two approaches be-
comes obvious: in the DA, the total tree predicted AGB
is located at the stem position whereas in the CA the
same total tree AGB is distributed over the assumed cir-
cular crown projection area along the HBD model. That
means that the considered and evaluated AGB per tree
remains the same. The differences between the DA and
the CA are (1) how this AGB is horizontally distributed
and (2) which portion of this AGB is subsequently re-
corded for a defined plot area.

Construction of an area-level HBD
To illustrate the difference between AGB estimates from
the DA and the CA for an area of interest, we needed an
HBD model for the entire area (here: our 2-ha study
area). In principle this is done by predicting the HBD for
each tree and summing the predicted biomass for each
location in the study area. For practicality, we chose to
rasterize the study area into cells of 2 cm × 2 cm, result-
ing in a total of 50 × 106 cells. This fine spatial resolution
of the horizontal distribution of biomass over the study
area provided an approximation to the continuous bio-
mass distribution.
To facilitate a comparison between DA and CA esti-

mates of AGB, and to better illustrate their differences,
we also produced an HBD model for the study area as it
would emerge with the DA. In contrast to the CA, the
DA specific HBD model assigns the predicted AGB of a
tree to a single 2 cm × 2 cm cell containing the stem pos-
ition; resulting in an HBD map where the individual tree
biomass is concentrated at the tree positions and dis-
plays as peaks whose height depends on the respective
biomass.
The DA and CA area-level HBD models were then

used in a sample simulation as a basis for comparison.

Sample simulation
To capture effects of plot-size and shape, we carried out
simulations with two common plot shapes (circles as
preferred in forest inventory and squares as preferred in
ecological surveys), and 17 plot sizes (100, 200, …, 1700
m2), hereby referred to as plot designs. To ensure that
our DA-CA comparison would not be influenced by
Monte-Carlo errors (Rao 1973; Koehler et al. 2009) we
opted for simulating all possible samples through the
construction of a sampling surface (Van Deusen et al.
1986; Roesch et al. 1993; Hradetzky 1995). A sampling
surface is specific to a plot design, and provides - for
each point within a defined sampling frame (area) - the
predicted AGB value that would be realized (from either
a DA or CA HBD area level model) had the point been
selected for sampling. Our sampling frame was the grid
with the total of 50 × 106 square units of 4 cm2. Upon
completion we have, for each plot design, two sampling
surfaces of AGB, one for the DA and one for the CA.
In our simulations we eliminated boundary effects by

excluding sample locations with a distance less than or
equal to 23.26 m from the study area border. The width
of this sample exclusion zone corresponds to the radius
of the largest circular plot. In actual applications, bound-
ary effects will be different for the DA and the CA, but
boundary effects were beyond the scope of our study.
The standard deviation of all AGB values across all 4

cm2 units in a sampling surface for a specific plot design
and approach (DA or CA), corresponds to the standard
error under equal probability sampling and a sample size
of n = 1. Standard errors for larger sample sizes are not
needed, as they are covered by the central limit theorem
(Johnson 2004) and may be obtained by first principles.
To illustrate our results also in more practical terms,

we defined a target relative standard error of 5%, and



Kleinn et al. Forest Ecosystems            (2020) 7:57 Page 5 of 10
compared the expected sample sizes required to reach
this target with the DA and the CA under the various
plot designs. For the evaluation of sampling surfaces and
determining the sample size needed to reach the preci-
sion target, we have assumed equal probability sampling.
All statistical analyses and computations were made in R
(R Core Team 2018).

Results
We first built the HBDs for the study area for each ap-
proach, the CA and the DA. The enlarged 20m × 20m
sections in Fig. 3 highlight the difference between the
two, where the biomass distribution for the DA is char-
acterized by high peaks at the tree positions while under
the CA the tree biomass is distributed isotropically over
each circular crown area as per our example in Fig. 2.
From the predicted HBD of the study stand we calcu-

lated the AGB sampling surfaces both for the DA and the
CA (Fig. 4, Mg·ha− 1). A sampling surface is specific for a
defined plot design. It gives per point (i.e. cell of 2 cm × 2
cm) the per-plot biomass prediction that results for a sam-
ple plot centred at this particular point. While the topog-
raphy of a sampling surface map varies by the two
approaches and by plot design, the overall (parametric)
mean of AGB computed for the sampling frame of 4 cm2

units remains stable for all sampling surfaces at about 279
Mg·ha− 1; minor deviations from this value are caused by
rasterizing instead of using a truly continuous surface, and
by sampling from slightly different sampling frames due to
different buffers to avoid boundary overlaps. We acknow-
ledge that the population established by the sampling sur-
face is built from predicted biomass values and not from
the true but unknown biomass. As expected, for a given
plot size, the sampling surfaces (Fig. 4) are smoother for
the HBD of the CA than for the HBD of the DA. Equally,
these differences diminish with an increase in plot size
due to a lower within-surface variance, and due to a
smaller proportion of boundary trees. With plot sizes
Fig. 3 Horizontal AGB distribution for all tree components (stem + branche
shows the entire 2-ha study area. Maps b and c amplify the 20m × 20m sq
(i.e. per raster cell of 2 cm × 2 cm)
above 900 m2 the difference in the smoothness of the DA
and the CA sampling surface were minor and without
practical importance (not shown).
A smoother (less variable) sampling surface translates

to a lower standard error in a mean estimated from a
probability sample, at least when we set aside issues
linked to the uncertainty in predictions of biomass and
look only at the sampling induced uncertainty (as if plot-
level AGB had been observed without measurement nor
model errors). Figure 5 depicts the standard deviations of
the DA and the CA HBD sampling surfaces by plot size.
The CA sampling surface consistently exhibits a smaller
standard deviation for all plot sizes and the two plot
shapes (circular, square). The relative reduction in vari-
ability is more pronounced for smaller plots and decreases
as plot size increased. This observation can be explained
by a higher perimeter-to-area ratio of smaller plots, so
that, per-unit area, the frequency of crowns intersecting a
smaller plot is higher than for larger plots. Figure 5 also
indicates a small but consistently superior performance of
the circular plot shape; this feature is in line with the
minimum perimeter-to-area ratio of a circle.
We also used the DA and CA sampling surfaces of

plot-level AGB estimates to gauge the required sample
size for a target relative standard error of 5% in an esti-
mate of the mean AGB in the studied sample frame. The
results are shown in Fig. 6. As alluded to, the CA can
achieve the target precision with a smaller sample size.
In our study area, a reduction of 27.1% was achieved
with our smallest plots of 100 m2. For the largest plots
considered (1700 m2), the reduction was 10.4%. We
noted a slightly but consistently greater (1.4%) reduction
with circular plots than with square plots, in agreement
with their more favourable perimeter-to-area ratio.

Discussion
In the context of field sampling, our case study indicates
that, when assuming equal model errors, the CA
s + foliage) for the CA (maps a and b and the DA (map c). Map a
uare shown in map a. The units of the grey values are “kg per 4 cm2 ”



Fig. 4 Sampling surfaces for the DA (left, a-c) and the CA (right, a′-c′) for the estimation of AGB within a circular plot with an area of: 100 m2 (a, a′);
500 m2 (b, b′); and 900 m2 (c, c′). The color scale illustrates the values of the predicted plot-level biomass in Mg·ha− 1 and SD is the standard deviation
(Mg·ha− 1) of surface values of AGB
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approach to the estimation of AGB tends to be more ef-
ficient in terms of precision of estimation than the trad-
itional DA. This advantage of the CA over the DA will
depend, however, in a rather complex way, on tree spe-
cies, tree and crown sizes, stand structures, stem dens-
ities, and the interactions of these factors with plot size
and shape (in particular, perimeter length). In our case
study, for a defined target precision of estimation, we
observed a reduction in the required sample size of
10.4% for larger plots (1700 m2) and 27.1% for small
plots (100 m2). It will be instructive to investigate all fac-
tors influencing precision and producing an error
budget. Part of that research would need to be the
explicit consideration of model errors when comparing
the CA to the DA. In the DA, the only model error
comes from the AGB model, while in the CA, there are
more models in use: (1) predicting AGB from an allo-
metric model (like with the DA), (2) predicting the cir-
cular crown projection area as a function of dbh and (3)
predicting the HBD to estimate which share of the AGB
of a sample tree is assigned to the particular plot.
We compared our findings regarding the precision of

estimation with those of a dead wood sampling study by
Gove and Van Deusen (2011), who compared the per-
formance of their “stand-up method” (corresponding to
our DA) to their “chainsaw method” (corresponding to



Fig. 5 Standard deviation (log scale) of the DA and CA sampling surfaces of AGB as a function of plot area and shape. Sampling surfaces were
built without considering measurement nor model errors. Differences between square and circle shapes are small, but the CA produces
consistently lower standard deviations

Fig. 6 For the 2 ha study area: reduction in the required sample size for equal probability sampling as a function of plot area for the DA and the
CA with a fixed target standard error of 5% of estimating AGB and equal probability sampling
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our CA) for estimating the volume of downed coarse
woody debris. They found the CA to be superior. In
their study, the respective standard deviations for the
sample surfaces were 135.48 m3 and 120.18 m3, meaning
that their (continuous) chainsaw approach was approxi-
mately 12% more precise than the (discrete) stand-up
approach. Mascaro et al. (2011) also observed superiority
from their version of the CA when they derived a re-
mote sensing-based model for forest biomass prediction,
even under the assumption of a very basic model of a
uniform distribution for the individual tree HBD.
For this first-of-its-kind case study on the comparison

of the CA and the DA for forest biomass, we worked
with various simplifying assumptions regarding regular
and symmetric (rotational) stem and crown shapes,
branch allometry, profile distributions of foliage, iso-
tropic distribution of biomass within the volumetric con-
finements of a biomass component, and perfectly
upright stem axes. Combined, these assumptions may
have influenced our plot-level uncertainty in biomass
predictions; this will be subject of further research.
Refinements regarding our assumptions when building

the tree-level HBD model are needed, and will be pur-
sued. In particular, the use of more realistic models for
each biomass component will be addressed to investigate
their effect on the performance differential between the
CA and the DA.
From a practical perspective, the DA for estimation of

AGB has well-established advantages in terms of expedi-
ency because measurements and model-based predic-
tions are straightforward and apply only to the sample
trees within a plot. With the DA, there is neither a need
for a map of tree locations in the plot, nor measure-
ments (dbh and location) of trees in the surrounding
vicinity of a plot as would be required by the CA. Add-
itional measurements come at an often detrimental cost
to existing budgets for already costly field work. How-
ever, one may realistically expect the future to bring for-
est mensuration devices that allow one to automatically
and simultaneously measure the distance to sample
trees, the height of 1.3 m, and the diameter at this refer-
ence height. This advancement would accelerate field
work on mapped forest inventory plots and their sur-
roundings and improve the appeal of the CA approach.
Also, laser scanning may possibly allow us to directly
model the horizontal volume distribution over a defined
plot area, which could then serve as a proxy for HBD.
We compared the DA and the CA from the perspec-

tive of field plot sampling. The theoretical consistency of
the CA in terms of estimating AGB over a specifically
defined piece of forest (i.e. plot area) is, however, of par-
ticular relevance in model-assisted and model-based esti-
mation problems in which remotely-sensed auxiliary
variables are linked to per-plot predictions of AGB
(Nelson et al. 2000; Mascaro et al. 2011; Magdon et al.
2018). Conceptually, the remotely-sensed auxiliary vari-
able only registers the biomass proxies within the con-
finements of a field plot while the field data from the
DA – that are used to build the remote sensing based
biomass model - include biomass of plot trees extending
beyond the plot perimeter, and ignore the biomass from
outside trees overhanging a plot. The extent of the mis-
alignment depends (to a large degree) on the spatial
resolution or density of the remotely-sensed data, plot
size and in particular plot perimeter. This observation
has also been described, for example, by Packalen et al.
(2015) with respect to the ABA in lidar remote sensing.
They proposed to extend the plot area to avoid trunca-
tions of crowns associated with plot trees.
Only from remote sensing data with a spatial reso-

lution much finer than the size of most crowns, should
we, a priori, expect the CA to generate a stronger correl-
ation between the auxiliaries in an assisting model and
AGB than the DA. This is because the misalignment of
biomass, vis-à-vis the confinements of a plot, will act as
a measurement error - with an attenuation of correla-
tions (Fuller 1987; Carroll et al. 2006). In fact, Mascaro
et al. (2011) in the context of an ALS study, addressed
three major sources of errors: (1) GPS positional error,
(2) temporal differences between field and lidar data,
and (3) a lack of consistency between lidar and field plot
measurements rooted in the uncertainty of deciding on
whether a tree or any part of it resides inside the con-
finements of a field plot. With respect to the third
source of error, which relates to our study, they found
that the RMSE of the model that links the lidar with the
ground data could be improved when a CA replaced the
traditional DA. This ‘third’ error has so far not been ex-
plicitly recognized in otherwise detailed error budgets
for AGB estimates in forest monitoring (Chave et al.
2004; Ståhl et al. 2014; Molto et al. 2013; Magnussen
et al. 2014; Chen et al. 2016).

Conclusions
Our overall goal was to propose a possible improvement
of the precision of forest biomass estimation from field
sampling by suggesting a novel continuous approach to
predict plot-level AGB. A key characteristic of the CA is
the use of a HBD model applied to individual trees; thus,
the CA may be applied to any forest inventory sampling
design. From our study we learned that the CA pro-
duced a smoother (i.e. less variable) sampling surface.
We may therefore conclude that the CA has a potential
to improve the precision of field-estimated AGB - at
least when we assume (as done here) that the model er-
rors in per-plot AGB prediction are the same for the CA
and the DA. However, the CA approach will not be fully
operational until issues related to field measurement
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efforts are resolved. Moreover, the integration of the CA
in forest inventories will not only depend on the avail-
ability of measurement devices for rapid mapping of
trees around a sample point, recordings of dbh and de-
lineation of crown projection areas, but also on an ex-
pansion of our arsenal of models for crown size, foliage
distribution, and branch architecture.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40663-020-00268-7.

Additional file 1. Technical steps of the construction of a tree-level
HBD.
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